Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota
Abstract
1. Introduction
2. Vaccination Efficacy in Patients with Cirrhosis
2.1. Recommendation for Vaccination in Cirrhotic Patients
2.2. Vaccine Response in Liver Transplant Recipients
3. The Immune System: An Overview of the Response to Vaccination
4. Cirrhosis Immune Dysfunction and Defective Immunization
5. Vaccination Response and Gut-Liver Axis in Cirrhosis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Wiesen, E.; Diorditsa, S.; Li, X. Progress towards hepatitis B prevention through vaccination in the Western Pacific, 1990–2014. Vaccine 2016, 34, 2855–2862. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Nielsen, B.U.; Drabe, C.H.; Barnkob, M.B.; Johansen, I.S.; Hansen, A.K.K.; Nilsson, A.C.; Rasmussen, L.D. Antibody response following the third and fourth SARS-CoV-2 vaccine dose in individuals with common variable immunodeficiency. Front. Immunol. 2022, 13, 934476. [Google Scholar] [CrossRef]
- Crum-Cianflone, N.F.; Wallace, M.R. Vaccination in HIV-infected adults. AIDS Patient Care STDS 2014, 28, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Liu, W.; Zhu, M.; Sheng, J. Microbial Infections as a Trigger for Acute-on-Chronic Liver Failure: A Review. Med. Sci. Monit. 2019, 25, 4773–4783. [Google Scholar] [CrossRef]
- Luo, J.; Li, J.; Li, P.; Liang, X.; Hassan, H.M.; Moreau, R.; Li, J. Acute-on-chronic liver failure: Far to go—A review. Crit. Care 2023, 27, 259. [Google Scholar] [CrossRef]
- Sagnelli, E.; Coppola, N.; Messina, V.; Di Caprio, D.; Marrocco, C.; Marotta, A.; Onofrio, M.; Scolastico, C.; Filippini, P. HBV superinfection in hepatitis C virus chronic carriers, viral interaction, and clinical course. Hepatology 2002, 36, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Benvegnù, L.; Fattovich, G.; Noventa, F.; Tremolada, F.; Chemello, L.; Cecchetto, A.; Alberti, A. Concurrent hepatitis B and C virus infection and risk of hepatocellular carcinoma in cirrhosis. A prospective study. Cancer 1994, 74, 2442–2448. [Google Scholar] [CrossRef]
- Vento, S.; Garofano, T.; Renzini, C.; Cainelli, F.; Casali, F.; Ghironzi, G.; Ferraro, T.; Concia, E. Fulminant hepatitis associated with hepatitis A virus superinfection in patients with chronic hepatitis C. N. Engl. J. Med. 1998, 338, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Pramoolsinsap, C.; Poovorawan, Y.; Hirsch, P.; Busagorn, N.; Attamasirikul, K. Acute, hepatitis-A super-infection in HBV carriers, or chronic liver disease related to HBV or HCV. Ann. Trop. Med. Parasitol. 1999, 93, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Petigara, T.; Kohn, M.A.; Nakashima, K.; Aoshima, M.; Shito, A.; Kanazu, S. Risk of pneumococcal diseases in adults with underlying medical conditions: A retrospective, cohort study using two Japanese healthcare databases. BMJ Open 2018, 8, e018553. [Google Scholar] [CrossRef] [PubMed]
- Schütte, A.; Ciesek, S.; Wedemeyer, H.; Lange, C.M. Influenza virus infection as precipitating event of acute-on-chronic liver failure. J. Hepatol. 2019, 70, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Duchini, A.; Viernes, M.E.; Nyberg, L.M.; Hendry, R.M.; Pockros, P.J. Hepatic decompensation in patients with cirrhosis during infection with influenza A. Arch. Intern. Med. 2000, 160, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Liang, P.S.; Locke, E.; Green, P.; Berry, K.; O’Hare, A.M.; Shah, J.A.; Crothers, K.; Eastment, M.C.; Fan, V.S.; et al. Cirrhosis and Severe Acute Respiratory Syndrome Coronavirus 2 Infection in US Veterans: Risk of Infection, Hospitalization, Ventilation, and Mortality. Hepatology 2021, 74, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Sarin, S.K.; Choudhury, A.; Lau, G.K.; Zheng, M.H.; Ji, D.; Abd-Elsalam, S.; Hwang, J.; Qi, X.; Cua, I.H.; Suh, J.I.; et al. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol. Int. 2020, 14, 690–700. [Google Scholar] [CrossRef]
- Iavarone, M.; D’Ambrosio, R.; Soria, A.; Triolo, M.; Pugliese, N.; Del Poggio, P.; Perricone, G.; Massironi, S.; Spinetti, A.; Buscarini, E.; et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J. Hepatol. 2020, 73, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.S.; Dhampalwar, S.; Saraf, N.; Soin, A.S. Outcomes of COVID-19 in Patients with Cirrhosis or Liver Transplantation. J. Clin. Exp. Hepatol. 2021, 11, 713–719. [Google Scholar] [CrossRef]
- Ballester, M.P.; Jalan, R.; Mehta, G. Vaccination in liver diseases and liver Transplantation: Recommendations, implications and opportunities in the post-covid era. JHEP Rep. 2023, 5, 100776. [Google Scholar] [CrossRef]
- Champion, C.R. Heplisav-B: A Hepatitis B Vaccine With a Novel Adjuvant. Ann. Pharmacother. 2021, 55, 783–791. [Google Scholar] [CrossRef]
- Di Lello, F.A.; Martínez, A.P.; Flichman, D.M. Insights into induction of the immune response by the hepatitis B vaccine. World J. Gastroenterol. 2022, 28, 4249–4262. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Davoulou, P.; Konstantakis, C.; Thomopoulos, K.; Triantos, C. Response to hepatitis B vaccination in patients with liver cirrhosis. Rev. Med. Virol. 2017, 27, e1942. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Loucks, J.; Shah, M. Efficacy of Hepatitis B Vaccine in Adults with Chronic Liver Disease. J. Pharm. Pract. 2023, 36, 839–844. [Google Scholar] [CrossRef]
