Soluble Plasma Proteins of Tumor Necrosis Factor and Immunoglobulin Superfamilies Reveal New Insights into Immune Regulation in People with HIV and Opioid Use Disorder
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. TNF and Ig Superfamily Molecules
3.2. Correlation of TNF and Ig Superfamily Molecules with Flu Ab Titers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, K.A.; Ponce Terashima, J.; McCarty, D. Opioid use disorder and treatment: Challenges and opportunities. BMC Health Serv. Res. 2019, 19, 884. [Google Scholar] [CrossRef]
- Serota, D.P.; Wilson, J.D.; Merlin, J.S. Injection Drug Use–Associated Infective Endocarditis. JAMA 2018, 320, 1939. [Google Scholar] [CrossRef]
- Billock, R.M.; Steege, A.L.; Miniño, A. Drug Overdose Mortality by Usual Occupation and Industry: 46 U.S. States and New York City, 2020. Natl. Vital Stat. Rep. 2023, 72, 1–34. [Google Scholar] [PubMed]
- UNODC World Drug Report 2020: Global Drug Use Rising; While COVID-19 Has Far Reaching Impact on Global Drug Markets. Available online: https://www.unodc.org/unodc/press/releases/2020/June/media-advisory---global-launch-of-the-2020-world-drug-report.html (accessed on 2 April 2024).
- de Armas, L.R.; Pallikkuth, S.; George, V.; Rinaldi, S.; Pahwa, R.; Arheart, K.L.; Pahwa, S. Reevaluation of immune activation in the era of cART and an aging HIV-infected population. J. Clin. Investig. 2017, 2, e95726. [Google Scholar] [CrossRef] [PubMed]
- Gabuzda, D.; Jamieson, B.D.; Collman, R.G.; Lederman, M.M.; Burdo, T.H.; Deeks, S.G.; Dittmer, D.P.; Fox, H.S.; Funderburg, N.T.; Pahwa, S.G.; et al. Pathogenesis of Aging and Age-related Comorbidities in People with HIV: Highlights from the HIV ACTION Workshop. Pathog. Immun. 2020, 5, 143–174. [Google Scholar] [CrossRef] [PubMed]
- Pallikkuth, S.; de Armas, L.R.; Rinaldi, S.; George, V.K.; Pan, L.; Arheart, K.L.; Pahwa, R.; Pahwa, S. Dysfunctional peripheral T follicular helper cells dominate in people with impaired influenza vaccine responses: Results from the FLORAH study. PLoS Biol. 2019, 17, e3000257. [Google Scholar] [CrossRef] [PubMed]
- Pallikkuth, S.; Parmigiani, A.; Silva, S.Y.; George, V.K.; Fischl, M.; Pahwa, R.; Pahwa, S. Impaired peripheral blood T-follicular helper cell function in HIV-infected nonresponders to the 2009 H1N1/09 vaccine. Blood 2012, 120, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Azzoni, L.; Metzger, D.; Montaner, L.J. Effect of Opioid Use on Immune Activation and HIV Persistence on ART. J. Neuroimmune Pharmacol. 2020, 15, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.M.; Nelson, C.M.; Feaster, D.J.; Kizhner, A.; Forrest, D.W.; Nakamura, N.; Iyer, A.; Ghanta, P.P.; Jayaweera, D.T.; Rodriguez, A.E.; et al. Opioids exacerbate inflammation in people with well-controlled HIV. Front. Immunol. 2023, 14, 1277491. [Google Scholar] [CrossRef]
- Pallikkuth, S.; de Armas, L.; Rinaldi, S.; Pahwa, S. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection. Front. Immunol. 2017, 8, 1380. [Google Scholar] [CrossRef]
