Bacillus subtilis Spores as a Vaccine Delivery Platform: A Tool for Resilient Health Defense in Low- and Middle-Income Countries
Abstract
1. Introduction
2. Lessons Learned from the COVID-19 Pandemic
3. Methodology
4. Biological Characteristics of Bacillus subtilis and Its Potential as a Vaccine Delivery Platform
4.1. Biological Characteristics of B. subtilis and Its Sporulation Cycle
4.2. Laboratory Strains and Engineering for Antigen Delivery
4.3. Advantages of B. subtilis as a Vaccine Platform
4.4. Immunological Properties of B. subtilis Spores
5. Mechanisms of Vaccine Delivery: Recombinant Antigen Encapsulation and Non-Recombinant Surface Display
6. Manufacturing of B. subtilis Spore-Based Vaccines
Feature | Bacillus subtilis Spore-Based Vaccines | mRNA Vaccines | Viral Vector Vaccines | Inactivated/Attenuated Whole-Cell Vaccines | Protein Subunit Vaccines |
---|---|---|---|---|---|
Upstream Process (USP) | Sporulation of bacterial cells carrying recombinant proteins or adsorption of non-recombinant proteins onto spores | IVT enzymatic synthesis of mRNA with capping and tailing | Cell culture-based production (e.g., HEK293 or CHO cells) | Cell culture (e.g., Vero cells) or embryonated eggs | Varies: Cell culture (e.g., CHO, yeast, or insect cells) |
Downstream Process (DSP) | Heat-killing or inactivation of spores, followed by centrifugation, UF/DF | Enzymatic digestion, purification using chromatography and UF/DF | Chromatography, UF/DF, and depth filtration | Inactivation, followed by chromatography, UF/DF, and depth filtration | Chromatography, UF/DF, stabilization processes |
Approximate Upscale Volume (Batch) | High | Moderate | High | High | Moderate |
Time for Development | Moderate (several weeks) | Rapid (several days to weeks) | Moderate (several weeks) | Moderate to slow (several months) | Moderate (several weeks) |
Scalability | High | Moderate | High | Moderate | Moderate |
Stability (Cold Chain) | Room temperature stable | Requires -20 °C to -80 °C | Requires -20 °C to -80 °C | Requires refrigeration (2 °C to 8 °C) | Requires refrigeration (2 °C to 8 °C) |
Cost | Low | High | Moderate | Moderate | Moderate |
Mucosal Immunity | Yes | Limited | Limited | Limited | Limited |
Manufacturing Safety Considerations | Low biohazard risk due to the GRAS status, straightforward handling | Requires stringent cleanroom conditions to prevent RNA degradation | Requires virus seed banks and biosafety measures to prevent virus release | High biocontainment is necessary for infectious viruses; toxic agents for inactivation pose risks | Depending on protein type; moderate biocontainment may be necessary |
7. Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAD | Antibiotic-associated Diarrhea |
AI | Artificial Intelligence |
APCs | Antigen-presenting Cells |
ASEAN | Association of Southeast Asian Nations |
ATPSs | Aqueous Two-Phase Systems |
AVSSR | ASEAN Vaccine Security and Self-Reliance |
BALT | Bronchus-associated Lymphoid Tissue |
BMN | Bioactive Microbial Nutraceutical |
CDAD | C. difficile-associated Diarrhea |
CEPI | Coalition for Epidemic Preparedness Innovations |
CIP | Clean-in-place |
DC | Dendritic Cell |
DPA | Dipicolinic Acid |
DS | Drug Substance |
DSP | Downstream Processing |
FDA | Food and Drug Administration |
GALT | Gut-associated Lymphoid Tissue |
GI | Gastrointestinal |
GMOs | Genetically Modified Organisms |
GMPs | Good Manufacturing Practices |
GRAS | Generally Recognized as Safe |
ICB | Intensified, Continuous Biomanufacturing |
IP | Intellectual Property |
IVT | In Vitro Transcription |
LMICs | Low- and Middle-Income Countries |
NALT | Nasal-associated Lymphoid Tissue |
NRAs | National Regulatory Authorities |
PEG | Polyethylene Glycol |
R&D | Research and Development |
SIP | Sterilize-in-place |
SIREN | SARS-CoV-2 Immunity and REinfection EvaluatioN |
SUT/SUS | Single-use Technology/Systems |
TBDR | TonB-dependent Receptor |
TIDREC | Tropical Infectious Diseases Research & Education Centre |
TLRs | Toll-like Receptors |
TTFC | Tetanus Toxin Fragment C |
TRM | Tissue Resident Memory |
UF/DF | Ultrafiltration and Diafiltration |
USP | Upstream Processing |
VOCs | Variants of Concern |
WFI | Water for Injection |
WHO | World Health Organization |
References
- Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and Influenza Pandemics. Lancet Infect. Dis. 2020, 20, e238–e244. [Google Scholar] [CrossRef]
- Pinilla, J.; Barber, P.; Vallejo-Torres, L.; Rodríguez-Mireles, S.; López-Valcárcel, B.G.; Serra-Majem, L. The Economic Impact of the SARS-CoV-2 (COVID-19) Pandemic in Spain. Int. J. Environ. Res. Public Health 2021, 18, 4708. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The Socio-Economic Implications of the Coronavirus Pandemic (COVID-19): A Review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.; Muradali, K.; El Sahly, H.; Bozkurt, B.; Jneid, H. Impact of the SARS-CoV-2 Pandemic on Health-Care Workers. Hosp. Pract. 2020, 48, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Sanghera, J.; Pattani, N.; Hashmi, Y.; Varley, K.F.; Cheruvu, M.S.; Bradley, A.; Burke, J.R. The Impact of SARS-CoV-2 on the Mental Health of Healthcare Workers in a Hospital Setting—A Systematic Review. J. Occup. Health 2020, 62, e12175. [Google Scholar] [CrossRef]
- Maho, A.; Ndeledje Gondje, N.; Mopate, L.Y.; Kana, G. Newcastle Disease in Southern Chad: Peak Epidemic Periods and the Impact of Vaccination. Rev. Sci. Tech. (Int. Off. Epizoot.) 2004, 23, 777–782. [Google Scholar] [CrossRef]
- Minor, P.D. Polio Eradication, Cessation of Vaccination and Re-Emergence of Disease. Nat. Rev. Microbiol. 2004, 2, 473–482. [Google Scholar] [CrossRef]
- Moghadas, S.M.; Vilches, T.N.; Zhang, K.; Wells, C.R.; Shoukat, A.; Singer, B.H.; Meyers, L.A.; Neuzil, K.M.; Langley, J.M.; Fitzpatrick, M.C.; et al. The Impact of Vaccination on Coronavirus Disease 2019 (COVID-19) Outbreaks in the United States. Clin. Infect. Dis. 2021, 73, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Walldorf, J.A.; Date, K.A.; Sreenivasan, N.; Harris, J.B.; Hyde, T.B. Lessons Learned from Emergency Response Vaccination Efforts for Cholera, Typhoid, Yellow Fever, and Ebola. Emerg. Infect. Dis. 2017, 23, S210–S216. [Google Scholar] [CrossRef]
- GAVI COVID-19 Vaccines Have Saved 20 Million Lives so Far, Study Estimates. Available online: https://www.gavi.org/vaccineswork/covid-19-vaccines-have-saved-20-million-lives-so-far-study-estimates (accessed on 10 June 2025).
