Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Vaccine-Induced Immunity
4.2. Natural Immunity
4.3. Hybrid Immunity
4.4. Emerging Insights
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention (CDC). 2024–2025 Respiratory Disease Season Outlook: Qualitative Assessments. 2024. Available online: https://www.cdc.gov/ (accessed on 1 December 2024).
- European Centre for Disease Prevention and Control (ECDC). Acute Respiratory Infections in the EU/EEA: Epidemiological Update and Current Public Health Recommendations—Winter 2024/2025. 2024. Available online: https://www.ecdc.europa.eu/ (accessed on 1 December 2024).
- Busch, M.P.; Stramer, S.L.; Stone, M.; Yu, E.A.; Grebe, E.; Notari, E.; Saa, P.; Ferg, R.; Manrique, I.M.; Weil, N.; et al. Population-Weighted Seroprevalence From Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection, Vaccination, and Hybrid Immunity Among US Blood Donations From January to December 2021. Clin Infect Dis. 2022, 75, S254–S263. [Google Scholar] [CrossRef] [PubMed]
- Kanokudom, S.; Chansaenroj, J.; Assawakosri, S.; Suntronwong, N.; Yorsaeng, R.; Wongsrisang, L.; Aeemjinda, R.; Vichaiwattana, P.; Klinfueng, S.; Thatsanathorn, T.; et al. Real-World Study: Hybrid Immunity against SARS-CoV-2 Influences the Antibody Levels and Persistency Lasting More than One Year. Vaccines 2023, 11, 1693. [Google Scholar] [CrossRef]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef]
- Padoan, A.; Dall'Olmo, L.; della Rocca, F.; Barbaro, F.; Cosma, C.; Basso, D.; Cattelan, A.; Cianci, V.; Plebani, M. Antibody response to first and second dose of BNT162b2 in a cohort of characterized healthcare workers. Clin. Chem. Lab. Med. 2021, 519, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Notarte, K.I.; Guerrero-Arguero, I.; Velasco, J.V.; Ver, A.T.; de Oliveira, M.H.S.; Catahay, J.A.; Khan, S.R.; Pastrana, A.; Juszczyk, G.; Torrelles, J.B.; et al. Characterization of the significant decline in humoral immune response six months post-SARS-CoV-2 mRNA vaccination: A systematic review. J. Med. Virol. 2022, 94, 2939–2961. [Google Scholar] [CrossRef] [PubMed]
- Benning, L.; Bartenschlager, M.; Kim, H.; Morath, C.; Zeier, M.; Schnitzler, P.; Bartenschlager, R.; Speer, C. Durability of Humoral Responses after an Adapted SARS-CoV-2 mRNA Vaccine Dose in Hemodialysis Patients. Vaccines 2024, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, Q.; Gu, X.; Ren, L.; Huang, T.; Li, Y.; Zhang, H.; Liu, Y.; Zhong, J.; Wang, X.; et al. Durability and cross-reactive immune memory to SARS-CoV-2 in individuals 2 years after recovery from COVID-19: A longitudinal cohort study. Lancet Microbe 2024, 5, e24–e33. [Google Scholar] [CrossRef] [PubMed]
- Bin Lee, A.R.Y.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.X.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of COVID-19 vaccines in immunocompromised patients: Systematic review and meta-analysis. BMJ 2022, 376, e068632. [Google Scholar] [CrossRef]
- Boretti, A. mRNA vaccine boosters and impaired immune system response in immunocompromised individuals: A narrative review. Clin. Exp. Med. 2024, 24, 23. [Google Scholar] [CrossRef]