- Engler, S.H.; Sauer, P.W.; Golling, M.; Klar, E.A.; Benz, C.; Stremmel, W.; Kallinowski, B. Immunogenicity of two accelerated hepatitis B vaccination protocols in liver transplant candidates. Eur. J. Gastroenterol. Hepatol. 2001, 13, 363–367. [Google Scholar] [CrossRef]
- Arslan, M.; Wiesner, R.H.; Sievers, C.; Egan, K.; Zein, N.N. Double-dose accelerated hepatitis B vaccine in patients with end-stage liver disease. Liver Transpl. 2001, 7, 314–320. [Google Scholar] [CrossRef]
- Dhillon, S.; Moore, C.; Li, S.D.; Aziz, A.; Kakar, A.; Dosanjh, A.; Beesla, A.; Murphy, L.; Van Thiel, D.H. Efficacy of high-dose intra-dermal hepatitis B virus vaccine in previous vaccination non-responders with chronic liver disease. Dig. Dis. Sci. 2012, 57, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Arbizu, E.A.; Marugán, R.B.; Grijalba, J.Y.; Serrano, P.L.; Grande, L.G.; Del Campo Terrón, S. Intramuscular versus intradermal administration of anti-hepatitis B vaccine in non-cirrhotic hepatitis C patients. Vaccine 2003, 21, 2747–2750. [Google Scholar] [CrossRef] [PubMed]
- Amjad, W.; Alukal, J.; Zhang, T.; Maheshwari, A.; Thuluvath, P.J. Two-Dose Hepatitis B Vaccine (Heplisav-B) Results in Better Seroconversion Than Three-Dose Vaccine (Engerix-B) in Chronic Liver Disease. Dig. Dis. Sci. 2021, 66, 2101–2106. [Google Scholar] [CrossRef]
- Gutierrez Domingo, I.; Pascasio Acevedo, J.M.; Alcalde Vargas, A.; Ramos Cuadra, A.; Ferrer Ríos, M.T.; Sousa Martin, J.M.; Sayago Mota, M.; Giráldez Gallego, A.; Suárez Artacho, G. Response to vaccination against hepatitis B virus with a schedule of four 40-μg doses in cirrhotic patients evaluated for liver transplantation: Factors associated with a response. Transplant. Proc. 2012, 44, 1499–1501. [Google Scholar] [CrossRef]
- Roni, D.A.; Pathapati, R.M.; Kumar, A.S.; Nihal, L.; Sridhar, K.; Tumkur Rajashekar, S. Safety and efficacy of hepatitis B vaccination in cirrhosis of liver. Adv. Virol. 2013, 2013, 196704. [Google Scholar] [CrossRef]
- Giráldez-Gallego, Á.; Rodríguez-Seguel, E.D.P.; Valencia-Martín, R.; Morillo-García, Á.; Salamanca-Rivera, C.; Ruiz-Pérez, R.; Cuaresma-Duque, M.; Rosso-Fernández, C.; Ferrer-Ríos, M.T.; Sousa-Martín, J.M.; et al. Three double-dose reinforced hepatitis B revaccination scheme for patients with cirrhosis unresponsive to the standard regimen: An open-label randomised clinical trial. Gut 2023, 73, 166–174. [Google Scholar] [CrossRef]
- Keeffe, E.B.; Iwarson, S.; McMahon, B.J.; Lindsay, K.L.; Koff, R.S.; Manns, M.; Baumgarten, R.; Wiese, M.; Fourneau, M.; Safary, A.; et al. Safety and immunogenicity of hepatitis A vaccine in patients with chronic liver disease. Hepatology 1998, 27, 881–886. [Google Scholar] [CrossRef]
- Arguedas, M.R.; Johnson, A.; Eloubeidi, M.A.; Fallon, M.B. Immunogenicity of hepatitis A vaccination in decompensated cirrhotic patients. Hepatology 2001, 34, 28–31. [Google Scholar] [CrossRef]
- Pirovino, M.; Lydick, E.; Grob, P.J.; Arrenbrecht, S.; Altorfer, J.; Schmid, M. Pneumococcal vaccination: The response of patients with alcoholic liver cirrhosis. Hepatology 1984, 4, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Preheim, L.C.; Mellencamp, M.A.; Snitily, M.U.; Gentry, M.J. Effect of cirrhosis on the production and efficacy of pneumococcal capsular antibody in a rat model. Am. Rev. Respir. Dis. 1992, 146, 1054–1058. [Google Scholar] [CrossRef]
- McCashland, T.M.; Preheim, L.C.; Gentry, M.J. Pneumococcal vaccine response in cirrhosis and liver transplantation. J. Infect. Dis. 2000, 181, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Härmälä, S.; Parisinos, C.A.; Shallcross, L.; O’Brien, A.; Hayward, A. Effectiveness of influenza vaccines in adults with chronic liver disease: A systematic review and meta-analysis. BMJ Open 2019, 9, e031070. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, G.B.; Stornaiuolo, G.; Precone, D.F.; Amendola, A.; Zanetti, A.R. Immunogenicity and safety of an adjuvanted influenza vaccine in patients with decompensated cirrhosis. Vaccine 2002, 20 (Suppl. 5), B33–B35. [Google Scholar] [CrossRef] [PubMed]
- Thuluvath, P.J.; Robarts, P.; Chauhan, M. Analysis of antibody responses after COVID-19 vaccination in liver transplant recipients and those with chronic liver diseases. J. Hepatol. 2021, 75, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Bakasis, A.D.; Bitzogli, K.; Mouziouras, D.; Pouliakis, A.; Roumpoutsou, M.; Goules, A.V.; Androutsakos, T. Antibody Responses after SARS-CoV-2 Vaccination in Patients with Liver Diseases. Viruses 2022, 14, 207. [Google Scholar] [CrossRef]
- Iavarone, M.; Tosetti, G.; Facchetti, F.; Topa, M.; Er, J.M.; Hang, S.K.; Licari, D.; Lombardi, A.; D’Ambrosio, R.; Degasperi, E.; et al. Spike-specific humoral and cellular immune responses after COVID-19 mRNA vaccination in patients with cirrhosis: A prospective single center study. Dig. Liver Dis. 2023, 55, 160–168. [Google Scholar] [CrossRef]
- Beran, A.; Mhanna, A.; Mhanna, M.; Hassouneh, R.; Abuhelwa, Z.; Mohamed, M.F.H.; Sayeh, W.; Musallam, R.; Assaly, R.; Abdeljawad, K. Real-world effectiveness of COVID-19 vaccination in liver cirrhosis: A systematic review with meta-analysis of 51,834 patients. Proceedings (Bayl. Univ. Med. Cent.) 2023, 36, 151–156. [Google Scholar] [CrossRef]
