Modeling Outbreak Prediction and the Impact of Emergency Vaccination on the 2024–2025 Chikungunya Outbreak in La Réunion
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Structure
2.2. Model Inputs
2.3. Model Calibration
2.4. Vaccination Strategy
3. Results
3.1. Outcomes of Model Calibration
3.2. Chikungunya Outbreak Size Predictions
3.3. The Effect of Vaccination on the Outbreak Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CHIKV | Chikungunya virus |
| EMA | European Medicines Agency |
| FDA | Food and Drug Administration |
| HAS | Haute Autorité de Santé |
| ODE | Ordinary Differential Equation |
| PRAC | Pharmacovigilance Risk Assessment Committee |
| SEIR-SEI | Susceptible, Exposed, Infected, Recovered-Susceptible, Exposed, Infected |
References
- Gérardin, P.; Guernier, V.; Perrau, J.; Fianu, A.; Le Roux, K.; Grivard, P.; Michault, A.; De Lamballerie, X.; Flahault, A.; Favier, F. Estimating Chikungunya prevalence in La Reunion Island outbreak by serosurveys: Two methods for two critical times of the epidemic. BMC Infect. Dis. 2008, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Guillot, X.; Ribera, A.; Gasque, P. Chikungunya-Induced Arthritis in Reunion Island: A Long-Term Observational Follow-Up Study Showing Frequently Persistent Joint Symptoms, Some Cases of Persistent Chikungunya Immunoglobulin M Positivity, and No Anticyclic Citrullinated Peptide Seroconversion After 13 Years. J. Infect. Dis. 2020, 222, 1740–1744. [Google Scholar] [CrossRef] [PubMed]
- Josseran, L.; Paquet, C.; Zehgnoun, A.; Caillere, N.; Tertre, A.L.; Solet, J.-L.; Ledrans, M. Chikungunya Disease Outbreak Reunion Island. Emerg. Infect. Dis. 2006, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Soumahoro, M.-K.; Boelle, P.-Y.; Gaüzere, B.-A.; Atsou, K.; Pelat, C.; Lambert, B.; La Ruche, G.; Gastellu-Etchegorry, M.; Renault, P.; Sarazin, M. The Chikungunya epidemic on La Reunion Island in 2005–2006: A cost-of-illness study. PLoS Neglected Trop. Dis. 2011, 5, e1197. [Google Scholar] [CrossRef] [PubMed]
- Bardin, P.; Rakotondrainipiana, M.; Rouveix, E.; D’Herbe, F.; Lasserre, A. Utilisation du Vaccin IXCHIQ dans le Contexte Épidémique de Chikungunya dans les Territoires de La Réunion et de Mayotte; 27 Fevrier; Haute Autorite de Sante: Saint-Denis, France, 2025; pp. 13–14. [Google Scholar]
- European Centre for Disease Prevention and Control. Communicable Disease Threats Report, Week 35 24–30 August 2024. 2024. Available online: https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-24-30-august-2024-week-35 (accessed on 29 April 2025).
- European Centre for Disease Prevention and Control. Communicable Disease Threats Report, Week 9, 22–28 February 2025. 2025. Available online: https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-22-28-february-2025-week-9 (accessed on 29 April 2025).
- European Medicines Agency. First Vaccine to Protect Adults from Chikungunya. 2024. [Updated 31 May 2024]. Available online: https://www.ema.europa.eu/en/news/first-vaccine-protect-adults-chikungunya (accessed on 11 April 2025).
- European Medicines Agency. New Chikungunya Vaccine for Adolescents from 12 and Adults. 2025. [Updated 31 January 2025]. Available online: https://www.ema.europa.eu/en/news/new-chikungunya-vaccine-adolescents-12-adults (accessed on 11 April 2025).
- Schneider, M.; Narciso-Abraham, M.; Hadl, S.; McMahon, R.; Toepfer, S.; Fuchs, U.; Hochreiter, R.; Bitzer, A.; Kosulin, K.; Larcher-Senn, J. Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: A double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2023, 401, 2138–2147. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.S.; Anderson, D.M.; Mendy, J.; Tindale, L.C.; Muhammad, S.; Loreth, T.; Tredo, S.R.; Warfield, K.L.; Ramanathan, R.; Caso, J.T. Chikungunya virus virus-like particle vaccine safety and immunogenicity in adolescents and adults in the USA: A phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2025, 405, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Sloof, A.C.; Boer, M.; Vondeling, G.T.; de Roo, A.M.; Jaramillo, J.C.; Postma, M.J. Strategic vaccination responses to Chikungunya outbreaks in Rome: Insights from a dynamic transmission model. PLoS Neglected Trop. Dis. 2024, 18, e0012713. [Google Scholar] [CrossRef] [PubMed]
- Christofferson, R.C.; Mores, C.N. A role for vector control in dengue vaccine programs. Vaccine 2015, 33, 7069–7074. [Google Scholar] [CrossRef] [PubMed]
- Jourdain, F.; de Valk, H.; Noël, H.; Paty, M.-C.; L’Ambert, G.; Franke, F.; Mouly, D.; Desenclos, J.-C.; Roche, B. Estimating chikungunya virus transmission parameters and vector control effectiveness highlights key factors to mitigate arboviral disease outbreaks. PLoS Neglected Trop. Dis. 2022, 16, e0010244. [Google Scholar] [CrossRef] [PubMed]
- World Population Review. Reunion Population. 2025. Available online: https://worldpopulationreview.com/countries/reunion (accessed on 29 April 2025).