- Evans, R.A.; Dube, S.; Lu, Y.; Yates, M.; Arnetorp, S.; Barnes, E.; Bell, S.; Carty, L.; Evans, K.; Graham, S.; et al. Impact of COVID-19 on immunocompromised populations during the Omicron era: Insights from the observational population-based INFORM study. Lancet Reg. Health Eur. 2023, 35, 100747. [Google Scholar] [CrossRef] [PubMed]
- Notarte, K.I.; Catahay, J.A.; Peligro, P.J.; Velasco, J.V.; Ver, A.T.; Guerrero, J.J.; Liu, J.; Lippi, G.; Benoit, S.W.; Henry, B.M.; et al. Humoral response in hemodialysis patients post-SARS-CoV-2 mRNA vaccination: A systematic review of literature. Vaccines 2023, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.P.; Hassler, H.B.; Sah, P.; Galvani, A.P.; Dornburg, A. The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2022, 119, e2204336119. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, P.S.; Lai, L.; Samaha, H.; Feng, Y.; Hu, M.; Hui, H.S.-Y.; Wali, B.; Ellis, M.; Davis-Gardner, M.E.; Huerta, C.; et al. Durability of immune responses to mRNA booster vaccination against COVID-19. J. Clin. Invest. 2023, 133, e167955. [Google Scholar] [CrossRef] [PubMed]
- Roper, L.E.; Godfrey, M.; Link-Gelles, R.; Moulia, D.L.; Taylor, C.A.; Peacock, G.; Brewer, N.; Brooks, O.; Kuchel, G.; Talbot, H.K.; et al. Use of Additional Doses of 2024–2025 COVID-19 Vaccine for Adults Aged ≥65 Years and Persons Aged ≥6 Months with Moderate or Severe Immunocompromise: Recommendations of the Advisory Committee on Immunization Practices — United States, 2024. MMWR Morb Mortal Wkly Rep 2024, 49, 1118–1123. [Google Scholar] [CrossRef]
- Rudan, I.; Adeloye, D.; Sheikh, A. COVID-19: Vaccines, efficacy and effects on variants. Curr. Opin. Pulm. Med. 2022, 28, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Xiao, S.; Debes, A.K.; Egbert, E.R.; Caturegli, P.; Colantuoni, E.; Milstone, A.M. Durability of antibody levels after vaccination with mRNA SARS-CoV-2 vaccine in individuals with or without prior infection. JAMA 2021, 326, 2524–2526. [Google Scholar] [CrossRef] [PubMed]
- Sarker, P.; Kuddusi, R.; Alam, M.M. Comparison of the immune responses to COVID-19 vaccines in Bangladeshi population. Vaccines 2022, 10, 1498. [Google Scholar] [CrossRef]
- Velásquez, S.R.; Biru, L.E.; Hakiza, S.M.; Al-Gobari, M.; Triulzi, I.; Dalal, J.; Varela, C.B.G.; Mesa, S.B.; Keiser, O. Long-term levels of protection of different types of immunity against the Omicron variant: A rapid literature review. Swiss Med. Wkly. 2024, 154, 3732. [Google Scholar] [CrossRef]
- Topalidou, X.; Kalergis, A.; Papazisis, G. Respiratory Syncytial Virus Vaccines: A Review of the Candidates and the Approved Vaccines. Pathogens 2023, 12, 1259. [Google Scholar] [CrossRef] [PubMed]
- Bliden, K.; Liu, T.; Sreedhar, D.; Tantry, U.; Kost, J.; Hsiung, J.; Zhao, S.; Shan, D.; Usman, A.; Walia, N.; et al. Evolution of Anti-SARS-CoV-2 IgG Antibody and IgG Avidity Post Pfizer and Moderna mRNA Vaccinations. Circulation 2021, 144, A12430. [Google Scholar] [CrossRef]
- Borko, T.L.; Selva, S.; Baxter, R.; Cabrera-Martinez, B.; Rester, C.; Sillau, S.; Pastula, D.M.; Sabalza, M.; Venkataraman, I.; Thiruppathi, E.; et al. An Observational Study on the Humoral and Cellular Immune Response to SARS-CoV-2 mRNA Vaccination in Multiple Sclerosis and Other Autoimmune Neurological Disorders Treated With Anti-CD20 Therapies. Neurology 2022, 99, S52–S53. [Google Scholar] [CrossRef]