- Jensen, N.; Barry, A.; Kelly, A.H. More-than-National and Less-than-Global: The Biochemical Infrastructure of Vaccine Manufacturing. Econ. Soc. 2023, 52, 9–36. [Google Scholar] [CrossRef]
- Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020, 52, 583–589. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase I/II Study of COVID-19 RNA Vaccine BNT162b1 in Adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef]
- Hilty, M.P.; Keiser, S.; Wendel Garcia, P.D.; Moser, A.; Schuepbach, R.A.; Hilty, M.P.; Schüpbach, R.A.; Garcia, P.D.W.; Fumeaux, T.; Guerci, P.; et al. MRNA-Based SARS-CoV-2 Vaccination Is Associated with Reduced ICU Admission Rate and Disease Severity in Critically Ill COVID-19 Patients Treated in Switzerland. Intensive Care Med. 2022, 48, 362–365. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Self, W.H.; Adams, K.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Association between MRNA Vaccination and COVID-19 Hospitalization and Disease Severity. JAMA—J. Am. Med. Assoc. 2021, 326, 2043–2054. [Google Scholar] [CrossRef]
- Russell, M.W.; Moldoveanu, Z.; Ogra, P.L.; Mestecky, J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front. Immunol. 2020, 11, 611337. [Google Scholar] [CrossRef] [PubMed]
- Tomita, K.; Okada, S.; Sugihara, S.; Ikeuchi, T.; Touge, H.; Hasegawa, J.; Yamasaki, A. Physical Characteristics of Injection Site Pain after COVID-19 MRNA BNT162B2 Vaccination. Yonago Acta Med. 2021, 64, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.L.; Kelso, J.M. “COVID Arm”: Very Delayed Large Injection Site Reactions to MRNA COVID-19 Vaccines. J. Allergy Clin. Immunol. Pract. 2021, 9, 2480–2481. [Google Scholar] [CrossRef]
- SeyedAlinaghi, S.; Karimi, A.; Pashaei, Z.; Afzalian, A.; Mirzapour, P.; Ghorbanzadeh, K.; Ghasemzadeh, A.; Dashti, M.; Nazarian, N.; Vahedi, F.; et al. Safety and Adverse Events Related to COVID-19 MRNA Vaccines; a Systematic Review. Arch. Acad. Emerg. Med. 2022, 10, e41. [Google Scholar] [CrossRef] [PubMed]
- Mörz, M. A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 MRNA Vaccination against COVID-19. Vaccines 2022, 10, 1651. [Google Scholar] [CrossRef]
- Klein, N.P.; Lewis, N.; Goddard, K.; Fireman, B.; Zerbo, O.; Hanson, K.E.; Donahue, J.G.; Kharbanda, E.O.; Naleway, A.; Nelson, J.C.; et al. Surveillance for Adverse Events after COVID-19 MRNA Vaccination. JAMA—J. Am. Med. Assoc. 2021, 326, 1390–1399. [Google Scholar] [CrossRef]
- Sheikh-Mohamed, S.; Isho, B.; Chao, G.Y.C.; Zuo, M.; Cohen, C.; Lustig, Y.; Nahass, G.R.; Salomon-Shulman, R.E.; Blacker, G.; Fazel-Zarandi, M.; et al. Systemic and Mucosal IgA Responses Are Variably Induced in Response to SARS-CoV-2 MRNA Vaccination and Are Associated with Protection against Subsequent Infection. Mucosal Immunol. 2022, 15, 799–808. [Google Scholar] [CrossRef]
- Tang, J.; Zeng, C.; Cox, T.M.; Li, C.; Son, Y.M.; Cheon, I.S.; Wu, Y.; Behl, S.; Taylor, J.J.; Chakaraborty, R.; et al. Respiratory Mucosal Immunity against SARS-CoV-2 after MRNA Vaccination. Sci. Immunol. 2022, 7, eadd4853. [Google Scholar] [CrossRef]
- Azzi, L.; Dalla Gasperina, D.; Veronesi, G.; Shallak, M.; Ietto, G.; Iovino, D.; Baj, A.; Gianfagna, F.; Maurino, V.; Focosi, D.; et al. Mucosal Immune Response in BNT162b2 COVID-19 Vaccine Recipients. eBioMedicine 2022, 75, 103788. [Google Scholar] [CrossRef]
- Nickel, O.; Rockstroh, A.; Wolf, J.; Landgraf, S.; Kalbitz, S.; Kellner, N.; Borte, M.; Pietsch, C.; Fertey, J.; Lübbert, C.; et al. Evaluation of the Systemic and Mucosal Immune Response Induced by COVID-19 and the BNT162b2 MRNA Vaccine for SARS-CoV-2. PLoS ONE 2022, 17, e0263861. [Google Scholar] [CrossRef]
- Stülke, J.; Grüppen, A.; Bramkamp, M.; Pelzer, S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J. Bacteriol. 2023, 205, e00102-23. [Google Scholar] [CrossRef]
- Hong, H.A.; Duc, L.H.; Cutting, S.M. The Use of Bacterial Spore Formers as Probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Vavrová, Ľ.; Muchová, K.; Barák, I. Comparison of Different Bacillus subtilis Expression Systems. Res. Microbiol. 2010, 161, 791–797. [Google Scholar] [CrossRef]
- Ferreira, R.D.G.; Azzoni, A.R.; Freitas, S. Techno-Economic Analysis of the Industrial Production of a Low-Cost Enzyme Using E. Coli: The Case of Recombinant β-Glucosidase. Biotechnol. Biofuels 2018, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Setlow, P. Spores of Bacillus subtilis: Their Resistance to and Killing by Radiation, Heat and Chemicals. J. Appl. Microbiol. 2006, 101, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Driks, A. Surface Appendages of Bacterial Spores. Mol. Microbiol. 2007, 63, 623–625. [Google Scholar] [CrossRef]
- Katsande, P.M.; Fernández-Bastit, L.; Ferreira, W.T.; Vergara-Alert, J.; Hess, M.; Lloyd-Jones, K.; Hong, H.A.; Segales, J.; Cutting, S.M. Heterologous Systemic Prime–Intranasal Boosting Using a Spore SARS-CoV-2 Vaccine Confers Mucosal Immunity and Cross-Reactive Antibodies in Mice as Well as Protection in Hamsters. Vaccines 2022, 10, 1900. [Google Scholar] [CrossRef]
- Copland, A.; Diogo, G.R.; Hart, P.; Harris, S.; Tran, A.C.; Paul, M.J.; Singh, M.; Cutting, S.M.; Reljic, R. Mucosal Delivery of Fusion Proteins with Bacillus subtilis Spores Enhances Protection against Tuberculosis by Bacillus Calmette-Guérin. Front. Immunol. 2018, 9, 346. [Google Scholar] [CrossRef]
- De Souza, R.D.; Batista, M.T.; Luiz, W.B.; Cavalcante, R.C.M.; Amorim, J.H.; Bizerra, R.S.P.; Martins, E.G.; De Souza Ferreira, L.C. Bacillus subtilis Spores as Vaccine Adjuvants: Further Insights into the Mechanisms of Action. PLoS ONE 2014, 9, e87454. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Hong, H.A.; Huang, J.M.; Colenutt, C.; Khang, D.D.; Nguyen, T.V.A.; Park, S.M.; Shim, B.S.; Song, H.H.; Cheon, I.S.; et al. Killed Bacillus subtilis Spores as a Mucosal Adjuvant for an H5N1 Vaccine. Vaccine 2012, 30, 3266–3277. [Google Scholar] [CrossRef]
- Barnes, A.G.C.; Cerovic, V.; Hobson, P.S.; Klavinskis, L.S. Bacillus subtilis Spores: A Novel Microparticle Adjuvant Which Can Instruct Balanced Th1 and Th2 Immune Response to Specific Antigen. Eur. J. Immunol. 2007, 37, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- MatRahim, N.-A.; Jones, K.M.; Keegan, B.P.; Strych, U.; Zhan, B.; Lee, H.-Y.; AbuBakar, S. TonB-Dependent Receptor Protein Displayed on Spores of Bacillus subtilis Stimulates Protective Immune Responses against Acinetobacter baumannii. Vaccines 2023, 11, 1106. [Google Scholar] [CrossRef]
- Isticato, R.; Cangiano, G.; Tran, H.T.; Ciabattini, A.; Medaglini, D.; Oggioni, M.R.; De Felice, M.; Pozzi, G.; Ricca, E. Surface Display of Recombinant Proteins on Bacillus subtilis Spores. J. Bacteriol. 2001, 183, 6294–6301. [Google Scholar] [CrossRef] [PubMed]
- Leshem, E.; Lopman, B.A. Population Immunity and Vaccine Protection against Infection. Lancet 2021, 397, 1685–1687. [Google Scholar] [CrossRef]
- Hall, V.J.; Foulkes, S.; Saei, A.; Andrews, N.; Oguti, B.; Charlett, A.; Wellington, E.; Stowe, J.; Gillson, N.; Atti, A.; et al. COVID-19 Vaccine Coverage in Health-Care Workers in England and Effectiveness of BNT162b2 MRNA Vaccine against Infection (SIREN): A Prospective, Multicentre, Cohort Study. Lancet 2021, 397, 1725–1735. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and Effectiveness of MRNA BNT162b2 Vaccine against SARS-CoV-2 Infections and COVID-19 Cases, Hospitalisations, and Deaths Following a Nationwide Vaccination Campaign in Israel: An Observational Study Using National Surveillance Data. Lancet 2021, 397, 212. [Google Scholar] [CrossRef]
- Chen, X.; Huang, H.; Ju, J.; Sun, R.; Zhang, J. Impact of Vaccination on the COVID-19 Pandemic in U.S. States. Sci. Rep. 2022, 12, 1554. [Google Scholar] [CrossRef]
- Kis, Z.; Kontoravdi, C.; Dey, A.K.; Shattock, R.; Shah, N. Rapid Development and Deployment of High-Volume Vaccines for Pandemic Response. J. Adv. Manuf. Process. 2020, 2, e10060. [Google Scholar] [CrossRef]
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodés-Guirao, L. A Global Database of COVID-19 Vaccinations. Nat. Hum. Behav. 2021, 5, 956–959. [Google Scholar] [CrossRef]
- Roberts, L. Global Polio Eradication Falters in the Final Stretch. Science 2020, 367, 14–15. [Google Scholar] [CrossRef]
- World Health Organization. At Least 80 Million Children Under One at Risk of Diseases Such as Diphtheria, Measles and Polio as COVID-19 Disrupts Routine Vaccination Efforts, Warn Gavi, WHO and UNICEF. 2020. Available online: https://www.who.int/news/item/22-05-2020-at-least-80-million-children-under-one-at-risk-of-diseases-such-as-diphtheria-measles-and-polio-as-covid-19-disrupts-routine-vaccination-efforts-warn-gavi-who-and-unicef (accessed on 10 June 2025).