- Dumont, Y.; Chiroleu, F. Vector control for the Chikungunya disease. Math. Biosci. Eng. 2010, 7, 313–345. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Fritzer, A.; Hochreiter, R.; Dubischar, K.; Meyer, S. From bench to clinic: The development of VLA1553/IXCHIQ, a live-attenuated chikungunya vaccine. J. Travel Med. 2024, 31, taae123. [Google Scholar] [CrossRef] [PubMed]
- Kakarla, S.G.; Mopuri, R.; Mutheneni, S.R.; Bhimala, K.R.; Kumaraswamy, S.; Kadiri, M.R.; Gouda, K.C.; Upadhyayula, S.M. Temperature dependent transmission potential model for chikungunya in India. Sci. Total Environ. 2019, 647, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Macoris, M.; Galvani, K.; Andrighetti, M.; Wanderley, D. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 2009, 137, 1188–1202. [Google Scholar] [CrossRef] [PubMed]
- Insee. Estimation de Population au 1er Janvier, par Région, Sexe et âge Quinquennal. 2025. Available online: https://www.insee.fr/fr/statistiques/8331297 (accessed on 2 May 2025).
- Wressnigg, N.; Hochreiter, R.; Zoihsl, O.; Fritzer, A.; Bézay, N.; Klingler, A.; Lingnau, K.; Schneider, M.; Lundberg, U.; Meinke, A.; et al. Single-shot live-attenuated chikungunya vaccine in healthy adults: A phase 1, randomised controlled trial. Lancet Infect. Dis. 2020, 20, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Communicable Disease Threats Report; Week 35 23–29 August 2025. 2025. Available online: https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-23-29-august-2025-week-35 (accessed on 4 September 2025).
- Rama, K.; de Roo, A.M.; Louwsma, T.; Hofstra, H.S.; Gurgel do Amaral, G.S.; Vondeling, G.T.; Postma, M.J.; Freriks, R.D. Clinical outcomes of chikungunya: A systematic literature review and meta-analysis. PLoS Neglected Trop. Dis. 2024, 18, e0012254. [Google Scholar] [CrossRef] [PubMed]
- de Roo, A.M.; Vondeling, G.T.; Boer, M.; Murray, K.; Postma, M.J. The global health and economic burden of chikungunya from 2011 to 2020: A model-driven analysis on the impact of an emerging vector-borne disease. BMJ Glob Health 2024, 9, e016648. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, A.; Braga, J. Spatial diffusion of the 2015–2016 Zika, dengue and chikungunya epidemics in Rio de Janeiro Municipality, Brazil. Epidemiol. Infect. 2019, 147, e237. [Google Scholar] [CrossRef] [PubMed]
- Ammatawiyanon, L.; Tongkumchum, P.; McNeil, D.; Lim, A. Statistical modeling for identifying chikungunya high-risk areas of two large-scale outbreaks in Thailand’s southernmost provinces. Sci. Rep. 2023, 13, 18972. [Google Scholar] [CrossRef] [PubMed]
- Torales, M. Notes from the field: Chikungunya outbreak—Paraguay, 2022–2023. Morb. Mortal. Wkly. Rep. 2023, 72, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.P.; Carabali, M.; Yuan, M.; Jaramillo-Ramirez, G.I.; Balaguera, C.G.; Restrepo, B.N.; Zinszer, K. Spatio-temporal clusters and patterns of spread of dengue, chikungunya, and Zika in Colombia. PLoS Neglected Trop. Dis. 2022, 16, e0010334. [Google Scholar] [CrossRef] [PubMed]



| Parameter | Value | Source |
|---|---|---|
| Human population | ||
| Human population | 896,175 | [15] |
| Natural immunity | 0.2 | [5] |
| Human susceptibility to infection | 0.375 | [16] |
| Intrinsic incubation rate | 0.33 | [16] |
| Recovery rate | 0.33 | [16] |
| Mosquito population | ||
| Mosquito susceptibility to infection | 0.375 | [16] |
| Biting rate | Time-dependent | Calibrated |
| Female-male ratio | 0.5 | Assumption |