- Jordan, E.; Lawrence, S.J.; Meyer, T.P.H.; Schmidt, D.; Schultz, S.; Mueller, J.; Stroukova, D.; Koenen, B.; Gruenert, R.; Silbernagl, G.; et al. Broad Antibody and Cellular Immune Response from a Phase 2 Clinical Trial with a Novel Multivalent Poxvirus Based RSV Vaccine. J. Infect. Dis. 2020, 223, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Tsagkli, P.; Geropeppa, M.; Papadatou, I.; Spoulou, V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines 2024, 12, 1051. [Google Scholar] [CrossRef] [PubMed]
- Pooley, N.; Karim, S.S.A.; Combadière, B.; Ooi, E.E.; Harris, R.C.; Seblain, C.E.G.; Kisomi, M.; Shaikh, N. Durability of vaccine-induced and natural immunity against COVID-19: A narrative review. Infect. Dis. Ther. 2023, 12, 367–387. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention, RSV Guidance for Older Adults. 30 August 2024. Available online: https://www.cdc.gov/rsv/hcp/vaccine-clinical-guidance/older-adults.html (accessed on December 2024).
- Pfizer. Pfizer Announces Positive Top-Line Data for Full Season Two Efficacy of ABRYSVO® for RSV in Older Adults. 29 February 2024. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-announces-positive-top-line-data-full-season-two (accessed on December 2024).
- Swathi, M. Arexvy: A comprehensive review of the respiratory syncytial virus vaccine for revolutionary protection. Viral Immunol. 2024, 37, 12–15. [Google Scholar] [CrossRef]
- Orders, M. A New RSV Vaccine (mResvia) for Adults ≥ 60 Years Old. Med. Lett. Drugs Ther. 2024, 66, 166–168. [Google Scholar] [CrossRef]
- Shaw, C.A.; Essink, B.; Harper, C.; Mithani, R.; Kapoor, A.; Dhar, R.; Wilson, L.; Guo, R.; Panozzo, C.A.; Wilson, E.; et al. Safety and Immunogenicity of an MRNA-Based RSV Vaccine Including a 12-Month Booster in a Phase 1 Clinical Trial in Healthy Older Adults. J. Infect. Dis. 2024, 230, e647–e656. [Google Scholar] [CrossRef]
- De, C.; Pickles, R.J.; Yao, W.; Liao, B.; Boone, A.; Choi, M.; Battaglia, D.M.; Askin, F.B.; Whitmire, J.K.; Silvestri, G.; et al. Human T cells efficiently control RSV infection. JCI Insight 2023, 8, 168110. [Google Scholar] [CrossRef]
- Guerrera, G.; Picozza, M.; D’orso, S.; Placido, R.; Pirronello, M.; Verdiani, A.; Termine, A.; Fabrizio, C.; Giannessi, F.; Sambucci, M.; et al. BNT162b2 vaccination induces durable SARS-CoV-2–specific T cells with a stem cell memory phenotype. Sci. Immunol. 2021, 6, eabl5344. [Google Scholar] [CrossRef]
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021, 374, abm0829. [Google Scholar] [CrossRef] [PubMed]
- Endt, K.; Wollmann, Y.; Haug, J.; Bernig, C.; Feigl, M.; Heiseke, A.; Kalla, M.; Hochrein, H.; Suter, M.; Chaplin, P.; et al. A recombinant MVA-based RSV vaccine induces T-cell and antibody responses that cooperate in the protection against RSV infection. Front. Immunol. 2022, 13, 841471. [Google Scholar] [CrossRef]
- Levandowski, R. Regulatory perspective in the United States on cell cultures for production of inactivated influenza virus vaccines. Dev. Biol. Stand. 1999, 98, 171–175. Available online: https://europepmc.org/article/med/10494970 (accessed on 1 December 2024).