- Pallikkuth, S.; De Armas, L.R.; Pahwa, R.; Rinaldi, S.; George, V.K.; Sanchez, C.M.; Pan, L.; Dickinson, G.; Rodriguez, A.; Fischl, M.; et al. Impact of aging and HIV infection on serologic response to seasonal influenza vaccination. AIDS 2018, 32, 1085–1094. [Google Scholar] [CrossRef]
- Ward-Kavanagh, L.K.; Lin, W.W.; Šedý, J.R.; Ware, C.F. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Re-sponses. Immunity 2016, 44, 1005–1019. [Google Scholar] [CrossRef]
- Faustman, D.L.; Davis, M. TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front. Immunol. 2013, 4, 478. [Google Scholar] [CrossRef]
- Sung, M.-H.; Shen, Y.; Handel, A.; Bahl, J.; Ross, T.M. Longitudinal Assessment of Immune Responses to Repeated Annual Influenza Vaccination in a Human Cohort of Adults and Teenagers. Front. Immunol. 2021, 12, 642791. [Google Scholar] [CrossRef]
- Abreu, R.B.; Kirchenbaum, G.A.; Clutter, E.F.; Sautto, G.A.; Ross, T.M. Preexisting subtype immunodominance shapes memory B cell recall response to influenza vaccination. J. Clin. Investig. 2020, 5, e132155. [Google Scholar] [CrossRef]
- de Armas, L.R.; Pallikkuth, S.; Pan, L.; Rinaldi, S.; Pahwa, R.; Pahwa, S. Immunological age prediction in HIV-infected, ART-treated individuals. Aging 2021, 13, 22772–22791. [Google Scholar] [CrossRef]
- Bodmer, J.-L.; Schneider, P.; Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 2002, 27, 19–26. [Google Scholar] [CrossRef]
- Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 2009, 229, 173–191. [Google Scholar] [CrossRef]
- Tang, T.; Cheng, X.; Truong, B.; Sun, L.; Yang, X.; Wang, H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol. Ther. 2021, 219, 107709. [Google Scholar] [CrossRef]
- Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol. Rev. 2019, 99, 115–160. [Google Scholar] [CrossRef]
- Edý, J.; Bekiaris, V.; Ware, C.F. Tumor necrosis factor superfamily in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 2014, 7, a016279. [Google Scholar]
- Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; et al. A metalloproteinase disintegrin that releases tu-mour-necrosis factor-alpha from cells. Nature 1997, 385, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.W.; Choi, S.W.; Choi, J.I.; Kwon, B.S. Serum concentrations of soluble 4-1BB and 4-1BB ligand correlated with the disease severity in rheumatoid arthritis. Exp. Mol. Med. 2004, 36, 13–22. [Google Scholar] [CrossRef]
- Taylor, L.; Schwarz, H. Identification of a soluble OX40 isoform: Development of a specific and quantitative immunoassay. J. Immunol. Methods 2001, 255, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Le Mercier, I.; Lines, J.L.; Noelle, R.J. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Front. Immunol. 2015, 6, 418. [Google Scholar] [CrossRef] [PubMed]
- Saverino, D.; Simone, R.; Bagnasco, M.; Pesce, G. The soluble CTLA-4 receptor and its role in autoimmune diseases: An update. Autoimmun. Highlights 2010, 1, 73–81. [Google Scholar] [CrossRef]
- Gu, D.; Ao, X.; Yang, Y.; Chen, Z.; Xu, X. Soluble immune checkpoints in cancer: Production, function and biological significance. J. Immunother. Cancer 2018, 6, 132. [Google Scholar] [CrossRef]
