Understanding Mumps Dynamics: Epidemiological Traits and Breakthrough Infections in the Population under 15 Years of Age in Jiangsu Province, China, 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Management
2.2. Descriptive Epidemiological Analysis for All Cases
2.3. Joinpoint Regression Model Analysis
2.4. Analysis of Immune Status in Breakthrough Cases
3. Results
3.1. Overview of Cases
3.2. Population Distributions of Mumps Cases
3.3. Temporal Trends and Seasonal Patterns
3.4. Characteristics of Breakthrough Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hviid, A.; Rubin, S.; Muhlemann, K. Mumps. Lancet 2008, 371, 932–944. [Google Scholar] [CrossRef] [PubMed]
- Rubin, S.A.; Kennedy, R.B. Paramyxoviruses: Mumps. In Viral Infections of Humans: Epidemiology and Control; Kaslow, R.A., Stanberry, L.R., Powers, A.M., Eds.; Springer: New York, NY, USA, 2020; pp. 1–57. [Google Scholar]
- Henle, G.; Henle, W.; Wendell, K.K.; Rosenberg, P. Isolation of mumps virus from human beings with induced apparent or inapparent infections. J. Exp. Med. 1948, 88, 223–232. [Google Scholar] [CrossRef] [PubMed]
- WHO. Weekly Epidemiological Record. Mumps Vaccines; WHO: Geneva, Switzerland, 2024; Volume 99, pp. 115–134. [Google Scholar]
- Shepersky, L.; Marin, M.; Zhang, J.; Pham, H.; Marlow, M.A. Mumps in Vaccinated Children and Adolescents: 2007-2019. Pediatrics 2021, 148, e2021051873. [Google Scholar] [CrossRef]
- Galazka, A.M.; Robertson, S.E.; Kraigher, A. Mumps and mumps vaccine: A global review. Bull. World Health Organ. 1999, 77, 3–14. [Google Scholar]
- Hiebert, J.; Saboui, M.; Frost, J.R.; Zubach, V.; Laverty, M.; Severini, A. Mumps resurgence in a highly vaccinated population: Insights gained from surveillance in Canada, 2002–2020. Vaccine 2023, 41, 3728–3739. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; He, R.; Zhu, B.; Liu, J.; Zhang, N. Notifiable Respiratory Infectious Diseases in China: A Spatial-Temporal Epidemiology Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2301. [Google Scholar] [CrossRef]
- Perez Duque, M.; San-Bento, A.; Léon, L.; Custódio, P.; Esperança, M.A.; Albuquerque, M.J.; Nascimento, M.; Balasegaram, S.; Sá Machado, R. Mumps outbreak among fully vaccinated school-age children and young ad ults, Portugal 2019/2020. Epidemiol. Infect. 2021, 149, e205. [Google Scholar] [CrossRef]
- Fields, V.S.; Safi, H.; Waters, C.; Dillaha, J.; Capelle, L.; Riklon, S.; Wheeler, J.G.; Haselow, D.T. Mumps in a highly vaccinated Marshallese community in Arkansas, USA: An outbreak report. Lancet Infect. Dis. 2019, 19, 185–192. [Google Scholar] [CrossRef]
- Westphal, D.W.; Eastwood, A.; Levy, A.; Davies, J.; Huppatz, C.; Gilles, M.; Lyttle, H.; Williams, S.A.; Dowse, G.K. A protracted mumps outbreak in Western Australia despite high vaccine coverage: A population-based surveillance study. Lancet Infect. Dis. 2019, 19, 177–184. [Google Scholar] [CrossRef]
- Jiang, R.J.; Yin, Q.Z.; Xu, M.J.; Zhao, Z.M.; Deng, Y.; Che, Y.C. Epidemiological characteristics of mumps in mainland China from 2004 to 2018 and key population for prevention and control. Chin. J. Contemp. Pediatr. 2019, 21, 441–444. [Google Scholar] [CrossRef]