- Loulergue, P.; Pol, S.; Mallet, V.; Sogni, P.; Launay, O.; GEVACCIM Group. Why actively promote vaccination in patients with cirrhosis? J. Clin. Virol. 2009, 46, 206–209. [Google Scholar] [CrossRef]
- Casella, G.; Ingravalle, F.; Ingravalle, A.; Andreotti, S.; Bonetti, F.; Monti, C.; Falbo, R.; Rumi, M.G. Approaches for Selective Vaccinations in Cirrhotic Patients. Vaccines 2023, 11, 460. [Google Scholar] [CrossRef]
- Jacobs, R.J.; Meyerhoff, A.S.; Saab, S. Immunization needs of chronic liver disease patients seen in primary care versus specialist settings. Dig. Dis. Sci. 2005, 50, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Advisory Committee on Immunization Practices (ACIP); Fiore, A.E.; Wasley, A.; Bell, B.P. Prevention of hepatitis A through active or passive immunization: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2006, 55, 1–23. [Google Scholar] [PubMed]
- Murthy, N.; Wodi, A.P.; McNally, V.; Cineas, S.; Ault, K. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Adults Aged 19 Years or Older—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Loulergue, P.; Launay, O.; le groupe GEVACCIM (Groupe d’Etude sur la Vaccination des Sujets Immunodéprimés). Vaccinations chez les patients ayant une cirrhose [Vaccination in patients with cirrhosis]. Presse Med. 2009, 38, 1134–1140. [Google Scholar] [CrossRef]
- Song, J.Y.; Cheong, H.J.; Ha, S.H.; Hwang, I.S.; Kee, S.Y.; Jeong, H.W.; Lee, C.G.; Kim, W.J. Clinical impact of influenza immunization in patients with liver cirrhosis. J. Clin. Virol. 2007, 39, 159–163. [Google Scholar] [CrossRef]
- Mast, E.E.; Margolis, H.S.; Fiore, A.E.; Brink, E.W.; Goldstein, S.T.; Wang, S.A.; Moyer, L.A.; Bell, B.P.; Alter, M.J.; Advisory Committee on Immunization Practices (ACIP). A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP) part 1: Immunization of infants, children, and adolescents. MMWR Recomm. Rep. 2005, 54, 1–31, Erratum in MMWR Morb. Mortal. Wkly. Rep. 2006, 55, 158–159; Erratum in MMWR Morb. Mortal. Wkly. Rep. 2007, 56, 1267. [Google Scholar]
- Granito, A.; Muratori, P.; Muratori, L. Acute-on-chronic liver failure: A complex clinical entity in patients with autoimmune hepatitis. J. Hepatol. 2021, 75, 1503–1505. [Google Scholar] [CrossRef]
- Al-Dury, S.; Kanberg, N. Advancements in Vaccine Strategies for Chronic Liver Disease Patients: Navigating Post-COVID Challenges and Opportunities. Vaccines 2024, 12, 197. [Google Scholar] [CrossRef] [PubMed]
- Leise, M.D.; Talwalkar, J.A. Immunizations in chronic liver disease: What should be done and what is the evidence. Curr. Gastroenterol. Rep. 2013, 15, 300. [Google Scholar] [CrossRef] [PubMed]
- Alukal, J.J.; Naqvi, H.A.; Thuluvath, P.J. Vaccination in Chronic Liver Disease: An Update. J. Clin. Exp. Hepatol. 2022, 12, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, M.; Bárcena, R.; García, M.; López-Sanroman, A.; Nuño, J. Vaccination against hepatitis B virus in cirrhotic patients on liver transplant waiting list. Liver Transpl. 2000, 6, 440–442. [Google Scholar] [CrossRef]
- Stark, K.; Günther, M.; Neuhaus, R.; Reinke, P.; Schröder, K.; Linnig, S.; Bienzle, U. Immunogenicity and safety of hepatitis A vaccine in liver and renal transplant recipients. J. Infect. Dis. 1999, 180, 2014–2017. [Google Scholar] [CrossRef] [PubMed]
- Burbach, G.; Bienzle, U.; Stark, K.; Rayes, N.; Neuhaus, R.; Serke, S.; Engelmann, H.; Künzel, W.; Türk, G.; Neuhaus, P. Influenza vaccination in liver transplant recipients. Transplantation 1999, 67, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Vilchez, R.A.; Fung, J.J.; Kusne, S. Influenza A myocarditis developing in an adult liver transplant recipient despite vaccination: A case report and review of the literature. Transplantation 2000, 70, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, B.L.; Pellicane, A.J.; Tyring, S.K. Vaccine immunology. Dermatol. Ther. 2009, 22, 104–109. [Google Scholar] [CrossRef]
- Soto, J.A.; Díaz, F.E.; Retamal-Díaz, A.; Gálvez, N.M.S.; Melo-González, F.; Piña-Iturbe, A.; Ramírez, M.A.; Bohmwald, K.; González, P.A.; Bueno, S.M.; et al. BCG-Based Vaccines Elicit Antigen-Specific Adaptive and Trained Immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines 2022, 10, 721. [Google Scholar] [CrossRef]
- Sancho, D.; Gómez, M.; Sánchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 2005, 26, 136–140. [Google Scholar] [CrossRef]
- Lauzurica, P.; Sancho, D.; Torres, M.; Albella, B.; Marazuela, M.; Merino, T.; Bueren, J.A.; Martínez, A.C.; Sánchez-Madrid, F. Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice. Blood 2000, 95, 2312–2320. [Google Scholar] [CrossRef]
- Reif, K.; Ekland, E.H.; Ohl, L.; Nakano, H.; Lipp, M.; Förster, R.; Cyster, J.G. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 2002, 416, 94–99. [Google Scholar] [CrossRef]
- Palm, A.E.; Henry, C. Remembrance of Things Past: Long-Term B Cell Memory After Infection and Vaccination. Front. Immunol. 2019, 10, 1787. [Google Scholar] [CrossRef]
- Gilbert, S.C. T-cell-inducing vaccines—What’s the future. Immunology 2012, 135, 19–26. [Google Scholar] [CrossRef]
- Heinzel, F.P. Infections in patients with humoral immunodeficiency. Hosp. Pract. (Off. Ed.) 1989, 24, 99–103, 106–111. [Google Scholar] [CrossRef]
- Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.; Oxman, M.N.; et al. Varicella zoster virus infection. Nat. Rev. Dis. Primers 2015, 1, 15016. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Barouch, D.H. T cell immunity to COVID-19 vaccines. Science 2022, 377, 821–822. [Google Scholar] [CrossRef] [PubMed]