| Additional mortality | 0.05 | Assumption |
| Female mosquito population threshold | 896,175 | Depends on VHR and female ratio |
| Initial mosquito population proportion | 0.9 | Assumption |
| General parameters | ||
| Vector–host ratio | 2 | Assumption |
| Start date outbreak | 17 November | |
| Time step | 0.2 | |
| Vaccination parameters | ||
| Vaccine efficacy | 0.989 | [10] |
| Vaccine coverage rate | 0.145 | Calculation |
| Cases before outbreak identification | Varies | Multiple scenarios |
| Vaccination program duration (days) | 30 | Assumption |
| Time until vaccination provides immunity (days) | 14 | [10,17] |
| Counter measures | ||
| Extra vector control | 10% or 20% | Assumption |
| Age Group | Total Population | Natural Immunity | Susceptible Population | Vaccination Coverage Rate | Absolute Number of Vaccinations |
|---|---|---|---|---|---|
| 0–17 | 224,822 [20] | 0.0% | 224,822 | 0.00% | 0 |
| 18–64 (no comorb.) | 350,021 [20] | 32.7% | 248,064 | 0.00% | 0 |
| 18–64 (comorb.) | 180,314 [20] | 29.1% | 121,437 | 42.72% | 77,026 |
| 65+ | 141,018 [20] | 49.3% | 71,500 | 37.68% | 53,130 |
| Additional Vector Control | Simulation Number | ||||||
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| 10% | 219,202 | 271,356 | 298,861 | 208,880 | 268,062 | 270,808 | 188,926 |
| 20% | 96,677 | 116,711 | 147,514 | 87,251 | 117,587 | 118,615 | 72,065 |
| Simulation | No Vaccination | Vaccination After 100 Cases | Vaccination After 3000 Cases | Vaccination After 40,000 Cases | ||||
|---|---|---|---|---|---|---|---|---|
| 10% 1 | 20% 1 | 10% | 20% | 10% | 20% | 10% | 20% | |
| 1 | 219,202 | 96,677 | 52,828 | 22,190 | 126,898 | 59,077 | 197,882 | 94,136 |
| 2 | 271,356 | 116,711 | 64,146 | 30,597 | 158,933 | 69,163 | 235,933 | 111,169 |
| 3 | 298,861 | 147,514 | 90,726 | 43,718 | 178,032 | 88,059 | 256,486 | 136,810 |
| 4 | 208,880 | 87,251 | 57,653 | 28,012 | 121,929 | 53,532 | 190,184 | 85,285 |
| 5 | 268,062 | 117,587 | 59,406 | 27,111 | 156,888 | 70,147 | 234,245 | 111,984 |
| 6 | 270,808 | 118,615 | 63,464 | 25,741 | 159,895 | 71,161 | 235,329 | 112,701 |
| 7 | 188,926 | 72,065 | 44,018 | 15,357 | 110,575 | 44,680 | 173,981 | 71,077 |
| Average outbreak size | 246,585 | 108,060 | 61,749 | 27,532 | 144,736 | 65,117 | 217,720 | 103,309 |
| Average reduction in cases | 0 | 0 | 75.1% | 74.7% | 41.4% | 39.6% | 11.4% | 4.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boer, M.; Vondeling, G.T.; Plennevaux, E.; de Roo, A.M. Modeling Outbreak Prediction and the Impact of Emergency Vaccination on the 2024–2025 Chikungunya Outbreak in La Réunion. Vaccines 2025, 13, 1181. https://doi.org/10.3390/vaccines13121181
Boer M, Vondeling GT, Plennevaux E, de Roo AM. Modeling Outbreak Prediction and the Impact of Emergency Vaccination on the 2024–2025 Chikungunya Outbreak in La Réunion. Vaccines. 2025; 13(12):1181. https://doi.org/10.3390/vaccines13121181
Chicago/Turabian StyleBoer, Martijn, Gerard Timmy Vondeling, Eric Plennevaux, and Adrianne Marije de Roo. 2025. "Modeling Outbreak Prediction and the Impact of Emergency Vaccination on the 2024–2025 Chikungunya Outbreak in La Réunion" Vaccines 13, no. 12: 1181. https://doi.org/10.3390/vaccines13121181
APA StyleBoer, M., Vondeling, G. T., Plennevaux, E., & de Roo, A. M. (2025). Modeling Outbreak Prediction and the Impact of Emergency Vaccination on the 2024–2025 Chikungunya Outbreak in La Réunion. Vaccines, 13(12), 1181. https://doi.org/10.3390/vaccines13121181