- Fu, X.; Ge, M.; Xu, W.; Yu, M.; Ju, J.; Zhong, Y.; Huang, H. Epidemiological features and sociodemographic factors associated with mumps in mainland China from 2004 to 2018. J. Med. Virol. 2022, 94, 4850–4859. [Google Scholar] [CrossRef]
- Sholzberg, M.; Tang, G.H.; Rahhal, H.; AlHamzah, M.; Kreuziger, L.B.; Ainle, F.N.; Alomran, F.; Alayed, K.; Alsheef, M.; AlSumait, F.; et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with COVID-19 admitted to hospital: RAPID randomised clinical trial. BMJ 2021, 375, n2400. [Google Scholar] [CrossRef] [PubMed]
- Woudenberg, T.; van der Maas, N.A.T.; Knol, M.J.; de Melker, H.; van Binnendijk, R.S.; Hahne, S.J.M. Effectiveness of Early Measles, Mumps, and Rubella Vaccination Among 6-14-Month-Old Infants During an Epidemic in the Netherlands: An Observational Cohort Study. J. Infect. Dis. 2017, 215, 1181–1187. [Google Scholar] [CrossRef]
- Cardemil, C.V.; Dahl, R.M.; James, L.; Wannemuehler, K.; Gary, H.E.; Shah, M.; Marin, M.; Riley, J.; Feikin, D.R.; Patel, M.; et al. Effectiveness of a third dose of MMR vaccine for mumps outbreak control. N. Engl. J. Med. 2017, 377, 947–956. [Google Scholar] [CrossRef]
- Chinese Ministry of Health. Diagnostic Criteria for Mump: WS 270-2007; People’s Medical Publisher House: Beijing, China, 2007. [Google Scholar]
- Kim, H.J.; Fay, M.P.; Feuer, E.J.; Midthune, D.N. Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med. 2000, 19, 335–351. [Google Scholar] [CrossRef]
- Nistal Nuno, B. Joinpoint regression analysis to evaluate traffic public health policies by national temporal trends from 2000 to 2015. Int. J. Inj. Control Saf. Promot. 2018, 25, 128–133. [Google Scholar] [CrossRef]
- Zhang, N.R.; Siegmund, D.O. A modified Bayes information criterion with applications to the analys is of comparative genomic hybridization data. Biometrics 2007, 63, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Cobuccio, L.; Glampedakis, E.; Cherpillod, P.; Crisinel, P.A.; Perez-Rodriguez, F.J.; Attinger, M.; Bachelin, D.; Tessemo, M.N.; Maeusezahl, M.; et al. Adapting response to a measles outbreak in a context of high vaccination and breakthrough cases: An example from Vaud, Switzerland, January to March 2024. Eurosurveillance 2024, 29, 2400275. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, L. COVID-19: The World Community Expects the World Health Organization to Play a Stronger Leadership and Coordination Role in Pandemics Control. Front. Public Health 2020, 8, 470. [Google Scholar] [CrossRef]
- Geng, M.J.; Zhang, H.Y.; Yu, L.J.; Lv, C.L.; Wang, T.; Che, T.L.; Xu, Q.; Jiang, B.G.; Chen, J.J.; Hay, S.I.; et al. Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic. Nat. Commun. 2021, 12, 6923. [Google Scholar] [CrossRef]
- Marshall, H.S.; Plotkin, S. The changing epidemiology of mumps in a high vaccination era. Lancet Infect. Dis. 2019, 19, 118–119. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, Y.; Yan, T.; Xue, C.; Zhu, X.; Yuan, D.; Hu, R.; Liu, L.; Wang, Z.; Liu, Y.; et al. Epidemiological characteristics of mumps from 2004 to 2020 in Jiangsu, China: A flexible spatial and spatiotemporal analysis. Epidemiol. Infect. 2022, 150, e86. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Burgner, D.P.; Miller, J.E.; Song, Y.; Ren, X.; Li, Z.; Xing, Y.; Ma, J.; Sawyer, S.M.; et al. Infectious diseases in children and adolescents in China: Analysis of national surveillance data from 2008 to 2017. BMJ 2020, 369, m1043. [Google Scholar] [CrossRef] [PubMed]