- Causey, K.; Fullman, N.; Sorensen, R.J.D.; Galles, N.C.; Zheng, P.; Aravkin, A.; Danovaro-Holliday, M.C.; Martinez-Piedra, R.; Sodha, S.V.; Velandia-González, M.P.; et al. Estimating Global and Regional Disruptions to Routine Childhood Vaccine Coverage during the COVID-19 Pandemic in 2020: A Modelling Study. Lancet 2021, 398, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Santoli, J.M.; Lindley, M.C.; DeSilva, M.B.; Kharbanda, E.O.; Daley, M.F.; Galloway, L.; Gee, J.; Glover, M.; Herring, B.; Kang, Y.; et al. Effects of the COVID-19 Pandemic on Routine Pediatric Vaccine Ordering and Administration—United States, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 591–593. [Google Scholar] [CrossRef]
- Nelson, R. COVID-19 Disrupts Vaccine Delivery. Lancet. Infect. Dis. 2020, 20, 546. [Google Scholar] [CrossRef]
- World Health Organization. In WHO Global Pulse Survey, 90% of Countries Report Disruptions to Essential Health Services Since COVID-19 Pandemic. 2020. Available online: https://www.who.int/news/item/31-08-2020-in-who-global-pulse-survey-90-of-countries-report-disruptions-to-essential-health-services-since-covid-19-pandemic (accessed on 10 June 2025).
- Gómez-Ochoa, S.A.; Franco, O.H.; Rojas, L.Z.; Raguindin, P.F.; Roa-Díaz, Z.M.; Wyssmann, B.M.; Guevara, S.L.R.; Echeverría, L.E.; Glisic, M.; Muka, T. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am. J. Epidemiol. 2021, 190, 187. [Google Scholar] [CrossRef] [PubMed]
- Colaneri, M.; Novelli, V.; Cutti, S.; Muzzi, A.; Resani, G.; Monti, M.C.; Rona, C.; Grugnetti, A.M.; Rettani, M.; Rovida, F.; et al. The Experience of the Health Care Workers of a Severely Hit SARS-CoV-2 Referral Hospital in Italy: Incidence, Clinical Course and Modifiable Risk Factors for COVID-19 Infection. J. Public Health 2021, 43, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Lapolla, P.; Mingoli, A.; Lee, R. Deaths from COVID-19 in Healthcare Workers in Italy-What Can We Learn? Infect. Control Hosp. Epidemiol. 2021, 42, 364–365. [Google Scholar] [CrossRef]
- Andersen, A.; Fisker, A.B.; Rodrigues, A.; Martins, C.; Ravn, H.; Lund, N.; Biering-Sørensen, S.; Benn, C.S.; Aaby, P. National Immunization Campaigns with Oral Polio Vaccine Reduce All-Cause Mortality: A Natural Experiment within Seven Randomized Trials. Front. Public Health 2018, 6, 329557. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard.WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/# (accessed on 15 January 2025).
- Coronavirus (COVID-19) Vaccinations—Statistics and Research—Our World in Data. Available online: https://ourworldindata.org/covid-vaccinations?country=MYS (accessed on 5 June 2025).
- The Lancet. Access to COVID-19 Vaccines: Looking beyond COVAX. Lancet 2021, 397, 10278. [Google Scholar] [CrossRef]
- Wouters, O.J.; Shadlen, K.C.; Salcher-Konrad, M.; Pollard, A.J.; Larson, H.J.; Teerawattananon, Y.; Jit, M. Challenges in Ensuring Global Access to COVID-19 Vaccines: Production, Affordability, Allocation, and Deployment. Lancet 2021, 397, 1023–1034. [Google Scholar] [CrossRef]
- Gozzi, N.; Chinazzi, M.; Dean, N.E.; Longini, I.M.; Halloran, M.E.; Perra, N.; Vespignani, A. Estimating the Impact of COVID-19 Vaccine Inequities: A Modeling Study. Nat. Commun. 2023, 14, 3272. [Google Scholar] [CrossRef]
- Eccleston-Turner, M.; Upton, H. International Collaboration to Ensure Equitable Access to Vaccines for COVID-19: The ACT-Accelerator and the COVAX Facility. Milbank Q. 2021, 99, 426–449. [Google Scholar] [CrossRef]
- Nicholson Price, W.; Rai, A.K.; Minssen, T. Knowledge Transfer for Large-Scale Vaccine Manufacturing. Science. 2020, 369, 912–914. [Google Scholar] [CrossRef] [PubMed]
- CBC. News French Drug Giant Investing $500M for New Vaccine Lab in Toronto. CBC, 12 April 2018. Available online: https://www.cbc.ca/news/canada/toronto/french-drug-giant-investing-500m-for-new-vaccine-lab-in-toronto-1.4615937 (accessed on 10 June 2025).
- Canadian Manufacturing. Pharma Firm Sanofi Pasteur to Build $500M Vaccine Manufacturing Plant in Toronto. Canadian Manufacturing, 12 April 2018. Available online: https://www.canadianmanufacturing.com/manufacturing/pharma-firm-sanofi-pasteur-to-build-500m-vaccine-manufacturing-plant-in-toronto-211466/ (accessed on 10 June 2025).
- Plotkin, S.; Robinson, J.M.; Cunningham, G.; Iqbal, R.; Larsen, S. The Complexity and Cost of Vaccine Manufacturing—An Overview. Vaccine 2017, 35, 4064–4071. [Google Scholar] [CrossRef] [PubMed]
- Charlton Hume, H.K.; Lua, L.H.L. Platform Technologies for Modern Vaccine Manufacturing. Vaccine 2017, 35, 4480–4485. [Google Scholar] [CrossRef]
- Monrad, J.T.; Sandbrink, J.B.; Cherian, N.G. Promoting Versatile Vaccine Development for Emerging Pandemics. npj Vaccines 2021, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Vaccine Action Plan 2011–2020 Geneva: World Health Organization: Geneva, Switzerland. 2013. Available online: https://www.who.int/publications/i/item/global-vaccine-action-plan-2011-2020 (accessed on 10 June 2025).
- The Lancet. Global Governance for COVID-19 Vaccines. Lancet 2020, 395, 1883. [Google Scholar] [CrossRef]
- World Health Organization. Monitoring Vaccine Wastage at Country Level: Guidelines for Programme Managers. Available online: https://iris.who.int/handle/10665/68463 (accessed on 19 September 2025).
- Troiano, G.; Nardi, A. Vaccine Hesitancy in the Era of COVID-19. Public Health 2021, 194, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Dror, A.A.; Eisenbach, N.; Taiber, S.; Morozov, N.G.; Mizrachi, M.; Zigron, A.; Srouji, S.; Sela, E. Vaccine Hesitancy: The next Challenge in the Fight against COVID-19. Eur. J. Epidemiol. 2020, 35, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Kim, J.A.; Kim, C.-H.; Choi, S.-K.; Pan, J.-G. Bacillus subtilis Spore Vaccines Displaying Protective Antigen Induce Functional Antibodies and Protective Potency. BMC Vet. Res. 2020, 16, 259. [Google Scholar] [CrossRef]
- Duc, L.H.; Hong, H.A.; Atkins, H.S.; Flick-Smith, H.C.; Durrani, Z.; Rijpkema, S.; Titball, R.W.; Cutting, S.M. Immunization against Anthrax Using Bacillus subtilis Spores Expressing the Anthrax Protective Antigen. Vaccine 2007, 25, 346–355. [Google Scholar] [CrossRef]
- Ivins, B.E.; Welkos, S.L.; Knudson, G.B.; Little, S.F. Immunization against Anthrax with Aromatic Compound-Dependent (Aro-) Mutants of Bacillus anthracis and with Recombinant Strains of Bacillus subtilis That Produce Anthrax Protective Antigen. Infect. Immun. 1990, 58, 303–308. [Google Scholar] [CrossRef]
- Maia, A.R.; Reyes-Ramírez, R.; Pizarro-Guajardo, M.; Saggese, A.; Ricca, E.; Baccigalupi, L.; Paredes-Sabja, D. Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific Igg Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides difficile Spores. Int. J. Mol. Sci. 2020, 21, 6696. [Google Scholar] [CrossRef] [PubMed]
- Potocki, W.; Negri, A.; Peszyńska-Sularz, G.; Hinc, K.; Obuchowski, M.; Iwanicki, A. IL-1 Fragment Modulates Immune Response Elicited by Recombinant Bacillus subtilis Spores Presenting an Antigen/Adjuvant Chimeric Protein. Mol. Biotechnol. 2018, 60, 810–819. [Google Scholar] [CrossRef]
- Potocki, W.; Negri, A.; Peszyńska-Sularz, G.; Hinc, K.; Obuchowski, M.; Iwanicki, A. The Combination of Recombinant and Non-Recombinant Bacillus subtilis Spore Display Technology for Presentation of Antigen and Adjuvant on Single Spore. Microb. Cell Fact. 2017, 16, 151. [Google Scholar] [CrossRef]