- Herrera-Rodriguez, J.; Signorazzi, A.; Holtrop, M.; de Vries-Idema, J.; Huckriede, A. Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production. Vaccine 2019, 37, 1630–1637. [Google Scholar] [CrossRef]
- Mandon, E.D.; Pizzorno, A.; Traversier, A.; Champagne, A.; Hamelin, M.E.; Lina, B.; Boivin, G.; Dejean, E.; Rosa-Calatrava, M.; Jawhari, A. Novel calixarene-based surfactant enables low dose split inactivated vaccine protection against influenza infection. Vaccine 2020, 38, 278–287. [Google Scholar] [CrossRef]
- Young, B.; Sadarangani, S.; Jiang, L.; Wilder-Smith, A.; Chen, M.I.-C. Duration of influenza vaccine effectiveness: A systematic review, meta-analysis, and meta-regression of test-negative design case-control studies. J. Infect. Dis. 2018, 217, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Cordeiro, M.; Sevilla, E.; Liu, J. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine. Vaccine 2010, 28, 3848–3855. [Google Scholar] [CrossRef] [PubMed]
- Nichol, K.L.; Treanor, J.J. Vaccines for seasonal and pandemic influenza. J. Infect. Dis. 2006, 194 (Suppl. S2), S111–S118. [Google Scholar] [CrossRef]
- Stanley, W.M. The preparation and properties of influenza virus vaccines concentrated and purified by differential centrifugation. J. Exp. Med. 1945, 81, 193–218. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.H.; Hauguel, T.; Beitelshees, M.; Davitt, M.; Welch, V.; Lindert, K.; Allen, P.; True, J.M.; Dolsten, M. Deciphering immune responses: A comparative analysis of influenza vaccination platforms. Drug Discov. Today 2024, 29, 104125. [Google Scholar] [CrossRef]
- Cox, M. Cell-based protein vaccines for influenza. Curr. Opin. Mol. Ther. 2005, 7, 24–29. [Google Scholar] [PubMed]
- Sarsenbayeva, G.; Volgin, Y.; Kassenov, M.; Issagulov, T.; Bogdanov, N.; Sansyzbay, A.; Stukova, M.; Buzitskaya, Z.; Kulmagambetov, I.; Davlyatshin, T.; et al. Immunogenicity and safety of a novel seasonal influenza preservative-free vaccine manufactured in Kazakhstan: Results of a randomized, comparative, phase II clinical trial in adults. Hum. Vaccin. Immunother. 2018, 14, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Dormitzer, P.R.; Suphaphiphat, P.; Gibson, D.G.; Wentworth, D.E.; Stockwell, T.B.; Algire, M.A.; Alperovich, N.; Barro, M.; Brown, D.M.; Craig, S.; et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci. Transl. Med. 2013, 5, 185ra68. [Google Scholar] [CrossRef] [PubMed]
- Gerdil, C. The annual production cycle for influenza vaccine. Vaccine 2003, 21, 1776–1779. [Google Scholar] [CrossRef] [PubMed]
- Bissinger, T.; Wu, Y.; Marichal-Gallardo, P.; Riedel, D.; Liu, X.; Genzel, Y.; Tan, W.; Reichl, U. Towards integrated production of an influenza A vaccine candidate with MDCK suspension cells. Biotechnol. Bioeng. 2021, 118, 3996–4013. [Google Scholar] [CrossRef] [PubMed]