- Malley, R.; Trzcinski, K.; Srivastava, A.; Thompson, C.M.; Anderson, P.W.; Lipsitch, M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc. Natl. Acad. Sci. USA 2005, 102, 4848–4853. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.A.; Nambiar, J.K.; Wozniak, T.M.; Roediger, B.; Shklovskaya, E.; Britton, W.J.; Fazekas de St Groth, B.; Triccas, J.A. Antigen load governs the differential priming of CD8 T cells in response to the bacille Calmette Guerin vaccine or Mycobacterium tuberculosis infection. J. Immunol. 2009, 182, 7172–7177. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021, 374, abm0829. [Google Scholar] [CrossRef]
- Echaide, M.; Chocarro de Erauso, L.; Bocanegra, A.; Blanco, E.; Kochan, G.; Escors, D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int. J. Mol. Sci. 2023, 24, 5944. [Google Scholar] [CrossRef] [PubMed]
- Dogan, I.; Bertocci, B.; Vilmont, V.; Delbos, F.; Mégret, J.; Storck, S.; Reynaud, C.A.; Weill, J.C. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 2009, 10, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Mei, H.; Dörner, T.; Hiepe, F.; Radbruch, A.; Fillatreau, S.; Hoyer, B.F. Memory B and memory plasma cells. Immunol. Rev. 2010, 237, 117–139. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, J.; Bos, N.A.; Kroese, F.G.M. Heterogeneity of Memory Marginal Zone B Cells. Crit. Rev. Immunol. 2018, 38, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Kardava, L.; Rachmaninoff, N.; Lau, W.W.; Buckner, C.M.; Trihemasava, K.; Blazkova, J.; Lopes de Assis, F.; Wang, W.; Zhang, X.; Wang, Y.; et al. Early human B cell signatures of the primary antibody response to mRNA vaccination. Proc. Natl. Acad. Sci. USA 2022, 119, e2204607119. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Babor, M.; Lane, J.; Schulten, V.; Patil, V.S.; Seumois, G.; Rosales, S.L.; Fu, Z.; Picarda, G.; Burel, J.; et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat. Commun. 2017, 8, 1473. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.M.; Mills, K.H.G. CD4 TRM Cells Following Infection and Immunization: Implications for More Effective Vaccine Design. Front. Immunol. 2018, 9, 1860. [Google Scholar] [CrossRef] [PubMed]
- Takamura, S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front. Immunol. 2018, 9, 1214. [Google Scholar] [CrossRef]
- Hassert, M.; Harty, J.T. Tissue resident memory T cells—A new benchmark for the induction of vaccine-induced mucosal immunity. Front. Immunol. 2022, 13, 1039194. [Google Scholar] [CrossRef]
- Rotrosen, E.; Kupper, T.S. Assessing the generation of tissue resident memory T cells by vaccines. Nat. Rev. Immunol. 2023, 23, 655–665. [Google Scholar] [CrossRef]
- Lumsden, J.M.; Schwenk, R.J.; Rein, L.E.; Moris, P.; Janssens, M.; Ofori-Anyinam, O.; Cohen, J.; Kester, K.E.; Heppner, D.G.; Krzych, U. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells. PLoS ONE 2011, 6, e20775. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.I.; Westerhof, L.M.; MacLeod, M.K.L. The roles of resident, central and effector memory CD4 T-cells in protective immunity following infection or vaccination. Immunology 2018, 154, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, C.G.; Linterman, M.A.; Yu, D.; MacLennan, I.C. Follicular Helper T Cells. Annu. Rev. Immunol. 2016, 34, 335–368. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 2015, 15, 185–189. [Google Scholar] [CrossRef]
- Patente, T.A.; Pinho, M.P.; Oliveira, A.A.; Evangelista, G.C.M.; Bergami-Santos, P.C.; Barbuto, J.A.M. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front. Immunol. 2019, 9, 3176. [Google Scholar] [CrossRef]
- Heesters, B.A.; Myers, R.C.; Carroll, M.C. Follicular dendritic cells: Dynamic antigen libraries. Nat. Rev. Immunol. 2014, 14, 495–504. [Google Scholar] [CrossRef]
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef]
- Segura, E. Cross-Presentation Assay for Human Dendritic Cells. Methods Mol. Biol. 2016, 1423, 189–198. [Google Scholar] [CrossRef]
- Xu, R.H.; Remakus, S.; Ma, X.; Roscoe, F.; Sigal, L.J. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLoS Pathog. 2010, 6, e1000768. [Google Scholar] [CrossRef]
- Badovinac, V.P.; Messingham, K.A.; Jabbari, A.; Haring, J.S.; Harty, J.T. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat. Med. 2005, 11, 748–756. [Google Scholar] [CrossRef]
- Querec, T.; Bennouna, S.; Alkan, S.; Laouar, Y.; Gorden, K.; Flavell, R.; Akira, S.; Ahmed, R.; Pulendran, B. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 2006, 203, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.S.; Arunachalam, P.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol. Investig. 2010, 39, 303–355. [Google Scholar] [CrossRef] [PubMed]
- Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Kim, S.H.; Jeon, J.H.; Kim, E.B.; Lee, N.K.; Beck, S.; Choi, Y.J.; Kang, S.K. Cytoplasmic expression of a model antigen with M Cell-Targeting moiety in lactic acid bacteria and implication of the mechanism as a mucosal vaccine via oral route. Vaccine 2021, 39, 4072–4081. [Google Scholar] [CrossRef] [PubMed]