- Musa, N.; Ghoniem, A.; Hsu, C.H.; Mubarak, S.; Sume, G.; Sharifuzzaman, M.; Bak, J.; Hutin, Y.; Teleb, N.; Crowcroft, N.; et al. Progress Toward Measles Elimination—World Health Organization Eastern Mediterranean Region, 2019-2022. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 139–144. [Google Scholar] [CrossRef]
- Deng, L.L.; Han, Y.J.; Li, Z.W.; Wang, D.Y.; Chen, T.; Ren, X.; He, G.X. Epidemiological characteristics of seven notifiable respiratory infectious diseases in the mainland of China: An analysis of national surveillance data from 2017 to 2021. Infect. Dis. Poverty 2023, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Ruan, S.; Geng, X.; Song, K.; Cui, L.; Liu, X.; Zhang, Y.; Cao, M.; Zhang, Y. Non-linear relationships and interactions of meteorological factors on mumps in Jinan, China. Int. J. Biometeorol. 2021, 65, 555–563. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Rao, J.; Han, Y.; Luo, Z.; Jia, L.; Chen, L.; Wang, C.; Zhang, Y.; Zhang, J. Meta-analysis of the effects of ambient temperature and relative humidity on the risk of mumps. Sci. Rep. 2022, 12, 6440. [Google Scholar] [CrossRef]
- Yu, G.; Yang, R.; Yu, D.; Cai, J.; Tang, J.; Zhai, W.; Wei, Y.; Chen, S.; Chen, Q.; Zhong, G.; et al. Impact of meteorological factors on mumps and potential effect modifiers: An analysis of 10 cities in Guangxi, Southern China. Environ. Res. 2018, 166, 577–587. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Wang, H.; Zhu, Z.; Mao, N.; Mulders, M.N.; Rota, P.A. Global and national laboratory networks support high quality surveillance for measles and rubella. Int. Health 2017, 9, 184–189. [Google Scholar] [CrossRef]
- Magurano, F.; Baggieri, M.; Marchi, A.; Bucci, P.; Rezza, G.; Nicoletti, L. Mumps clinical diagnostic uncertainty. Eur. J. Public Health. 2018, 28, 119–123. [Google Scholar] [CrossRef]
- Szinger, D.; Berki, T.; Drenjancevic, I.; Samardzic, S.; Zelic, M.; Sikora, M.; Pozgain, A.; Markovics, A.; Farkas, N.; Nemeth, P.; et al. Raising Epidemiological Awareness: Assessment of Measles/MMR Susceptibility in Highly Vaccinated Clusters within the Hungarian and Croatian Population-A Sero-Surveillance Analysis. Vaccines 2024, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.; Marlow, M.; Moore, K.L.; Patel, M. Recommendation of the Advisory Committee on Immunization Practices for Use of a Third Dose of Mumps Virus-Containing Vaccine in Persons at Increased Risk for Mumps During an Outbreak. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Song, W.; Yin, Z.; Li, S.; Gong, X.; Fang, Q.; Wang, S. Assessing the Changes of Mumps Characteristics with Different Vaccination Strategies Using Surveillance Data: Importance to Introduce the 2-Dose Schedule in Quzhou of China. J. Immunol. Res. 2020, 2020, 8130760. [Google Scholar] [CrossRef]
- Schenk, J.; Abrams, S.; Theeten, H.; Van Damme, P.; Beutels, P.; Hens, N. Immunogenicity and persistence of trivalent measles, mumps, and rubella vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 286–295. [Google Scholar] [CrossRef] [PubMed]
Breakthrough Groups | Minimum | Q 1 | Median | Q 3 | Maximum | Mean | IQR |