- Liu, J.; Tian, X.; Wang, Y.; Kang, X.; Song, W. Soluble cytotoxic T-lymphocyte–associated antigen 4 (sCTLA-4) as a potential biomarker for diagnosis and evaluation of the prognosis in Glioma. BMC Immunol. 2021, 22, 33. [Google Scholar] [CrossRef]
- Bullock, T.N.J. CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell. Mol. Immunol. 2021, 19, 14–22. [Google Scholar] [CrossRef]
- Pende, D.; Castriconi, R.; Romagnani, P.; Spaggiari, G.M.; Marcenaro, S.; Dondero, A.; Lazzeri, E.; Lasagni, L.; Martini, S.; Rivera, P.; et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: Relevance for natural killer-dendritic cell interaction. Blood 2006, 107, 2030–2036. [Google Scholar] [CrossRef]
- Chauvin, J.-M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000957. [Google Scholar] [CrossRef] [PubMed]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L en-gagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef] [PubMed]
- Figgett, W.A.; Vincent, F.B.; Saulep-Easton, D.; Mackay, F. Roles of ligands from the TNF superfamily in B cell development, function, and regulation. Semin. Immunol. 2014, 26, 191–202. [Google Scholar] [CrossRef]
- Ma, D.Y.; Clark, E.A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 2009, 21, 265–272. [Google Scholar] [CrossRef]
- Bartkowiak, T.; Curran, M.A. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front. Oncol. 2015, 5, 117. [Google Scholar] [CrossRef]
- Oh, H.S.; Choi, B.K.; Kim, Y.H.; Lee, D.G.; Hwang, S.; Lee, M.J.; Park, S.H.; Bae, Y.-S.; Kwon, B.S. 4-1BB Signaling Enhances Primary and Secondary Population Expansion of CD8+ T Cells by Maximizing Autocrine IL-2/IL-2 Receptor Signaling. PLoS ONE 2015, 10, e0126765. [Google Scholar] [CrossRef] [PubMed]
- Snell, L.M.; Lin, G.H.Y.; McPherson, A.J.; Moraes, T.J.; Watts, T.H. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol. Rev. 2011, 244, 197–217. [Google Scholar] [CrossRef]
- van der Stegen, S.J.C.; Hamieh, M.; Sadelain, M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 2015, 14, 499–509. [Google Scholar] [CrossRef]
- Mbanwi, A.N.; Watts, T.H. Costimulatory TNFR family members in control of viral infection: Outstanding questions. Semin. Immunol. 2014, 26, 210–219. [Google Scholar] [CrossRef]
- Wortzman, M.E.; Clouthier, D.L.; McPherson, A.J.; Lin, G.H.; Watts, T.H. The contextual role of TNFR family members in CD8(+) T-cell control of viral infections. Immunol. Rev. 2013, 255, 125–148. [Google Scholar] [CrossRef]
- Croft, M. The TNF family in T cell differentiation and function—Unanswered questions and future directions. Semin. Immunol. 2014, 26, 183–190. [Google Scholar] [CrossRef]
- Linch, S.N.; McNamara, M.J.; Redmond, W.L. OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal. Front. Oncol. 2015, 5, 34. [Google Scholar] [CrossRef]
- Buchan, S.L.; Manzo, T.; Flutter, B.; Rogel, A.; Edwards, N.; Zhang, L.; Sivakumaran, S.; Ghorashian, S.; Carpenter, B.; Bennett, C.L.; et al. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit qui-escence. J. Immunol. 2015, 194, 125–133. [Google Scholar] [CrossRef]
- So, T.; Choi, H.; Croft, M. OX40 complexes with phosphoinositide 3-kinase and protein kinase B (PKB) to augment TCR-dependent PKB signaling. J. Immunol. 2011, 186, 3547–3555. [Google Scholar] [CrossRef]