- Lund, F.E.; Randall, T.D. Effector and regulatory B cells: Modulators of CD4+ T cell immunity. Nat. Rev. Immunol. 2010, 10, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, M.; Du, G.; Chen, X.; Sun, X. Advanced oral vaccine delivery strategies for improving the immunity. Adv. Drug Deliv. Rev. 2021, 177, 113928. [Google Scholar] [CrossRef] [PubMed]
- Kunisawa, J.; Kurashima, Y.; Kiyono, H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug Deliv. Rev. 2012, 64, 523–530. [Google Scholar] [CrossRef]
- Robbins, J.B.; Schneerson, R.; Szu, S.C. Perspective: Hypothesis: Serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J. Infect. Dis. 1995, 171, 1387–1398. [Google Scholar] [CrossRef]
- Kwong, K.W.; Xin, Y.; Lai, N.C.; Sung, J.C.; Wu, K.C.; Hamied, Y.K.; Sze, E.T.; Lam, D.M. Oral Vaccines: A Better Future of Immunization. Vaccines 2023, 11, 1232. [Google Scholar] [CrossRef]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef]
- Albillos, A.; Martin-Mateos, R.; Van der Merwe, S.; Wiest, R.; Jalan, R.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 112–134. [Google Scholar] [CrossRef]
- Simão, A.L.; Palma, C.S.; Izquierdo-Sanchez, L.; Putignano, A.; Carvalho-Gomes, A.; Posch, A.; Zanaga, P.; Girleanu, I.; Henrique, M.M.; Araújo, C.; et al. Cirrhosis is associated with lower serological responses to COVID-19 vaccines in patients with chronic liver disease. JHEP Rep. 2023, 5, 100697. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Lustig, Y.; Joseph, G.; Gilboa, M.; Barda, N.; Gens, I.; Indenbaum, V.; Halpern, O.; Katz-Likvornik, S.; Levin, T.; et al. Correlates of protection against COVID-19 infection and intensity of symptomatic disease in vaccinated individuals exposed to SARS-CoV-2 in households in Israel (ICoFS): A prospective cohort study. Lancet Microbe 2023, 4, e309–e318. [Google Scholar] [CrossRef]
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Salzer, U.; Sack, U.; Fuchs, I. Flow Cytometry in the Diagnosis and Follow Up of Human Primary Immunodeficiencies. EJIFCC 2019, 30, 407–422. [Google Scholar] [PubMed]
- De Milito, A.; Mörch, C.; Sönnerborg, A.; Chiodi, F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS 2001, 15, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Iyer, T.K.; Carpenter, E.; Li, H.; Chang, K.M.; Vonderheide, R.H.; Kaplan, D.E. Dysfunctional B-cell activation in cirrhosis resulting from hepatitis C infection associated with disappearance of CD27-positive B-cell population. Hepatology 2012, 55, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Jhun, J.Y.; Kim, H.Y.; Byun, J.K.; Chung, B.H.; Bae, S.H.; Yoon, S.K.; Kim, D.G.; Yang, C.W.; Cho, M.L.; Choi, J.Y. B-cell-associated immune profiles in patients with decompensated cirrhosis. Scand. J. Gastroenterol. 2015, 50, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Hayashi, E.; Arai, J.; Tojo, M.; Morikawa, K.; Eguchi, J.; Ito, T.; Kanto, T.; Kaplan, D.E.; Yoshida, H. Enhanced B-cell differentiation driven by advanced cirrhosis resulting in hyperglobulinemia. J. Gastroenterol. Hepatol. 2018, 33, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.T.; Jing, Y.Y.; Han, Z.P.; Li, X.N.; Liu, Y.; Lai, F.B.; Li, R.; Zhao, Q.D.; Wu, M.C.; Wei, L.X. The injured liver induces hyperimmunoglobulinemia by failing to dispose of antigens and endotoxins in the portal system. PLoS ONE 2015, 10, e0122739. [Google Scholar] [CrossRef]
- Abdelwahab, F.A.; Hassanein, K.M.; Hetta, H.F.; Abdelmalek, M.O.; Zahran, A.M.; El-Badawy, O. Impact of deranged B cell subsets distribution in the development of HCV-related cirrhosis and HCC in type two diabetes mellitus. Sci. Rep. 2020, 10, 20383. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, H.; Li, Y.; Huang, R.; Liu, Y.; Chen, Y.; Zhao, X.; Chang, H.; Chen, J.; Wu, C. Characteristics of peripheral and intrahepatic regulatory B cells in HBV-related liver cirrhosis. Int. J. Clin. Exp. Pathol. 2018, 11, 4545–4551. [Google Scholar]
- Huang, M.; Liu, X.; Ye, H.; Zhao, X.; Zhao, J.; Liu, Y.; He, X.; Qu, M.; Pan, J.; Hou, B.; et al. Metabolic defects in splenic B cell compartments from patients with liver cirrhosis. Cell Death Dis. 2020, 11, 915. [Google Scholar] [CrossRef]
- Seifert, M.; Przekopowitz, M.; Taudien, S.; Lollies, A.; Ronge, V.; Drees, B.; Lindemann, M.; Hillen, U.; Engler, H.; Singer, B.B.; et al. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc. Natl. Acad. Sci. USA 2015, 112, E546–E555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shi, J.; Qu, M.; Zhao, X.; Wang, H.; Huang, M.; Liu, Z.; Li, Z.; He, Q.; Zhang, S.; et al. Hyperactive Follicular Helper T Cells Contribute to Dysregulated Humoral Immunity in Patients With Liver Cirrhosis. Front. Immunol. 2019, 10, 1915. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.Y.; Feng, B.; Zhang, H.H.; Rao, H.Y.; Wang, J.H.; Cong, X.; Wei, L. CD4+CXCR5+ T cells activate CD27+IgG+ B cells via IL-21 in patients with hepatitis C virus infection. Hepatobiliary Pancreat. Dis. Int. 2016, 15, 55–64. [Google Scholar] [CrossRef]
- Noor, M.T.; Manoria, P. Immune Dysfunction in Cirrhosis. J. Clin. Transl. Hepatol. 2017, 5, 50–58. [Google Scholar] [CrossRef]
- Hackstein, C.P.; Spitzer, J.; Symeonidis, K.; Horvatic, H.; Bedke, T.; Steglich, B.; Klein, S.; Assmus, L.M.; Odainic, A.; Szlapa, J.; et al. Interferon-induced IL-10 drives systemic T-cell dysfunction during chronic liver injury. J. Hepatol. 2023, 79, 150–166. [Google Scholar] [CrossRef]