---|---|---|---|---|---|---|---|
SdBCs (N = 2847) | |||||||
Age at onset, in months | 11.30 | 70.31 | 87.17 | 112.13 | 194.63 | 93.05 | 41.82 |
Age at initial vaccination, in months | 3.57 | 18.33 | 18.50 | 19.03 | 172.23 | 19.22 | 0.70 |
Months between initial vaccination to onset | 2.60 | 51.09 | 68.23 | 93.23 | 176.23 | 73.82 | 42.14 |
TdBCs (N = 698) | |||||||
Age at onset, in months | 19.63 | 38.24 | 45.35 | 56.60 | 193.43 | 51.29 | 18.36 |
Age at initial vaccination, in months | 2.00 | 8.20 | 8.43 | 9.36 | 67.97 | 10.11 | 1.16 |
Age at last vaccination, in months | 12.20 | 18.37 | 18.63 | 19.57 | 129.77 | 22.39 | 1.20 |
Vaccination interval, in months | 1.33 | 9.80 | 10.20 | 10.73 | 111.33 | 12.28 | 0.93 |
Months between initial vaccination to onset | 10.10 | 29.58 | 36.52 | 47.45 | 173.27 | 41.18 | 17.87 |
Months between last vaccination to onset | 1.27 | 18.80 | 26.43 | 36.75 | 139.53 | 28.90 | 17.95 |
L-BCs (N = 105) | |||||||
Age at onset, in months | 21.77 | 57.29 | 80.80 | 108.47 | 179.17 | 86.87 | 51.19 |
Age at initial vaccination, in months | 8.10 | 18.23 | 18.40 | 18.94 | 34.13 | 17.16 | 0.70 |
Months between initial vaccination to onset | 12.17 | 42.44 | 62.07 | 89.55 | 160.67 | 69.71 | 47.12 |
L-SdBCs (N = 81) | |||||||
Age at onset, in months | 21.77 | 54.35 | 80.67 | 108.47 | 179.17 | 86.02 | 54.12 |
Age at initial vaccination, in months | 8.10 | 16.98 | 18.43 | 19.02 | 34.13 | 16.98 | 2.04 |
Months between initial vaccination to onset | 12.17 | 41.97 | 60.33 | 89.55 | 160.67 | 69.04 | 47.58 |
L-TdBCs (N = 24) | |||||||
Age at onset, in months | 23.73 | 62.52 | 86.65 | 109.49 | 158.57 | 89.74 | 46.97 |
Age at initial vaccination, in months | 8.17 | 18.27 | 18.32 | 18.62 | 20.50 | 17.76 | 0.34 |
Months between initial vaccination to onset | 15.30 | 48.83 | 68.21 | 91.19 | 138.07 | 71.99 | 42.36 |
Months between last vaccination to onset | 4.27 | 44.18 | 68.21 | 91.19 | 138.07 | 71.09 | 47.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, Z.; Liu, Z.; Deng, X.; Wang, L.; Zhu, Y.; Xu, Y.; Zhang, L.; Liu, Y.; Wang, B. Understanding Mumps Dynamics: Epidemiological Traits and Breakthrough Infections in the Population under 15 Years of Age in Jiangsu Province, China, 2023. Vaccines 2024, 12, 986. https://doi.org/10.3390/vaccines12090986
Li M, Wang Z, Liu Z, Deng X, Wang L, Zhu Y, Xu Y, Zhang L, Liu Y, Wang B. Understanding Mumps Dynamics: Epidemiological Traits and Breakthrough Infections in the Population under 15 Years of Age in Jiangsu Province, China, 2023. Vaccines. 2024; 12(9):986. https://doi.org/10.3390/vaccines12090986
Chicago/Turabian StyleLi, Mingma, Zhiguo Wang, Zhihao Liu, Xiuying Deng, Li Wang, Yuanyuan Zhu, Yan Xu, Lei Zhang, Yuanbao Liu, and Bei Wang. 2024. "Understanding Mumps Dynamics: Epidemiological Traits and Breakthrough Infections in the Population under 15 Years of Age in Jiangsu Province, China, 2023" Vaccines 12, no. 9: 986. https://doi.org/10.3390/vaccines12090986
APA StyleLi, M., Wang, Z., Liu, Z., Deng, X., Wang, L., Zhu, Y., Xu, Y., Zhang, L., Liu, Y., & Wang, B. (2024). Understanding Mumps Dynamics: Epidemiological Traits and Breakthrough Infections in the Population under 15 Years of Age in Jiangsu Province, China, 2023. Vaccines, 12(9), 986. https://doi.org/10.3390/vaccines12090986