- Permpoonpattana, P.; Hong, H.A.; Phetcharaburanin, J.; Huang, J.M.; Cook, J.; Fairweather, N.F.; Cutting, S.M. Immunization with Bacillus Spores Expressing Toxin a Peptide Repeats Protects against Infection with Clostridium difficile Strains Producing Toxins A and B. Infect. Immun. 2011, 79, 2295–2302. [Google Scholar] [CrossRef]
- Lee, S.; Belitsky, B.R.; Brown, D.W.; Brinker, J.P.; Kerstein, K.O.; Herrmann, J.E.; Keusch, G.T.; Sonenshein, A.L.; Tzipori, S. Efficacy, Heat Stability and Safety of Intranasally Administered Bacillus subtilis Spore or Vegetative Cell Vaccines Expressing Tetanus Toxin Fragment C. Vaccine 2010, 28, 6658–6665. [Google Scholar] [CrossRef]
- Huang, J.M.; Hong, H.A.; Van Tong, H.; Hoang, T.H.; Brisson, A.; Cutting, S.M. Mucosal Delivery of Antigens Using Adsorption to Bacterial Spores. Vaccine 2010, 28, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, E.M.F.; Cangiano, G.; Maurano, F.; Saggese, V.; De Felice, M.; Rossi, M.; Ricca, E. Germination-Independent Induction of Cellular Immune Response by Bacillus subtilis Spores Displaying the C Fragment of the Tetanus Toxin. Vaccine 2007, 25, e0167225. [Google Scholar] [CrossRef]
- Uyen, N.Q.; Hong, H.A.; Cutting, S.M. Enhanced Immunisation and Expression Strategies Using Bacterial Spores as Heat-Stable Vaccine Delivery Vehicles. Vaccine 2007, 25, 356–365. [Google Scholar] [CrossRef]
- Duc, L.H.; Hong, H.A.; Fairweather, N.; Ricca, E.; Cutting, S.M. Bacterial Spores as Vaccine Vehicles. Infect. Immun. 2003, 71, 2810–2818. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.A.D.P.; Bentancor, L.V.; Paccez, J.D.; Sbrogio-Almeida, M.E.; Palermo, M.S.; Ferreira, R.C.C.; Ferreira, L.C.S. Antibody Responses Elicited in Mice Immunized with Bacillus subtilis Vaccine Strains Expressing Stx2B Subunit of Enterohaemorragic Escherichia coli O157:H7. Brazilian J. Microbiol. 2009, 40, 333–338. [Google Scholar] [CrossRef]
- Paccez, J.D.; Luiz, W.B.; Sbrogio-Almeida, M.E.; Ferreira, R.C.C.; Schumann, W.; Ferreira, L.C.S. Stable Episomal Expression System under Control of a Stress Inducible Promoter Enhances the Immunogenicity of Bacillus subtilis as a Vector for Antigen Delivery. Vaccine 2006, 24, 2935–2943. [Google Scholar] [CrossRef] [PubMed]
- Isticato, R.; Sirec, T.; Treppiccione, L.; Maurano, F.; De Felice, M.; Rossi, M.; Ricca, E. Non-Recombinant Display of the B Subunit of the Heat Labile Toxin of Escherichia coli on Wild Type and Mutant Spores of Bacillus subtilis. Microb. Cell Fact. 2013, 12, 98. [Google Scholar] [CrossRef]
- Stasiłojć, M.; Hinc, K.; Peszyńska-Sularz, G.; Obuchowski, M.; Iwanicki, A. Recombinant Bacillus subtilis Spores Elicit Th1/Th17-Polarized Immune Response in a Murine Model of Helicobacter pylori Vaccination. Mol. Biotechnol. 2015, 57, 685–691. [Google Scholar] [CrossRef]
- Katsande, P.M.; Nguyen, V.D.; Nguyen, T.L.P.; Nguyen, T.K.C.; Mills, G.; Bailey, D.M.D.; Christie, G.; Hong, H.A.; Cutting, S.M. Prophylactic Immunization to Helicobacter pylori Infection Using Spore Vectored Vaccines. Helicobacter 2023, 28, e12997. [Google Scholar] [CrossRef]
- Zhou, Z.; Dong, H.; Huang, Y.; Yao, S.; Liang, B.; Xie, Y.; Long, Y.; Mai, J.; Gong, S. Recombinant Bacillus subtilis Spores Expressing Cholera Toxin B Subunit and Helicobacter pylori Urease B Confer Protection against H. Pylori in Mice. J. Med. Microbiol. 2017, 66, 83–89. [Google Scholar] [CrossRef]
- Hinc, K.; Stasiłojć, M.; Pia̧tek, I.; Peszyńska-Sularz, G.; Isticato, R.; Ricca, E.; Obuchowski, M.; Iwanicki, A. Mucosal Adjuvant Activity of IL-2 Presenting Spores of Bacillus subtilis in a Murine Model of Helicobacter pylori Vaccination. PLoS ONE 2014, 9, e95187. [Google Scholar] [CrossRef] [PubMed]
- Vergara, E.J.; Tran, A.C.; Kim, M.Y.; Mussá, T.; Paul, M.J.; Harrison, T.; Reljic, R. Mucosal and Systemic Immune Responses after a Single Intranasal Dose of Nanoparticle and Spore-Based Subunit Vaccines in Mice with Pre-Existing Lung Mycobacterial Immunity. Front. Immunol. 2023, 14, 1306449. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Thomas, T.; Garnica, O.; Dhandayuthapani, S. Recombinant Bacillus subtilis Spores for the Delivery of Mycobacterium Tuberculosis Ag85B-CFP10 Secretory Antigens. Tuberculosis 2016, 101, S18–S27. [Google Scholar] [CrossRef]
- Ghorbani, N.; Assmar, M.; Amirmozafari, N.; Issazadeh, K. Investigating the Efficiency of Recombinant FliC-Loaded Bacillus subtilis Spores in Mice Immunization against Salmonella enterica Serovar Typhi. Iran. J. Public Health 2021, 50, 1474–1482. [Google Scholar] [CrossRef]
- Xiong, Z.; Mai, J.; Li, F.; Liang, B.; Yao, S.; Liang, Z.; Zhang, C.; Gao, F.; Ai, X.; Wang, J.; et al. Oral Administration of Recombinant Bacillus subtilis Spores Expressing Mutant Staphylococcal Enterotoxin B Provides Potent Protection against Lethal Enterotoxin Challenge. AMB Express 2020, 10, 215. [Google Scholar] [CrossRef]
- Tavares, M.B.; Silva, B.M.; Cavalcante, R.C.M.; Souza, R.D.; Luiz, W.B.; Paccez, J.D.; Crowley, P.J.; Brady, L.J.; Ferreira, L.C.S.; Ferreira, R.C.C. Induction of Neutralizing Antibodies in Mice Immunized with an Amino-Terminal Polypeptide of Streptococcus mutans P1 Protein Produced by a Recombinant Bacillus subtilis Strain. FEMS Immunol. Med. Microbiol. 2010, 59, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.G.; Hao, Y.; Wang, L. A Bacillus-Based Coxsackie Virus A16 Mucosal Vaccine Induces Strong Neutralizing Antibody Responses. Cent. Eur. J. Immunol. 2019, 44, 1–6. [Google Scholar] [CrossRef]
- Cao, Y.G.; Li, Z.H.; Yue, Y.Y.; Song, N.N.; Peng, L.; Wang, L.X.; Lu, X. Construction and Evaluation of a Novel Bacillus subtilis Spores-Based Enterovirus 71 Vaccine. J. Appl. Biomed. 2013, 11, 105–113. [Google Scholar] [CrossRef]
- Hu, B.; Li, C.; Lu, H.; Zhu, Z.; Du, S.; Ye, M.; Tan, L.; Ren, D.; Han, J.; Kan, S.; et al. Immune Responses to the Oral Administration of Recombinant Bacillus subtilis Expressing Multi-Epitopes of Foot-and-Mouth Disease Virus and a Cholera Toxin B Subunit. J. Virol. Methods 2011, 171, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.O.; Seo, J.W.; Kwon, O.; Park, S.M.; Kim, C.H.; Kim, I.H. Production of Human Papillomavirus Type 33 L1 Major Capsid Protein and Virus-like Particles from Bacillus subtilis to Develop a Prophylactic Vaccine against Cervical Cancer. Enzyme Microb. Technol. 2012, 50, 173–180. [Google Scholar] [CrossRef]
- Lee, S.; Belitsky, B.R.; Brinker, J.P.; Kerstein, K.O.; Brown, D.W.; Clements, J.D.; Keusch, G.T.; Tzipori, S.; Sonenshein, A.L.; Herrmann, J.E. Development of a Bacillus subtilis-Based Rotavirus Vaccine. Clin. Vaccine Immunol. 2010, 17, 1647–1655. [Google Scholar] [CrossRef]
- Ma, D.; Tian, S.; Qin, Q.; Yu, Y.; Jiao, J.; Xiong, X.; Guo, Y.; Zhang, X.; Ouyang, X. Construction of an Inhalable Recombinant M2e-FP-Expressing Bacillus subtilis Spores-Based Vaccine and Evaluation of Its Protection Efficacy against Influenza in a Mouse Model. Vaccine 2023, 41, 4402–4413. [Google Scholar] [CrossRef]
- Zhao, G.; Miao, Y.; Guo, Y.; Qiu, H.; Sun, S.; Kou, Z.; Yu, H.; Li, J.; Chen, Y.; Jiang, S.; et al. Development of a Heat-Stable and Orally Delivered Recombinant M2e-Expressing B. subtilis Spore-Based Influenza Vaccine. Hum. Vaccines Immunother. 2014, 10, 3649–3658. [Google Scholar] [CrossRef]
- Lêga, T.; Weiher, P.; Obuchowski, M.; Nidzworski, D. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis. PLoS ONE 2016, 11, e0167225. [Google Scholar] [CrossRef]
- Chan, B.C.-L.; Li, P.; Tsang, M.S.-M.; Sung, J.C.-C.; Kwong, K.W.-Y.; Zheng, T.; Hon, S.S.-M.; Lau, C.-P.; Cheng, W.; Chen, F.; et al. Creating a Vaccine-like Supplement against Respiratory Infection Using Recombinant Bacillus subtilis Spores Expressing SARS-CoV-2 Spike Protein with Natural Products. Molecules 2023, 28, 4996. [Google Scholar] [CrossRef]