- Ciabattini, A.; Pastore, G.; Fiorino, F.; Polvere, J.; Lucchesi, S.; Pettini, E.; Auddino, S.; Rancan, I.; Durante, M.; Miscia, M.; et al. Evidence of SARS-CoV-2-specific memory B cells six months after vaccination with the BNT162b2 mRNA vaccine. Front. Immunol. 2021, 12, 740708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, W.; Li, J.; Chen, M.; Li, Q.; Lv, M.; Zhou, S.; Bai, S.; Wang, Y.; Zhang, L.; et al. Status of humoral and cellular immune responses within 12 months following CoronaVac vaccination against COVID-19. mBio 2022, 13, e0018122. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.W.; Jackson, K.J.L.; McCausland, M.M.; Darce, J.; Chang, C.; Linderman, S.L.; Chennareddy, C.; Gerkin, R.; Brown, S.J.; Wrammert, J.; et al. Influenza vaccine–induced human bone marrow plasma cells decline within a year after vaccination. Science 2020, 370, 237–241. [Google Scholar] [CrossRef]
- Coughlan, L.; Sridhar, S.; Payne, R.; Edmans, M.; Milicic, A.; Venkatraman, N.; Lugonja, B.; Clifton, L.; Qi, C.; Folegatti, P.M.; et al. Heterologous two-dose vaccination with simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus A in healthy adults. EBioMedicine 2018, 29, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, B.; Madhi, S.A.; Munjal, I.; Simões, E.A.; Pahud, B.A.; Llapur, C.; Baker, J.; Marc, G.P.; Radley, D.; Shittu, E.; et al. Bivalent prefusion F vaccine in pregnancy to prevent RSV illness in infants. N. Engl. J. Med. 2023, 388, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Sherina, N.; Piralla, A.; Du, L.; Wan, H.; Kumagai-Braesch, M.; Andréll, J.; Braesch-Andersen, S.; Cassaniti, I.; Percivalle, E.; Sarasini, A.; et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6–8 months after the infection. Med 2021, 2, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Pitiriga, V.C.; Papamentzelopoulou, M.; Konstantinakou, K.E.; Vasileiou, I.V.; Sakellariou, K.S.; Spyrou, N.I.; Tsakris, A. Persistence of T-Cell Immunity Responses against SARS-CoV-2 for over 12 Months Post COVID-19 Infection in Unvaccinated Individuals with No Detectable IgG Antibodies. Vaccines 2023, 11, 1764. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Begom, S.; Hoschler, K.; Bermingham, A.; Adamson, W.; Carman, W.; Riley, S.; Lalvani, A. Longevity and determinants of protective humoral immunity after pandemic influenza infection. Am. J. Respir. Crit. Care Med. 2015, 191, 325–332. [Google Scholar] [CrossRef]
- Ranjeva, S.; Subramanian, R.; Fang, V.J.; Leung, G.M.; Ip, D.K.M.; Perera, R.A.P.M.; Peiris, J.S.M.; Cowling, B.J.; Cobey, S. Age-specific differences in the dynamics of protective immunity to influenza. Nat. Commun. 2019, 10, 1660. [Google Scholar] [CrossRef] [PubMed]
- Blunck, B.N.; Angelo, L.S.; Henke, D.; Avadhanula, V.; Cusick, M.; Ferlic-Stark, L.; Zechiedrich, L.; Gilbert, B.E.; Piedra, P.A. Adult memory T cell responses to the respiratory syncytial virus fusion protein during a single RSV season (2018–2019). Front. Immunol. 2022, 13, 823652. [Google Scholar] [CrossRef]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; Atti, A.; Wellington, E.; Khawam, J.; Munro, K.; Cole, M.; et al. Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N. Engl. J. Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Y.; Goldberg, Y.; Mandel, M.; Mandel, M.; Bar-On, Y.M.; Bar-On, Y.M.; Bodenheimer, O.; Bodenheimer, O.; Freedman, L.S.; Freedman, L.S.; et al. Protection and waning of natural and hybrid immunity to SARS-CoV-2. N. Engl. J. Med. 2022, 386, 2201–2212. [Google Scholar] [CrossRef]
- Mazzoni, A.; Di Lauria, N.; Maggi, L.; Salvati, L.; Vanni, A.; Capone, M.; Lamacchia, G.; Mantengoli, E.; Spinicci, M.; Zammarchi, L.; et al. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID-19. J. Clin. Invest. 2021, 131, 149150. [Google Scholar] [CrossRef]