- Lebossé, F.; Gudd, C.; Tunc, E.; Singanayagam, A.; Nathwani, R.; Triantafyllou, E.; Pop, O.; Kumar, N.; Mukherjee, S.; Hou, T.Z.; et al. CD8+ T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 2019, 49, 258–268. [Google Scholar] [CrossRef]
- Shive, C.L.; Kowal, C.M.; Desotelle, A.F.; Nguyen, Y.; Carbone, S.; Kostadinova, L.; Davitkov, P.; O’Mara, M.; Reihs, A.; Siddiqui, H.; et al. Endotoxemia Associated with Liver Disease Correlates with Systemic Inflammation and T Cell Exhaustion in Hepatitis C Virus Infection. Cells 2023, 12, 2034. [Google Scholar] [CrossRef]
- Lario, M.; Muñoz, L.; Ubeda, M.; Borrero, M.J.; Martínez, J.; Monserrat, J.; Díaz, D.; Alvarez-Mon, M.; Albillos, A. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J. Hepatol. 2013, 59, 723–730. [Google Scholar] [CrossRef]
- John, B.V.; Deng, Y.; Schwartz, K.B.; Taddei, T.H.; Kaplan, D.E.; Martin, P.; Chao, H.H.; Dahman, B. Postvaccination COVID-19 infection is associated with reduced mortality in patients with cirrhosis. Hepatology 2022, 76, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Boulouis, C.; Kammann, T.; Cuapio, A.; Parrot, T.; Gao, Y.; Mouchtaridi, E.; Wullimann, D.; Lange, J.; Chen, P.; Akber, M.; et al. MAIT cell compartment characteristics are associated with the immune response magnitude to the BNT162b2 mRNA anti-SARS-CoV-2 vaccine. Mol. Med. 2022, 28, 54. [Google Scholar] [CrossRef] [PubMed]
- Niehaus, C.E.; Strunz, B.; Cornillet, M.; Falk, C.S.; Schnieders, A.; Maasoumy, B.; Hardtke, S.; Manns, M.P.; Kraft, A.R.M.; Björkström, N.K.; et al. MAIT Cells Are Enriched and Highly Functional in Ascites of Patients With Decompensated Liver Cirrhosis. Hepatology 2020, 72, 1378–1393. [Google Scholar] [CrossRef] [PubMed]
- Hegde, P.; Weiss, E.; Paradis, V.; Wan, J.; Mabire, M.; Sukriti, S.; Rautou, P.E.; Albuquerque, M.; Picq, O.; Gupta, A.C.; et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 2018, 9, 2146. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chouik, Y.; Lebossé, F.; Khamri, W. Dysfunctions of Circulating Adaptive Immune Cells in End-Stage Liver Disease. Livers 2023, 3, 369–382. [Google Scholar] [CrossRef]
- Cardoso, C.C.; Matiollo, C.; Pereira, C.H.J.; Fonseca, J.S.; Alves, H.E.L.; da Silva, O.M.; de Souza Menegassi, V.; Dos Santos, C.R.; de Moraes, A.C.R.; de Lucca Schiavon, L.; et al. Patterns of dendritic cell and monocyte subsets are associated with disease severity and mortality in liver cirrhosis patients. Sci. Rep. 2021, 11, 5923. [Google Scholar] [CrossRef] [PubMed]
- Kakazu, E.; Kondo, Y.; Kogure, T.; Ninomiya, M.; Kimura, O.; Ueno, Y.; Shimosegawa, T. Plasma amino acids imbalance in cirrhotic patients disturbs the tricarboxylic acid cycle of dendritic cell. Sci. Rep. 2013, 3, 3459. [Google Scholar] [CrossRef]
- Della Bella, S.; Crosignani, A.; Riva, A.; Presicce, P.; Benetti, A.; Longhi, R.; Podda, M.; Villa, M.L. Decrease and dysfunction of dendritic cells correlate with impaired hepatitis C virus-specific CD4+ T-cell proliferation in patients with hepatitis C virus infection. Immunology 2007, 121, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Crosignani, A.; Riva, A.; Della Bella, S. Analysis of peripheral blood dendritic cells as a non-invasive tool in the follow-up of patients with chronic hepatitis C. World J. Gastroenterol. 2016, 22, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Ouaguia, L.; Leroy, V.; Dufeu-Duchesne, T.; Durantel, D.; Decaens, T.; Hubert, M.; Valladeau-Guilemond, J.; Bendriss-Vermare, N.; Chaperot, L.; Aspord, C. Circulating and Hepatic BDCA1+, BDCA2+, and BDCA3+ Dendritic Cells Are Differentially Subverted in Patients With Chronic HBV Infection. Front. Immunol. 2019, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Irla, M.; Küpfer, N.; Suter, T.; Lissilaa, R.; Benkhoucha, M.; Skupsky, J.; Lalive, P.H.; Fontana, A.; Reith, W.; Hugues, S. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J. Exp. Med. 2010, 207, 1891–1905. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.A.; O’Shea, T.; Ndishabandi, D.K.; Yuan, Q.; Hong, S.; Gans, J.; Ge, J.; Gibney, S.; Chase, C.; Yang, C.; et al. Plasmacytoid Dendritic Cell-driven Induction of Treg Is Strain Specific and Correlates With Spontaneous Acceptance of Kidney Allografts. Transplantation 2020, 104, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Mazariegos, G.V.; Zahorchak, A.F.; Reyes, J.; Ostrowski, L.; Flynn, B.; Zeevi, A.; Thomson, A.W. Dendritic cell subset ratio in peripheral blood correlates with successful withdrawal of immunosuppression in liver transplant patients. Am. J. Transplant. 2003, 3, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Rogers, N.M.; Isenberg, J.S.; Thomson, A.W. Plasmacytoid dendritic cells: No longer an enigma and now key to transplant tolerance? Am. J. Transplant. 2013, 13, 1125–1133. [Google Scholar] [CrossRef]
- Brezar, V.; Godot, V.; Cheng, L.; Su, L.; Lévy, Y.; Seddiki, N. T-Regulatory Cells and Vaccination “Pay Attention and Do Not Neglect Them”: Lessons from HIV and Cancer Vaccine Trials. Vaccines 2016, 4, 30. [Google Scholar] [CrossRef]
- Fang, W.N.; Shi, M.; Meng, C.Y.; Li, D.D.; Peng, J.P. The Balance between Conventional DCs and Plasmacytoid DCs Is Pivotal for Immunological Tolerance during Pregnancy in the Mouse. Sci. Rep. 2016, 6, 26984. [Google Scholar] [CrossRef]
- Musumeci, A.; Lutz, K.; Winheim, E.; Krug, A.B. What Makes a pDC: Recent Advances in Understanding Plasmacytoid DC Development and Heterogeneity. Front. Immunol. 2019, 10, 1222. [Google Scholar] [CrossRef]