- Sun, H.; Lin, Z.; Zhao, L.; Chen, T.; Shang, M.; Jiang, H.; Tang, Z.; Zhou, X.; Shi, M.; Zhou, L.; et al. Bacillus subtilis Spore with Surface Display of Paramyosin from Clonorchis sinensis Potentializes a Promising Oral Vaccine Candidate. Parasit. Vectors 2018, 11, 156. [Google Scholar] [CrossRef]
- Yu, J.; Chen, T.; Xie, Z.; Liang, P.; Qu, H.; Shang, M.; Mao, Q.; Ning, D.; Tang, Z.; Shi, M.; et al. Oral Delivery of Bacillus subtilis Spore Expressing Enolase of Clonorchis sinensis in Rat Model: Induce Systemic and Local Mucosal Immune Responses and Has No Side Effect on Liver Function. Parasitol. Res. 2015, 114, 2499–2505. [Google Scholar] [CrossRef]
- Qu, H.; Xu, Y.; Sun, H.; Lin, J.; Yu, J.; Tang, Z.; Shen, J.; Liang, C.; Li, S.; Chen, W.; et al. Systemic and Local Mucosal Immune Responses Induced by Orally Delivered Bacillus subtilis Spore Expressing Leucine Aminopeptidase 2 of Clonorchis sinensis. Parasitol. Res. 2014, 113, 3095–3103. [Google Scholar] [CrossRef]
- Zhou, Z.; Xia, H.; Hu, X.; Huang, Y.; Li, Y.; Li, L.; Ma, C.; Chen, X.; Hu, F.; Xu, J.; et al. Oral Administration of a Bacillus subtilis Spore-Based Vaccine Expressing Clonorchis sinensis Tegumental Protein 22. 3 KDa Confers Protection against Clonorchis sinensis. Vaccine 2008, 26, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xia, H.; Hu, X.; Huang, Y.; Ma, C.; Chen, X.; Hu, F.; Xu, J.; Lu, F.; Wu, Z.; et al. Immunogenicity of Recombinant Bacillus subtilis Spores Expressing Clonorchis sinensis Tegumental Protein. Parasitol. Res. 2008, 102, 1306449. [Google Scholar] [CrossRef]
- Phumrattanaprapin, W.; Chaiyadet, S.; Brindley, P.J.; Pearson, M.; Smout, M.J.; Loukas, A.; Laha, T. Orally Administered Bacillus Spores Expressing an Extracellular Vesicle-Derived Tetraspanin Protect Hamsters Against Challenge Infection with Carcinogenic Human Liver Fluke. J. Infect. Dis. 2021, 223, 1445–1455. [Google Scholar] [CrossRef]
- de Almeida, M.E.M.; Alves, K.C.S.; de Vasconcelos, M.G.S.; Pinto, T.S.; Glória, J.C.; Chaves, Y.O.; Neves, W.L.L.; Tarragô, A.M.; de Souza Neto, J.N.; Astolfi-Filho, S.; et al. Bacillus subtilis Spores as Delivery System for Nasal Plasmodium falciparum Circumsporozoite Surface Protein Immunization in a Murine Model. Sci. Rep. 2022, 12, 1531. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hu, X.; Wu, Z.; Xiong, S.; Zhou, Z.; Wang, X.; Xu, J.; Lu, F.; Yu, X. Immunogenicity of Self-Adjuvanticity Oral Vaccine Candidate Based on Use of Bacillus subtilis Spore Displaying Schistosoma japonicum 26 KDa GST Protein. Parasitol. Res. 2009, 105, 1643–1651. [Google Scholar] [CrossRef]
- Earl, A.M.; Losick, R.; Kolter, R. Ecology and Genomics of Bacillus subtilis. Trends Microbiol. 2008, 16, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Velupillaimani, D.; Muthaiyan, A. Potential of Bacillus subtilis from Marine Environment to Degrade Aromatic Hydrocarbons. Environ. Sustain. 2019, 2, 381–389. [Google Scholar] [CrossRef]
- Rudrappa, T.; Quinn, W.J.; Stanley-Wall, N.R.; Bais, H.P. A Degradation Product of the Salicylic Acid Pathway Triggers Oxidative Stress Resulting in Down-Regulation of Bacillus subtilis Biofilm Formation on Arabidopsis Thaliana Roots. Planta 2007, 226, 283–297. [Google Scholar] [CrossRef]
- Fall, R.; Kinsinger, R.F.; Wheeler, K.A. A Simple Method to Isolate Biofilm-Forming Bacillus subtilis and Related Species from Plant Roots. Syst. Appl. Microbiol. 2004, 27, 372–379. [Google Scholar] [CrossRef]
- Mckenney, P.T.; Driks, A.; Eichenberger, P. The Bacillus subtilis Endospore: Assembly and Functions of the Multilayered Coat. Nat. Rev. Microbiol. 2013, 11, 33–44. [Google Scholar] [CrossRef]
- Beranová, J.; Mansilla, M.C.; De Mendoza, D.; Elhottová, D.; Konopásek, I. Differences in Cold Adaptation of Bacillus subtilis under Anaerobic and Aerobic Conditions. J. Bacteriol. 2010, 192, 4164–4171. [Google Scholar] [CrossRef]
- Nakano, M.M.; Zuber, P. Anaerobic Growth of a “strict Aerobe” (Bacillus subtilis). Annu. Rev. Microbiol. 1998, 52, 165–190. [Google Scholar] [CrossRef]
- Nakano, M.M.; Hulett, F.M. Adaptation of Bacillus subtilis to Oxygen Limitation. FEMS Microbiol. Lett. 1997, 157, 1–7. [Google Scholar] [CrossRef]
- Tam, N.K.M.; Uyen, N.Q.; Hong, H.A.; Duc, L.H.; Hoa, T.T.; Serra, C.R.; Henriques, A.O.; Cutting, S.M. The Intestinal Life Cycle of Bacillus subtilis and Close Relatives. J. Bacteriol. 2006, 188, 2692–2700. [Google Scholar] [CrossRef]
- Flint, J.F.; Garner, M.R. Feeding Beneficial Bacteria: A Natural Solution for Increasing Efficiency and Decreasing Pathogens in Animal Agriculture. J. Appl. Poult. Res. 2009, 18, 367–378. [Google Scholar] [CrossRef]
- Fujita, M.; Losick, R. Evidence That Entry into Sporulation in Bacillus subtilis Is Governed by a Gradual Increase in the Level and Activity of the Master Regulator Spo0A. Genes Dev. 2005, 19, 2236–2244. [Google Scholar] [CrossRef]
- Popham, D.L. Specialized Peptidoglycan of the Bacterial Endospore: The Inner Wall of the Lockbox. Cell. Mol. Life Sci. 2002, 59, 426–433. [Google Scholar] [CrossRef]
- Henriques, A.O.; Moran, C.P. Structure, Assembly, and Function of the Spore Surface Layers. Annu. Rev. Microbiol. 2007, 61, 555–588. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, P.R.; Giles, N.H. Induced Biochemical Mutations in Bacillus subtilis. Am. J. Bot. 1947, 34, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, D.R.; Prágai, Z.; Rodriguez, S.; Chevreux, B.; Muffler, A.; Albert, T.; Bai, R.; Wyss, M.; Perkins, J.B. The Origins of 168, W23, and Other Bacillus subtilis Legacy Strains. J. Bacteriol. 2008, 190, 6983–6995. [Google Scholar] [CrossRef]
- Britton, R.A.; Eichenberger, P.; Gonzalez-Pastor, J.E.; Fawcett, P.; Monson, R.; Losick, R.; Grossman, A.D. Genome-Wide Analysis of the Stationary-Phase Sigma Factor (Sigma-H) Regulon of Bacillus subtilis. J. Bacteriol. 2002, 184, 4881–4890. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Zhang, S.; Saha, S.; Santa Anna, S.; Jiang, C.; Perkins, J. RNA Expression Analysis Using an Antisense Bacillus subtilis Genome Array. J. Bacteriol. 2001, 183, 7371–7380. [Google Scholar] [CrossRef]
- Silvaggi, J.M.; Perkins, J.B.; Losick, R. Genes for Small, Noncoding RNAs under Sporulation Control in Bacillus subtilis. J. Bacteriol. 2006, 188, 532–541. [Google Scholar] [CrossRef]
- Jeong, H.; Jeong, D.-E.; Park, S.-H.; Kim, S.J.; Choi, S.-K. Complete Genome Sequence of Bacillus subtilis Strain WB800N, an Extracellular Protease-Deficient Derivative of Strain 168. Microbiol. Resour. Announc. 2018, 7, e01380-18. [Google Scholar] [CrossRef]
- Wu, X.C.; Lee, W.; Tran, L.; Wong, S.L. Engineering a Bacillus subtilis Expression-Secretion System with a Strain Deficient in Six Extracellular Proteases. J. Bacteriol. 1991, 173, 4952–4958. [Google Scholar] [CrossRef]
- Cangiano, G.; Mazzone, A.; Baccigalupi, L.; Isticato, R.; Eichenberger, P.; De Felice, M.; Ricca, E. Direct and Indirect Control of Late Sporulation Genes by GerR of Bacillus subtilis. J. Bacteriol. 2010, 192, 3406–3413. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.B.; Sreelatha, A.; Durrant, E.S.; Lopez-Garrido, J.; Muszewska, A.; Dudkiewicz, M.; Grynberg, M.; Yee, S.; Pogliano, K.; Tomchick, D.R.; et al. Phosphorylation of Spore Coat Proteins by a Family of Atypical Protein Kinases. Proc. Natl. Acad. Sci. USA 2016, 113, E3482-91. [Google Scholar] [CrossRef]