- Bonduelle, O.; Carrat, F.; Luyt, C.-E.; Leport, C.; Mosnier, A.; Benhabiles, N.; Krivine, A.; Rozenberg, F.; Yahia, N.; Samri, A.; et al. Characterization of pandemic influenza immune memory signature after vaccination or infection. J. Clin. Invest. 2014, 124, 3129–3136. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cho, H.K.; Kim, K.H.; Lee, J.; Kim, Y.-J.; Eun, B.W.; Kim, N.H.; Kim, D.H.; Jo, D.S.; Kim, H.M.; et al. Evaluation of waning immunity at 6 months after both trivalent and quadrivalent influenza vaccination in Korean children aged 6–35 months. J. Korean Med. Sci. 2019, 34, e279. [Google Scholar] [CrossRef] [PubMed]
- Szekanecz, Z.; Vokó, Z.; Surján, O.; Rákóczi, É.; Szamosi, S.; Szűcs, G.; Szekanecz, É.; Müller, C.; Kiss, Z. Effectiveness and waning of protection with the BNT162b2 vaccine against the SARS-CoV-2 Delta variant in immunocompromised individuals. Front. Immunol. 2023, 14, 1247129. [Google Scholar] [CrossRef] [PubMed]
- Reeg, D.B.; Hofmann, M.; Neumann-Haefelin, C.; Thimme, R.; Luxenburger, H. SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants. Pathogens 2023, 12, 244. [Google Scholar] [CrossRef] [PubMed]
- Sjöwall, J.; Hjorth, M.; Gustafsson, A.; Göransson, R.; Larsson, M.; Waller, H.; Nordgren, J.; Nilsdotter-Augustinsson, Å.; Nyström, S. SARS-CoV-2 specific antibody response and T cell-immunity in immunocompromised patients up to six months post COVID: A pilot study. J. Clin. Med. 2022, 11, 3535. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Ahn, B.; Choi, S.; Kim, Y.J.; Kang, K.R.; Kang, H.; Kang, J.H. Duration of antibodies after immunization with the quadrivalent influenza vaccine in children after hematopoietic stem cell transplantation or chemotherapy compared to healthy children. Open Forum Infect. Dis. 2023, 10, 1551. [Google Scholar] [CrossRef]
- Felldin, M.; Andersson, B.; Studahl, M.; Svennerholm, B.; Friman, V. Antibody persistence 1 year after pandemic H1N1 2009 influenza vaccination and immunogenicity of subsequent seasonal influenza vaccine among adult organ transplant patients. Transpl. Int. 2014, 27, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, H.; Durkee-Shock, J.; Jensen-Wachspress, M.; Kankate, V.V.; Lang, H.; Lazarski, C.A.; Keswani, A.; Webber, K.C.; Montgomery-Recht, K.; Walkiewicz, M.; et al. Robust antibody and T cell responses to SARS-CoV-2 in patients with antibody deficiency. J. Clin. Immunol. 2021, 41, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Vigón, L.; Sánchez-Tornero, A.; Rodríguez-Mora, S.; García-Pérez, J.; de Lapuerta, M.C.; Pérez-Lamas, L.; Casado-Fernández, G.; Moreno, G.; Torres, M.; Mateos, E.; et al. Strong Cellular Immune Response, but Not Humoral, against SARS-CoV-2 in Oncohematological Patients with Autologous Stem Cell Transplantation after Natural Infection. J. Clin. Med. 2022, 11, 2137. [Google Scholar] [CrossRef] [PubMed]