- Song, J.; So, T.; Cheng, M.; Tang, X.; Croft, M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 2005, 22, 621–631. [Google Scholar] [CrossRef]
- Croft, M.; Benedict, C.A.; Ware, C.F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov. 2013, 12, 147–168. [Google Scholar] [CrossRef]
- Withers, D.R.; Gaspal, F.M.; Bekiaris, V.; McConnell, F.M.; Kim, M.; Anderson, G.; Lane, P.J. OX40 and CD30 signals in CD4(+) T-cell effector and memory function: A distinct role for lymphoid tissue inducer cells in maintaining CD4(+) T-cell memory but not effector function. Immunol. Rev. 2011, 244, 134–148. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Q.; Wang, Y.; Gao, G.; Diggs, L.S.; Tellides, G.; Lakkis, F.G. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J. Clin. Investig. 2004, 113, 310–317. [Google Scholar] [CrossRef]
- Boddicker, R.L.; Kip, N.S.; Xing, X.; Zeng, Y.; Yang, Z.Z.; Lee, J.H.; Almada, L.L.; Elsawa, S.F.; Knudson, R.A.; Law, M.E.; et al. The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-kappaB positive feedback loop in peripheral T-cell lymphoma. Blood 2015, 125, 3118–3127. [Google Scholar] [CrossRef] [PubMed]
- Buchan, S.L.; Al-Shamkhani, A. Distinct motifs in the intracellular domain of human CD30 differentially activate canonical and alternative transcription factor NF-κB signaling. PLoS ONE 2012, 7, e45244. [Google Scholar] [CrossRef] [PubMed]
- Thakar, N.Y.; Ovchinnikov, D.A.; Hastie, M.L.; Kobe, B.; Gorman, J.J.; Wolvetang, E.J. TRAF2 recruitment via T61 in CD30 drives NFkappaB activation and enhances hESC survival and proliferation. Mol. Biol. Cell 2015, 26, 993–1006. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, S.Y.; Kandala, G.; Liou, M.L.; Liou, H.C.; Choi, Y. CD30/TNF receptor-associated factor interaction: NF-kappa B activation and binding specificity. Proc. Natl. Acad. Sci. USA 1996, 93, 9699–9703. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.W.; Rumble, J.M.; Duckett, C.S. CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells. J. Biol. Chem. 2007, 282, 10252–10262. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Sun, A.; Wang, W.; He, J.; Hou, J.; Zhou, P.; Chen, Z. TRAF1 is involved in the classical NF-kappaB activation and CD30-induced alternative activity in Hodgkin’s lymphoma cells. Mol. Immunol. 2009, 46, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.; Blaser, H.; Mak, T.W. Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 2015, 15, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Machelska, H.; Celik, M. Opioid Receptors in Immune and Glial Cells—Implications for Pain Control. Front. Immunol. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Hammer, G.E.; Ma, A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu. Rev. Immunol. 2013, 31, 743–791. [Google Scholar] [CrossRef] [PubMed]
- Diebold, S.S. Determination of T-cell fate by dendritic cells. Immunol. Cell Biol. 2008, 86, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Maney, N.J.; Reynolds, G.; Krippner-Heidenreich, A.; Hilkens, C.M.U. Dendritic cell maturation and survival are differentially reg-ulated by TNFR1 and TNFR2. J. Immunol. 2014, 193, 4914–4923. [Google Scholar] [CrossRef]