- Isticato, R.; Esposito, G.; Zilhão, R.; Nolasco, S.; Cangiano, G.; De Felice, M.; Henriques, A.O.; Ricca, E. Assembly of Multiple CotC Forms into the Bacillus subtilis Spore Coat. J. Bacteriol. 2004, 186, 1129–1135. [Google Scholar] [CrossRef]
- Baccigalupi, L.; Castaldo, G.; Cangiano, G.; Isticato, R.; Marasco, R.; De Felice, M.; Ricca, E. GerE-Independent Expression of CotH Leads to CotC Accumulation in the Mother Cell Compartment during Bacillus subtilis Sporulation. Microbiology 2004, 150, 3441–3449. [Google Scholar] [CrossRef]
- Eichenberger, P.; Fujita, M.; Jensen, S.T.; Conlon, E.M.; Rudner, D.Z.; Wang, S.T.; Ferguson, C.; Haga, K.; Sato, T.; Liu, J.S.; et al. The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis. PLoS Biol. 2004, 2, e328. [Google Scholar] [CrossRef] [PubMed]
- Naclerio, G.; Baccigalupi, I.L.; Zilhao, R.; De Felice, M.; Ricca, E. Bacillus subtilis Spore Coat Assembly Requires CotH Gene Expression. J. Bacteriol. 1996, 178, 6407. [Google Scholar] [CrossRef]
- Imamura, D.; Kuwana, R.; Takamatsu, H.; Watabe, K. Proteins Involved in Formation of the Outermost Layer of Bacillus subtilis Spores. J. Bacteriol. 2011, 193, 4075–4080. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, J.H.; Xu, Z. Microbial Cell-Surface Display. Trends Biotechnol. 2003, 21, 45–52. [Google Scholar] [CrossRef]
- Leñini, C.; Rodriguez Ayala, F.; Goñi, A.J.; Rateni, L.; Nakamura, A.; Grau, R.R. Probiotic Properties of Bacillus subtilis DG101 Isolated from the Traditional Japanese Fermented Food Nattō. Front. Microbiol. 2023, 14, 1253480. [Google Scholar] [CrossRef]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the Use of Bacillus Species for Industrial Production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fung, D.Y.C. Alkaline-Fermented Foods: A Review with Emphasis on Pidan Fermentation. Crit. Rev. Microbiol. 1996, 22, 101–138. [Google Scholar] [CrossRef]
- Lefevre, M.; Racedo, S.M.; Denayrolles, M.; Ripert, G.; Desfougères, T.; Lobach, A.R.; Simon, R.; Pélerin, F.; Jüsten, P.; Urdaci, M.C. Safety Assessment of Bacillus subtilis CU1 for Use as a Probiotic in Humans. Regul. Toxicol. Pharmacol. 2017, 83, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.L.; Yang, S.J.; Son, S.H.; Kim, W.S.; Lee, N.K.; Paik, H.D. Evaluation of Probiotic Bacillus subtilis P229 Isolated from Cheonggukjang and Its Application in Soybean Fermentation. LWT 2018, 97, 94–99. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yehuala, G.A.; Bang, W.Y.; Yang, J.; Jung, Y.H.; Park, M.-K. Safety Evaluation of Bacillus subtilis IDCC1101, Newly Isolated from Cheonggukjang, for Industrial Applications. Microorganisms 2022, 10, 2494. [Google Scholar] [CrossRef]
- Spears, J.L.; Kramer, R.; Nikiforov, A.I.; Rihner, M.O.; Lambert, E.A. Safety Assessment of Bacillus subtilis MB40 for Use in Foods and Dietary Supplements. Nutrients 2021, 13, 733. [Google Scholar] [CrossRef]
- Hanifi, A.; Culpepper, T.; Mai, V.; Anand, A.; Ford, A.L.; Ukhanova, M.; Christman, M.; Tompkins, T.A.; Dahl, W.J. Evaluation of Bacillus subtilis R0179 on Gastrointestinal Viability and General Wellness: A Randomised, Double-Blind, Placebo-Controlled Trial in Healthy Adults. Benef. Microbes 2015, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Jezewska-Frackowiak, J.; Seroczynska, K.; Banaszczyk, J.; Jedrzejczak, G.; Zylicz-Stachula, A.; Skowron, P.M. The Promises and Risks of Probiotic Bacillus Species. Acta Biochim. Pol. 2018, 65, 509–519. [Google Scholar] [CrossRef]
- Higgins, D.; Dworkin, J. Recent Progress in Bacillus subtilis Sporulation. FEMS Microbiol. Rev. 2012, 36, 131–148. [Google Scholar] [CrossRef]
- Casula, G.; Cutting, S.M. Bacillus Probiotics: Spore Germination in the Gastrointestinal Tract. Appl. Environ. Microbiol. 2002, 68, 2344–2352. [Google Scholar] [CrossRef]
- Duc, L.H.; Hong, H.A.; Uyen, N.Q.; Cutting, S.M. Intracellular Fate and Immunogenicity of B. subtilis Spores. Vaccine 2004, 22, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Fujiya, M.; Musch, M.W.; Nakagawa, Y.; Hu, S.; Alverdy, J.; Kohgo, Y.; Schneewind, O.; Jabri, B.; Chang, E.B. The Bacillus subtilis Quorum-Sensing Molecule CSF Contributes to Intestinal Homeostasis via OCTN2, a Host Cell Membrane Transporter. Cell Host Microbe 2007, 1, 299–308. [Google Scholar] [CrossRef]
- Rhee, K.-J.; Sethupathi, P.; Driks, A.; Lanning, D.K.; Knight, K.L. Role of Commensal Bacteria in Development of Gut-Associated Lymphoid Tissues and Preimmune Antibody Repertoire. J. Immunol. 2004, 172, 1118–1124. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus Probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef]
- Ciabattini, A.; Parigi, R.; Isticato, R.; Oggioni, M.R.; Pozzi, G. Oral Priming of Mice by Recombinant Spores of Bacillus subtilis. Vaccine 2004, 22, 4139–4143. [Google Scholar] [CrossRef] [PubMed]
- Saperi, A.A.; Hazan, A.; Zulkifli, N.; Lee, H.; Matrahim, N.; Abubakar, S. Immunization with Inactivated Bacillus subtilis Spores Expressing TonB-Dependent Receptor (TBDR) Protects Against Multidrug-Resistant Acinetobacter baumannii Infection. Vaccines 2025, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Ricca, E.; Baccigalupi, L.; Cangiano, G.; De Felice, M.; Isticato, R. Mucosal Vaccine Delivery by Non-Recombinant Spores of Bacillus subtilis. Microb. Cell Fact. 2014, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Isticato, R.; Ricca, E. Spore Surface Display. In The Bacterial Spore: From Molecules to Systems; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Zhang, G.; An, Y.; Zabed, H.M.; Guo, Q.; Yang, M.; Yuan, J.; Li, W.; Sun, W.; Qi, X. Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications. J. Microbiol. Biotechnol. 2019, 29, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.-G.; Choi, S.-K.; Jung, H.-C.; Kim, E.-J. Display of Native Proteins on Bacillus subtilis Spores. FEMS Microbiol. Lett. 2014, 358, 209–217. [Google Scholar] [CrossRef]
- Lee, J.E.; Kye, Y.C.; Park, S.M.; Shim, B.S.; Yoo, S.; Hwang, E.; Kim, H.; Kim, S.J.; Han, S.H.; Park, T.S.; et al. Bacillus subtilis Spores as Adjuvants against Avian Influenza H9N2 Induce Antigen-Specific Antibody and T Cell Responses in White Leghorn Chickens. Vet. Res. 2020, 51, 68. [Google Scholar] [CrossRef]
- Ramos Pupo, R.; Reyes Diaz, L.M.; Suarez Formigo, G.M.; Borrego Gonzalez, Y.; Lastre Gonzalez, M.; Saavedra Hernandez, D.; Crombet Ramos, T.; Sanchez Ramirez, B.; Grau, R.; Hellings, N.; et al. Mucosal Vaccination Against SARS-CoV-2 Using Human Probiotic Bacillus subtilis Spores as an Adjuvant Induces Potent Systemic and Mucosal Immunity. Vaccines 2025, 13, 772. [Google Scholar] [CrossRef]
- Kim, J.M.; Park, S.M.; Kim, J.A.; Park, J.A.; Yi, M.H.; Kim, N.S.; Bae, J.L.; Park, S.G.; Jang, Y.S.; Yang, M.S.; et al. Functional Pentameric Formation via Coexpression of the Escherichia coli Heat-Labile Enterotoxin B Subunit and Its Fusion Protein Subunit with a Neutralizing Epitope of ApxIIA Exotoxin Improves the Mucosal Immunogenicity and Protection against Challenge by Actinobacillus pleuropneumoniae. Clin. Vaccine Immunol. 2011, 18, 2168–2177. [Google Scholar] [CrossRef]
- Suriyankietkaew, S.; Nimsai, S. COVID-19 Impacts and Sustainability Strategies for Regional Recovery in Southeast Asia: Challenges and Opportunities. Sustainabilty 2021, 13, 8907. [Google Scholar] [CrossRef]
- ASEAN. The ASEAN Vaccine Capacity Survey (AVCS) Assessment Report; ASEAN: Jakarta, Indonesia, 2025; Available online: https://asean.org/book/the-asean-vaccine-capacity-survey-avcs-assessment-report/ (accessed on 10 June 2025).