- Lee, G.H.; Lim, S.G. CpG-Adjuvanted Hepatitis B Vaccine (HEPLISAV-B®) Update. Expert. Rev. Vaccines 2021, 20, 487–495. [Google Scholar] [CrossRef]
- Nieto, J.C.; Perea, L.; Soriano, G.; Zamora, C.; Cantó, E.; Medina, A.; Poca, M.; Sanchez, E.; Roman, E.; Julià, G.; et al. Ascitic fluid regulates the local innate immune response of patients with cirrhosis. J. Leukoc. Biol. 2018, 104, 833–841. [Google Scholar] [CrossRef]
- Muñoz, L.; Caparrós, E.; Albillos, A.; Francés, R. The shaping of gut immunity in cirrhosis. Front. Immunol. 2023, 14, 1139554. [Google Scholar] [CrossRef]
- Alter, G.; Sekaly, R.P. Beyond adjuvants: Antagonizing inflammation to enhance vaccine immunity. Vaccine 2015, 33 (Suppl. 2), B55–B59. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, G.; Briantais, M.J.; Buffet, C.; Pillot, J.; Etienne, J.P. Serum and intestinal secretory IgA in alcoholic cirrhosis of the liver. Gut 1982, 23, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, V.; Angeli, P.; Moreau, R.; Jalan, R.; Clària, J.; Trebicka, J.; Fernández, J.; Gustot, T.; Caraceni, P.; Bernardi, M.; et al. The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 2021, 74, 670–685. [Google Scholar] [CrossRef]
- Wilde, B.; Katsounas, A. Immune Dysfunction and Albumin-Related Immunity in Liver Cirrhosis. Mediat. Inflamm. 2019, 2019, 7537649. [Google Scholar] [CrossRef]
- Chen, D.; Le, T.H.; Shahidipour, H.; Read, S.A.; Ahlenstiel, G. The Role of Gut-Derived Microbial Antigens on Liver Fibrosis Initiation and Progression. Cells 2019, 8, 1324. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, J.; Pandey, S.; Capitani, M.; Rue-Albrecht, K.C.; Arnold, I.; Franchini, F.; Chomka, A.; Ilott, N.E.; Johnston, D.G.W.; Pires, E.; et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 2019, 50, 432–445. [Google Scholar] [CrossRef]
- Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014, 5, 3611. [Google Scholar] [CrossRef]
- Burger-van Paassen, N.; Vincent, A.; Puiman, P.J.; van der Sluis, M.; Bouma, J.; Boehm, G.; van Goudoever, J.B.; van Seuningen, I.; Renes, I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J. 2009, 420, 211–219. [Google Scholar] [CrossRef]
- Jin, M.; Kalainy, S.; Baskota, N.; Chiang, D.; Deehan, E.C.; McDougall, C.; Tandon, P.; Martínez, I.; Cervera, C.; Walter, J.; et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int. 2019, 39, 1437–1447. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, C.; Zuo, S.; Cao, K.; Li, H. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy. J. Transl. Med. 2023, 21, 395. [Google Scholar] [CrossRef]
- Kim, M.; Qie, Y.; Park, J.; Kim, C.H. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe 2016, 20, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Sauerbruch, T.; Hennenberg, M.; Trebicka, J.; Beuers, U. Bile Acids, Liver Cirrhosis, and Extrahepatic Vascular Dysfunction. Front. Physiol. 2021, 12, 718783. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Chen, W.D.; Yu, D.; Forman, B.M.; Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 2011, 54, 1421–1432. [Google Scholar] [CrossRef]
- Takeda, M.; Takei, H.; Suzuki, M.; Tsukui, T.; Tsuboi, K.; Watayo, H.; Ochi, T.; Koga, H.; Nittono, H.; Yamataka, A. Bile acid profiles in adult patients with biliary atresia who achieve native liver survival after portoenterostomy. Sci. Rep. 2024, 14, 2492. [Google Scholar] [CrossRef] [PubMed]
- Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.Y.; et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019, 178, 1313–1328. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fei, Y.; Zhou, T.; Ji, H.; Wu, J.; Gu, X.; Luo, Y.; Zhu, J.; Feng, M.; Wan, P.; et al. Bile Acids Impair Vaccine Response in Children with Biliary Atresia. Front. Immunol. 2021, 12, 642546. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Coppola, G.; Rio, P.; Caldarelli, M.; Borriello, R.; Gambassi, G.; Gasbarrini, A.; Cianci, R. Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go. Vaccines 2023, 11, 1609. [Google Scholar] [CrossRef] [PubMed]
Authors | Year | Study Design | Type of Anti-HBV Vaccine | Number of Patients | Outcome |
---|---|---|---|---|---|
Gutierrez Domingo et al. [29] | 2012 | Retrospective cohort | Three-dose recombinant vaccine (Engerix B, Recombivax HB) | 278 cirrhotic patients | Higher response in Child-Pugh A (54%) than in B and C (30–33%) |
Roni et al. [30] | 2013 | Prospective cohort | Three-dose recombinant vaccine (Shanvac-B) | 52 cirrhotic patients | Higher response in Child-Pugh A (88%) than B (33%); alcohol-related disease linked to poorer efficacy |
Aggeletopoulou et al. [22] | 2017 | Review | Single or double dose of three-dose recombinant vaccine | 961 cirrhotic patients included in 11 prospective and retrospective studies | The mean response rate was 38% for the standard dose and 53% for the double dose |
Amjad et al. [28] | 2020 | Retrospective cohort | Two-dose (Heplisav-B) and three-dose (Engerix B) recombinant vaccine | 166 CLD patients (34% with cirrhosis) | Higher response rate with two-dose than three-dose regimen (aOR: 2.74, 95% CI 1.31–5.71). |
Kim et al. [23] | 2023 | Retrospective cohort | Three-dose recombinant vaccine | 126 CLD patients (82% with cirrhosis) | The cirrhotic patient response rate was 51% vs. noncirrhotic, which was 72% (p = 0.04) |