- Yu, Q.; Gu, J.X.; Kovacs, C.; Freedman, J.; Thomas, E.K.; Ostrowski, M.A. Cooperation of TNF family members CD40 ligand, receptor activator of NF-kappa B ligand, and TNF-alpha in the activation of dendritic cells and the expansion of viral specific CD8+ T cell memory responses in HIV-1-infected and HIV-1-uninfected individuals. J. Immunol. 2003, 170, 1797–1805. [Google Scholar] [CrossRef]
- Josien, R.; Wong, B.R.; Li, H.-L.; Steinman, R.M.; Choi, Y. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J. Immunol. 1999, 162, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.K.; Kim, Y.H.; Kwon, P.M.; Lee, S.C.; Kang, S.W.; Kim, M.S.; Lee, M.J.; Kwon, B.S. 4-1BB functions as a survival factor in dendritic cells. J. Immunol. 2009, 182, 4107–4115. [Google Scholar] [CrossRef] [PubMed]
- Alcaide, M.L.; Parmigiani, A.; Pallikkuth, S.; Roach, M.; Freguja, R.; Della Negra, M.; Bolivar, H.; Fischl, M.A.; Pahwa, S. Immune activation in HIV-infected aging women on antiretrovirals--implications for age-associated comorbidities: A cross-sectional pilot study. PLoS ONE 2013, 8, e63804. [Google Scholar] [CrossRef] [PubMed]
Population | HIV+OP+ | HIV−OP+ | HIV+OP− | HIV−OP− |
---|---|---|---|---|
Number | 30 | 61 | 56 | 59 |
Median Age in Years (Range) | 46 (28–63) | 40 (24–63) | 52 (32–68) | 47 (24–62) |
Gender: M/F/other (%) | 33/67/0 | 25/75/0 | 46/48/5 | 49/51/0 |
Race: White/Black/Other (%) | 73/17/10 | 77/20/3 | 36/63/1 | 31/63/6 |
Ethnicity: Hispanic/Non-Hispanic/Unknown (%) | 43/53/4 | 28/70/2 | 30/70/0 | 36/64/0 |
Clinical information, median (IQR) | ||||
CD4 T cell count (cells/uL) | 685 (473–887) | 872 (680–1040) | 563 (367–937) | 1106 (726–1344) |
CD4/CD8 Ratio | 0.70 (0.55–1.02) | 1.67 (1.33–2.55) | 0.75 (0.44–1.09) | 2.20 (1.56–3.43) |
HIV Viral Loads, RNA copies/mL * | 24 (20–287) | NA | 20 (20–100) | NA |
Duration of ART, months | 36 (24–48) | NA | 192 (126–264) | NA |
Comparison Groups | Numbers | ||||||
---|---|---|---|---|---|---|---|
Molecules | Group 1 (HIV+OP+) Median (Q1, Q3) | Group 4 (HIV−OP−) Median (Q1, Q3) | N1 | N4 | Statistic | p< | p adj< |
Arginase 1 | 3.714 (2.384, 4.357) | −0.101 (−0.898, 2.901) | 30 | 60 | −4.03 | 0.00006 | 0.002 |
CD137/41BB# | 1.062 (0.388, 1.919) | −0.007 (−0.310, 0.629) | 30 | 60 | −4.37 | 0.00002 | 0.0002 |
CD27# | 0.989 (0.108, 1.624) | 0.002 (−0.621, 0.502) | 30 | 60 | −4.47 | 0.000008 | 0.0004 |
OX40/CD134# | 0.901 (0.506, 1.618) | −0.035 (−0.355, 0.419) | 30 | 60 | −5.06 | 0.0000005 | 0.00003 |
CD25/IL2Ra | 0.837 (0.042, 1.704) | −0.003 (−0.386, 0.385) | 30 | 60 | −4.15 | 0.00004 | 0.0007 |
TIM3 * | 0.686 (0.122, 1.031) | −0.030 (−0.261, 0.270) | 30 | 60 | −4.55 | 0.000006 | 0.0002 |
CD40# | 0.636 (0.278, 1.001) | −0.004 (−0.266, 0.346) | 30 | 60 | −5.13 | 0.0000003 | 0.00003 |
HVEM# | 0.549 (0.202, 1.134) | −0.013 (−0.239, 0.229) | 30 | 60 | −4.69 | 0.000003 | 0.0002 |
Molecules | Group 2 (HIV−OP+) Median (Q1, Q3) | Group 4 (HIV−OP−) Median (Q1, Q3) | N1 | N4 | Statistic | p< | p adj< |
CD137/41BB# | 1.267 (0.657, 1.866) | −0.007 (−0.310, 0.629) | 63 | 60 | −6.12 | 0.000000001 | 0.00000007 |