- ASEAN. Regional Strategic and Action Plan for ASEAN Vaccine Security and Self-Reliance (AVSSR) 2021-2025; ASEAN: Jakarta, Indonesia, 2020. [Google Scholar]
- Hägg, P.; De Pohl, J.W.; Abdulkarim, F.; Isaksson, L.A. A Host/Plasmid System That Is Not Dependent on Antibiotics and Antibiotic Resistance Genes for Stable Plasmid Maintenance in Escherichia coli. J. Biotechnol. 2004, 111, 17–30. [Google Scholar] [CrossRef]
- Asenjo, J.A.; Andrews, B.A. Aqueous Two-Phase Systems for Protein Separation: Phase Separation and Applications. J. Chromatogr. A 2012, 1238, 1–10. [Google Scholar] [CrossRef]
- Barrett, P.N.; Mundt, W.; Kistner, O.; Howard, M.K. Vero Cell Platform in Vaccine Production: Moving towards Cell Culture-Based Viral Vaccines. Expert Rev. Vaccines 2009, 8, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.S.; Prazeres, D.M.F.; Azevedo, A.M.; Marques, M.P.C. mRNA Vaccines Manufacturing: Challenges and Bottlenecks. Vaccine 2021, 39, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Minh, A.D.; Kamen, A.A. Critical Assessment of Purification and Analytical Technologies for Enveloped Viral Vector and Vaccine Processing and Their Current Limitations in Resolving Co-Expressed Extracellular Vesicles. Vaccines 2021, 9, 823. [Google Scholar] [CrossRef]
- Robinson, J.M. Vaccine Production: Main Steps and Considerations. In The Vaccine Book, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–96. [Google Scholar] [CrossRef]
- Levine, H.L.; Lilja, J.E.; Stock, R.; Hummel, H.; Jones, S.D. Efficient, Flexible Facilities for the 21st Century. Bioprocess International, 1 December 2012. Available online: https://www.bioprocessintl.com/facility-design-engineering/efficient-flexible-facilities-for-the-21st-century (accessed on 10 June 2025).
- Rawlings, B.; Pora, H. Environmental Impact of Single-Use and Reusable Bioprocess Systems. Bioprocess International, 1 February 2009. Available online: https://www.bioprocessintl.com/supply-chain/environmental-impact-of-single-use-and-reusable-bioprocess-systems (accessed on 10 June 2025).
- Xu, J.; Xu, X.; Huang, C.; Angelo, J.; Oliveira, C.L.; Xu, M.; Xu, X.; Temel, D.; Ding, J.; Ghose, S.; et al. Biomanufacturing Evolution from Conventional to Intensified Processes for Productivity Improvement: A Case Study. MAbs 2020, 12, 1770669. [Google Scholar] [CrossRef] [PubMed]
- Jacquemart, R.; Vandersluis, M.; Zhao, M.; Sukhija, K.; Sidhu, N.; Stout, J. A Single-Use Strategy to Enable Manufacturing of Affordable Biologics. Comput. Struct. Biotechnol. J. 2016, 14, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.A.; Gefroh, E. Reducing Biopharmaceutical Manufacturing Costs through Continuous Processing in a Flexible J.POD Facility. Drug Discov. Today 2023, 28, 103619. [Google Scholar] [CrossRef]
- Mahal, H.; Branton, H.; Farid, S.S. End-to-End Continuous Bioprocessing: Impact on Facility Design, Cost of Goods, and Cost of Development for Monoclonal Antibodies. Biotechnol. Bioeng. 2021, 118, 3468–3485. [Google Scholar] [CrossRef]
- Makenga, G.; Bonoli, S.; Montomoli, E.; Carrier, T.; Auerbach, J. Vaccine Production in Africa: A Feasible Business Model for Capacity Building and Sustainable New Vaccine Introduction. Front. Public Health 2019, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Isoko, K.; Cordiner, J.L.; Kis, Z.; Moghadam, P.Z. Bioprocessing 4.0: A Pragmatic Review and Future Perspectives. Digit. Discov. 2024, 3, 1662–1681. [Google Scholar] [CrossRef]
- Gao, X.W.; Mubasher, M.; Fang, C.Y.; Reifer, C.; Miller, L.E. Dose-Response Efficacy of a Proprietary Probiotic Formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for Antibiotic-Associated Diarrhea and Clostridium difficile—Associated Diarrhea Prophylaxis in Adult Patients. Am. J. Gastroenterol. 2010, 105, 1636–1641. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry: Manufacturing Biological Intermediates and Biological Drug Substances Using Spore-Forming Microorganisms. Fed. Regist. 2007, 505, 79. [Google Scholar] [CrossRef]
- Hosseini, S.; Curilovs, A.; Cutting, S.M. Biological Containment of Genetically Modified Bacillus subtilis. Appl. Environ. Microbiol. 2018, 84, e02334-17. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.; Setlow, P. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef]
- Bennett, P.M.; Livesey, C.T.; Nathwani, D.; Reeves, D.S.; Saunders, J.R.; Wise, R. An Assessment of the Risks Associated with the Use of Antibiotic Resistance Genes in Genetically Modified Plants: Report of the Working Party of the British Society for Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 2004, 53, 418–431. [Google Scholar] [CrossRef]
- Kida, N.; Mochizuki, Y.; Taguchi, F. An Effective Sporicidal Reagent against Bacillus subtilis Spores. Microbiol. Immunol. 2003, 47, 279–283. [Google Scholar] [CrossRef]
- Feddema, J.J.; Fernald, K.D.S.; Schikan, H.G.C.P.; van de Burgwal, L.H.M. Upscaling Vaccine Manufacturing Capacity—Key Bottlenecks and Lessons Learned. Vaccine 2023, 41, 4359–4368. [Google Scholar] [CrossRef]
- Dong, M.-Z.; An, J.-Y.; Wang, L.-T.; Fan, X.-H.; Lv, M.-J.; Zhu, Y.-W.; Chang, Y.-H.; Meng, D.; Yang, Q.; Fu, Y.-J. Development of Fermented Chestnut with Bacillus natto: Functional and Sensory Properties. Food Res. Int. 2020, 130, 108941. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.; Weir, T.L. Spore-Based Probiotic Bacillus subtilis: Current Applications in Humans and Future Perspectives. Fermentation 2024, 10, 78. [Google Scholar] [CrossRef]
- Henn, M.R.; O’Brien, E.J.; Diao, L.; Feagan, B.G.; Sandborn, W.J.; Huttenhower, C.; Wortman, J.R.; McGovern, B.H.; Wang-Weigand, S.; Lichter, D.I.; et al. A Phase 1b Safety Study of SER-287, a Spore-Based Microbiome Therapeutic, for Active Mild to Moderate Ulcerative Colitis. Gastroenterology 2021, 160, 115–127. [Google Scholar] [CrossRef] [PubMed]
Pathogen Targeted | Antigen | Mechanism of Antigen Carrier | Strain | Delivery Route | Application | Refs. |
---|---|---|---|---|---|---|
BACTERIA | ||||||
Acinetobacter baumannii | TonB-dependent receptors | Recombinant display using a modified cry1Aa promoter | WB800N | Oral | Oral vaccine candidates against A. baumannii | [37] |
Bacillus anthracis | Protective antigen (PA) | Recombinant display using a modified cry3Aa promoter | DB104 and WB800N | Oral, Intranasal, Sublingual or Intraperitoneal | Vaccine against B. anthracis | [72] |
Recombinant expression using CotB and CotC as anchor motif | PY79 | Intraperitoneal | [73] | |||
Recombinant expression without coat protein | DB104 | Intramuscular | [74] | |||
Clostridioides difficile | C-terminal domain of the spore surface protein BclA3 | Recombinant expression using CotB as an anchor motif | PY79 | Intranasal | Vaccine against C. difficile spores | [75] |
FliD protein fused with human IL-1β domain VQGEESNDK peptide | Recombinant expression using CotG or CotB as anchor proteins | 168 | Oral | Mucosal immunizations containing B. subtilis spores with IL-1β as adjuvant | [76] | |
FliD protein | Non-recombinant adsorption onto B. subtilis spores with isogenic recombinant BHK121 strain as adjuvant | 168 and BHK121 | Oral or Intranasal | Mucosal vaccines for C. difficile infections | [77] | |
Carboxy-terminal repeat domains of toxins A and B | Recombinant expression using CotC and CotB as anchor proteins | PY79 | Orogastrically | Vaccine against C. difficile | [78] | |
Clostridium tetani | Tetanus toxin fragment C (TTFC) | Recombinant expression using CotC anchor motif | Derivatives of strain 168 trpC2 | Intranasal | B. subtilis tetanus vaccines | [79] |