Authors | Year | Type of Study | Type of Anti-HAV Vaccine | Number of Patients | Outcome |
---|---|---|---|---|---|
Keeffe et al. [32] | 1998 | Prospective cohort | Two-dose regimen of the Havrix vaccine | 220 cirrhotic patients (n = 104 with chronic Hepatitis C; n = 46 with chronic Hepatitis B; n = 70 with other CLD) | Adequate seroconversion rate (94–98%) in patients with HBV and HCV-related nonadvanced chronic liver disease |
Arguedas et al. [33] | 2001 | Prospective cohort | Two-dose regimen of the Havrix vaccine | 84 cirrhotic patients (49 with compensated liver disease and 35 with decompensated disease) | Higher seroconversion rate (98%) in compensated cirrhosis (Child-Pugh A). As the severity of cirrhosis increased, the response rate gradually decreased. |
Authors | Year | Type of Study | Type of Anti-Pneumococcal Vaccine | Number of Patients | Outcome |
---|---|---|---|---|---|
Pirovino et al. [34] | 1984 | Prospective cohort | 14-valent pneumococcal polysaccharide vaccine (Pneumovax-14) | 15 patients with biopsy-proven alcoholic liver cirrhosis (compared to 10 healthy volunteers and 10 patients with chronic obstructive pulmonary disease). | The response rate in patients with alcohol-related cirrhosis was similar to the other groups. |
Preheim et al. [35] | 1992 | Preclinical study in vivo | Type 3 pneumococcal capsular polysaccharide (PCP) antigen | Rats with induced cirrhosis | Rats with cirrhosis had a substantially higher pneumococcal infection-related mortality than vaccinated healthy rats despite an adequate serological response. |
McCashland et al. [36] | 2000 | Prospective cohort | Pneumococcal polysaccharide vaccine (PPSV23) | 45 patients with end-stage liver disease (compared to 13 age-matched control subjects) | Specific anti-pneumococcal polysaccharide capsule IgA, IgM, and IgG significantly increased in both patients and healthy controls at one month without statistically significant differences. The comparative 6-month-to-baseline elevations for both IgM and IgA were significantly lower in the patient group than in the control group. |
Authors | Year | Type of Study | Type of Anti-Influenza- Vaccine | Number of Patients | Outcome |
---|---|---|---|---|---|
Gaeta et al. [38] | 2002 | Prospective cohort | 2000/2001 season virosomes adjuvanted influenza vaccine (Inflexal V) | 20 patients with HBV/HCV-related cirrhosis and eight age-matched controls | Seroconversion rate of 75–85% in cirrhotic patients compared to 100% in the control group. |
Härmälä et al. [37] | 2019 | Meta-analysis comprising 12 studies (1 randomized controlled trial and 11 cohort studies; 6 with clinical outcomes, 6 with serological outcomes) | Monovalent, split virus; trivalent, split virus; trivalent, subunit. | Studies with clinical outcomes: 232 patients with CLD (148 cirrhotic patients), most with viral liver disease. Studies with serological outcomes: 8189 patients with CLD (3258 cirrhotic patients) | A noteworthy seroconversion rate (80% for the A/H1N1 strain and 87% for the B strain). |
Authors | Year | Type of Study | Type of Anti-COVID-19 Vaccine | Number of Patients | Outcome |
---|---|---|---|---|---|
Thuluvath et al. [39] | 2021 | Prospective cohort | mRNA vaccines or Johnson and Johnson vaccine | 233 patients (62 liver transplant recipients, 79 cirrhosis [10 decompensated], 92 CLD without cirrhosis. | Poor antibody responses in 61% of LT recipients and 24% of those with CLD. Only 40% of patients with cirrhosis showed an adequate serological response. |
Bakasis et al. [40] | 2021 | Prospective cohort | Two doses of mRNA-based vaccinations | 38 patients with cirrhosis and 49 noncirrhotic chronic liver disease compared to 40 controls. | Appropriate rates of seroconversion: 97.4% (37/38) in cirrhotics, 87.8% (43/49) in noncirrhotic liver disease, and 100% (40/40) in controls. |
Iavarone et al. [41] | 2023 | Prospective cohort | BNT162b2 and mRNA-1273 | 182 cirrhotic patients (85% SARS-CoV-2-naïve) compared to 38 controls. | Anti-spike IgG serum levels were significantly lower in 182 cirrhotic patients who received two doses of mRNA vaccine than in healthy controls (1751 U/mL vs. 4523 U/mL, p = 0.012). |
Beran et al. [42] | 2023 | Meta-analysis (including four studies) | BNT162b2, mRNA, mRNA-1273, JNJ-784336725, Ad.26.COV2.S, AstraZeneca, Bharat Biotech, CanSino, and Sinovac. | 51834 cirrhotic patients | COVID-19-related hospitalization rate and related mortality rate were significantly lower in vaccinated cirrhotic patients compared to unvaccinated ones. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Airola, C.; Andaloro, S.; Gasbarrini, A.; Ponziani, F.R. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines 2024, 12, 349. https://doi.org/10.3390/vaccines12040349
Airola C, Andaloro S, Gasbarrini A, Ponziani FR. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines. 2024; 12(4):349. https://doi.org/10.3390/vaccines12040349
Chicago/Turabian StyleAirola, Carlo, Silvia Andaloro, Antonio Gasbarrini, and Francesca Romana Ponziani. 2024. "Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota" Vaccines 12, no. 4: 349. https://doi.org/10.3390/vaccines12040349
APA StyleAirola, C., Andaloro, S., Gasbarrini, A., & Ponziani, F. R. (2024). Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines, 12(4), 349. https://doi.org/10.3390/vaccines12040349