4BBL/TNFSF# | 1.241 (0.223, 3.201) | −0.119 (−1.191, 1.284) | 63 | 60 | −4.08 | 0.00005 | 0.0009 |
CD30/TNFRSF# | 1.105 (0.354, 2.243) | 0.058 (−0.725, 0.853) | 63 | 60 | −4.22 | 0.00003 | 0.0005 |
CD25/IL2Ra | 0.860 (0.348, 1.154) | −0.003 (−0.386, 0.385) | 63 | 60 | −5.91 | 0.000000004 | 0.0000002 |
OX40/CD134# | 0.755 (0.512, 1.217) | −0.035 (−0.355, 0.419) | 63 | 60 | −6.2 | 0.0000000006 | 0.00000007 |
TIM3 * | 0.651 (0.336, 0.922) | −0.030 (−0.261, 0.270) | 63 | 60 | −6.16 | 0.0000000008 | 0.00000007 |
Nectin 2 * | 0.524 (0.244, 0.737) | −0.012 (−0.311, 0.211) | 63 | 60 | −6.98 | 0.000000000004 | 0.0000000009 |
CD40# | 0.483 (0.094, 0.805) | −0.004 (−0.266, 0.346) | 63 | 60 | −4.58 | 0.000005 | 0.0002 |
Molecules | Group 3 (HIV+OP−) Median (Q1, Q3) | Group 4 (HIV−OP−) Median (Q1, Q3) | N1 | N4 | Statistic | p< | p adj< |
GITR# | 1.449 (0.000, 2.519) | 0.000 (−2.253,1.771) | 56 | 60 | −3.58 | 0.0004 | 0.03 |
CTLA 4 * | 1.281 (−0.111, 2.832) | −0.042 (−0.815, 0.981) | 56 | 60 | −3.41 | 0.0007 | 0.03 |
CD27# | 0.687 (−0.027, 1.389) | 0.002(−0.621, 0.502) | 56 | 60 | −4.16 | 0.00004 | 0.003 |
Perforin * | 0.497 (−0.029, 0.813) | 0.005 (−0.404, 0.367) | 56 | 60 | −3.77 | 0.0002 | 0.02 |
CD25/IL2Ra | 0.395 (0.018, 0.693) | −0.003 (−0.386, 0.385) | 56 | 60 | −2.88 | 0.004 | 0.04 |
PD_L2 * | 0.348 (0.035, 0.683) | −0.045 (−0.446, 0.216) | 56 | 60 | −4.56 | 0.000006 | 0.002 |
TIM 3 * | 0.298 (0.006, 0.689) | −0.030 (−0.261, 0.270) | 56 | 60 | −3.16 | 0.002 | 0.03 |
HVEM# | 0.281 (−0.074, 0.646) | −0.013 (−0.239, 0.229) | 56 | 60 | −2.93 | 0.004 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanta, P.P.; Dang, C.M.; Nelson, C.M.; Feaster, D.J.; Forrest, D.W.; Tookes, H.; Pahwa, R.N.; Pallikkuth, S.; Pahwa, S.G. Soluble Plasma Proteins of Tumor Necrosis Factor and Immunoglobulin Superfamilies Reveal New Insights into Immune Regulation in People with HIV and Opioid Use Disorder. Vaccines 2024, 12, 520. https://doi.org/10.3390/vaccines12050520
Ghanta PP, Dang CM, Nelson CM, Feaster DJ, Forrest DW, Tookes H, Pahwa RN, Pallikkuth S, Pahwa SG. Soluble Plasma Proteins of Tumor Necrosis Factor and Immunoglobulin Superfamilies Reveal New Insights into Immune Regulation in People with HIV and Opioid Use Disorder. Vaccines. 2024; 12(5):520. https://doi.org/10.3390/vaccines12050520
Chicago/Turabian StyleGhanta, Priya P., Christine M. Dang, C. Mindy Nelson, Daniel J. Feaster, David W. Forrest, Hansel Tookes, Rajendra N. Pahwa, Suresh Pallikkuth, and Savita G. Pahwa. 2024. "Soluble Plasma Proteins of Tumor Necrosis Factor and Immunoglobulin Superfamilies Reveal New Insights into Immune Regulation in People with HIV and Opioid Use Disorder" Vaccines 12, no. 5: 520. https://doi.org/10.3390/vaccines12050520
APA StyleGhanta, P. P., Dang, C. M., Nelson, C. M., Feaster, D. J., Forrest, D. W., Tookes, H., Pahwa, R. N., Pallikkuth, S., & Pahwa, S. G. (2024). Soluble Plasma Proteins of Tumor Necrosis Factor and Immunoglobulin Superfamilies Reveal New Insights into Immune Regulation in People with HIV and Opioid Use Disorder. Vaccines, 12(5), 520. https://doi.org/10.3390/vaccines12050520