Non-recombinant adsorption onto B. subtilis spores | PY79 | Intranasal and oral | [80] | |||
Recombinant expression using CotB as an anchor motif | PY79 | Oral and intranasal | [81,82] | |||
RH103 | Oral, intranasal or intraperitoneal | [83] | ||||
Enterohaemorrhagic Escherichia coli (EHEC) | Shiga-like toxin (Stx) | Recombinant expression induced by the stress-inducible sigma B-dependent promoter derived from the B. subtilis gsiB gene | WW02 | Oral, intranasal, or subcutaneous | Potential antigen carrier | [84] |
Enterotoxigenic Escherichia coli (ETEC) | B subunit of the heat-labile toxin (LTB), | Recombinant expression under the control of a stress-inducible promoter derived from the B. subtilis glucose starvation-inducible (gsiB) gene | WW02 | Oral or intraperitoneal | New episomal expression system to improve the performance of B. subtilis as a live orally delivered vaccine carrier | [85] |
Escherichia coli | B subunit of the heat-labile toxin | Non-recombinant adsorption onto B. subtilis spores | PY79 | Intranasal | Mucosal vaccine delivery | [86] |
Helicobacter acinonychis | UreB protein | Recombinant expression using CotC as anchor motif mixed with IL-2-presenting spores (BKH121) | BKH108 | Oral | Vaccine candidate supplemented with an appropriate adjuvant | [87] |
Helicobacter pylori | Urease subunit A (UreA) and subunit B (UreB) | Recombinant display of chimeric gene by in-frame fusion to CotB using THY-X-CISE® cloning technique | PY79 | Oral | Oral vaccine against H. pylori | [88] |
CTB-UreB | Recombinant expression using CotC as an anchor motif | WB600 | Oral | [89] | ||
UreB protein | Recombinant expression using CotC as anchor motif with recombinant spores presenting IL-2 as adjuvant | BKH48 and BKH108 | Oral | [90] | ||
Mycobacterium tuberculosis | Fusion protein FP-1 (Ag85B-Acr-HBHA) | Non-recombinant adsorption onto heat-inactivated B. subtilis | HU58 | Intranasal | Post-exposure vaccination and booster vaccination | [91] |
Fusion protein 1 (FP1) | Non-recombinant adsorption onto B. subtilis spores | - | Intranasal booster | Oral vaccine candidates against M. tuberculosis | [33] | |
A truncated fusion of Ag85B191-325 and CFP101-70 antigens (T85BCFP) | Recombinant expression using CotC as anchor motif on the spore coat of MTAG1 and in the cytosol of vegetatively grown cells of MTAG2 and MTAG3 | PY79 | Intranasal | [92] | ||
Salmonella enterica serovar Typhi | fliC | Non-recombinant adsorption onto B. subtilis spores | PY79 | Subcutaneous | Delivery of recombinant vaccines against bacterial pathogens | [93] |
Staphylococcus aureus | Mutant staphylococcal enterotoxin B (SEB) | Recombinant expression using CotC as an anchor motif | WB600 | Oral | Oral vaccine against S. aureus | [94] |
Streptococcus mutans | N-terminal polypeptide of P1 (P139–512) | Recombinant expression without using anchor proteins | WW02 | Subcutaneous | Development of anticaries vaccines | [95] |
VIRUS | ||||||
Coxsackie virus | VP1 | Recombinant expression using CotB as an anchor motif | 1A771 | Intranasal | CA16 VP1 subunit vaccine | [96] |
Enterovirus 71 (EV71) | VP1 | Recombinant expression CotB as anchor motif | 1A771 | Oral and Intranasal | Potential vaccine against EV71 infection | [97] |
Foot-and-mouth disease virus | B subunit of cholera toxin (CT-B) and an epitope box constituted with antigen sites from foot-and-mouth disease virus (FMDV) type Asia 1 | Recombinant expression without using anchor proteins | 1A751 | Oral | B. subtilis-based recombinant vaccine for the control and prevention of FMDV infections | [98] |
Human Immunodeficiency Virus (HIV) | gag p24 protein | Non-recombinant adsorption onto heat-killed B. subtilis spores | WW02 | Subcutaneous | Immunomodulatory properties of B. subtilis spores as adjuvant | [34] |
Human papillomavirus (HPV) type 33 | L1 major capsid protein | Recombinant expression using a xylose-inducible system | KCTC 1326 | Subcutaneous | Live or whole-cell vaccines administered by antigen delivery system | [99] |
Group A rotaviruses | VP6 | Recombinant expression through a double-crossover event at the sacA locus | 168 | Intranasal | B. subtilis spore-based rotavirus vaccines | [100] |
Influenza A virus (IAV) | M2e-FP protein (RSM2eFP) | Recombinant display using CotB as an anchor motif | PY79 | Aerosolized intratracheal and intragastric | Intratracheal vaccination against H1N1 | [101] |
3 molecules of M2e consensus sequence of influenza A viruses, termed RSM2e3 | Oral | Recombinant spore-based vaccines against influenza | [102] | |||
A tandem repeat of 4 consensus sequences coding for human—avian—swine—human M2e (M2eH-A-S-H) peptide | Recombinant expression using either CotB, CotC, CgeA, or CotZ as anchor motifs | BTL 20–BTL 26 | Oral | B. subtilis spores can serve as antigen carriers and elicit specific immune responses without the need for adjuvants. | [103] | |
SARS-CoV-2 | RBD | Recombinant display using CotC as anchor motif | WB800N | Oral | Vaccine-like supplement against respiratory infection | [104] |
RBD and HR1-HR2 | Recombinant expression of a chimeric gene by in-frame fusion to CotB or CotC using the THY-X-CISE® cloning technique | PY79 | Intranasal | Intranasal booster vaccine against SARS-CoV-2 | [32] | |
PARASITE | ||||||
Clonorchis sinensis | CsPmy | Recombinant expression using CotC as anchor motif | WB600 | Oral and Intraperitoneal | Potential oral vaccine against C. sinensis | [105] |
Enolase from C. sinensis (CsENO) | Oral | [106] | ||||
Eucine aminopeptidase 2 of C. sinensis (CsLAP2) | [107] | |||||
C. sinensis tegumental protein 22.3 kDa (CsTP22.3) | [108] | |||||
C. sinensis TP20.8 (Tegumental Protein 20.8 kDa) | [109] | |||||
Opisthorchis viverrini | Large extracellular loop (LEL) of O. viverrini tetraspanin-2 (Ov-TSP-2) | Recombinant expression using CotC as anchor motif | WB800N | Oral | Vaccine for control of carcinogenic liver fluke infection in humans | [110] |
Plasmodium falciparum | C-terminal region of the circumsporozoite surface protein | Non-recombinant coupling onto B. subtilis spores | KO7 | Intranasal | As an adjuvant in a vaccine formulation | [111] |
Schistosoma japonicum | Glutathione S-transferase (GST) | Recombinant expression using CotC as anchor motif | WB600 | Oral | Potential mucosal delivery vaccination against parasite | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazan, A.; Lee, H.Y.; Tiong, V.; AbuBakar, S. Bacillus subtilis Spores as a Vaccine Delivery Platform: A Tool for Resilient Health Defense in Low- and Middle-Income Countries. Vaccines 2025, 13, 995. https://doi.org/10.3390/vaccines13100995
Hazan A, Lee HY, Tiong V, AbuBakar S. Bacillus subtilis Spores as a Vaccine Delivery Platform: A Tool for Resilient Health Defense in Low- and Middle-Income Countries. Vaccines. 2025; 13(10):995. https://doi.org/10.3390/vaccines13100995
Chicago/Turabian StyleHazan, Atiqah, Hai Yen Lee, Vunjia Tiong, and Sazaly AbuBakar. 2025. "Bacillus subtilis Spores as a Vaccine Delivery Platform: A Tool for Resilient Health Defense in Low- and Middle-Income Countries" Vaccines 13, no. 10: 995. https://doi.org/10.3390/vaccines13100995
APA StyleHazan, A., Lee, H. Y., Tiong, V., & AbuBakar, S. (2025). Bacillus subtilis Spores as a Vaccine Delivery Platform: A Tool for Resilient Health Defense in Low- and Middle-Income Countries. Vaccines, 13(10), 995. https://doi.org/10.3390/vaccines13100995