- Søfteland, J.M.; Gisslén, M.; Liljeqvist, J.; Friman, V.; de Coursey, E.; Karason, K.; Ekelund, J.; Felldin, M.; Magnusson, J.; Baid-Agrawal, S.; et al. Longevity of anti-spike and anti-nucleocapsid antibodies after COVID-19 in solid organ transplant recipients compared to immunocompetent controls. Am. J. Transplant. 2022, 22, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Hirzel, C.; Ferreira, V.H.; L’huillier, A.G.; Hoschler, K.; Cordero, E.; Limaye, A.P.; Englund, J.A.; Reid, G.; Humar, A.; Kumar, D. Humoral response to natural influenza infection in solid organ transplant recipients. Am. J. Transplant. 2019, 19, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Krantz, E.M.; Andrews, C.; Yahya, K.; Stevens-Ayers, T.L.; Ogimi, C.; Englund, J.A.; Martin, E.T.; Boeckh, M.J.; Waghmare, A. Respiratory syncytial virus (RSV) pre-fusion F antibody titers in hematopoietic cell transplant recipients with upper versus lower respiratory tract infections. Open Forum Infect. Dis. 2023, 10, ofad500.2323. [Google Scholar] [CrossRef]
- Nazaruk, P.; Tkaczyk, I.; Monticolo, M.; Jędrzejczak, A.M.; Krata, N.; Pączek, L.; Foroncewicz, B.; Mucha, K. Hybrid Immunity Provides the Best COVID-19 Humoral Response in Immunocompromised Patients with or without SARS-CoV-2 Infection History. Vaccines 2023, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
- Rabenstein, M.; Thomas, O.G.; Carlin, G.; Khademi, M.; Högelin, K.A.; Malmeström, C.; Axelsson, M.; Brandt, A.F.; Gafvelin, G.; Grönlund, H.; et al. The impact of hybrid immunity on immune responses after SARS-CoV-2 vaccination in persons with multiple sclerosis treated with disease-modifying therapies. Eur. J. Neurol. 2023, 30, 3789–3798. [Google Scholar] [CrossRef]
- Ekström, N.; Leino, T.M.; Juutinen, A.; Lehtonen, T.; Haveri, A.; Liedes, O.; Vara, S.; Salo, H.; Palmu, A.A.; Nohynek, H.; et al. Hybrid Immunity Improves the Immune Response after the Fourth COVID-19 Vaccine Dose in Individuals with Medical Conditions Predisposing to Severe COVID-19. Vaccines 2024, 12, 247. [Google Scholar] [CrossRef] [PubMed]
- Al-Dury, S.; Waldenström, J.; Ringlander, J.; Einarsdottir, S.; Andersson, M.; Hamah Saed, H.; Waern, J.; Martner, A.; Hellstrand, K.; Lagging, M. Catch-up antibody responses and hybrid immunity in mRNA vaccinated patients at risk of severe COVID-19. Infect. Dis. 2023, 55, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Mehta, L.; Umans, K.; Ozen, G.; Robinson, R.R.; Elkins, J. Immune Response to Seasonal Influenza Vaccine in Patients with Relapsing-Remitting Multiple Sclerosis Receiving Long-term Daclizumab Beta: A Prospective, Open-Label, Single-Arm Study. Int. J. MS Care 2017, 19, 141–147. [Google Scholar] [CrossRef] [PubMed]
- See, K.C. Vaccination for the Prevention of Infection among Immunocompromised Patients: A Concise Review of Recent Systematic Reviews. Vaccines 2022, 10, 800. [Google Scholar] [CrossRef]
- Weisser, M. Vaccination in immunocompromised patients. Praxis 2007, 96, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Rethinking next-generation vaccines for coronaviruses, influenza viruses, and other respiratory viruses. Cell Host Microbe 2023, 31, 146–157. [Google Scholar] [CrossRef]
- Allie, S.R.; Randall, T.D. Pulmonary immunity to viruses. Clin. Sci. 2017, 131, 1737–1762. [Google Scholar] [CrossRef] [PubMed]
- Livieratos, A.; Gogos, C.; Akinosoglou, K. SARS-CoV-2 Variants and Clinical Outcomes of Special Populations: A Scoping Review of the Literature. Viruses 2024, 16, 1222. [Google Scholar] [CrossRef]
- Holmgren, J. Mucosal immunity and vaccination. FEMS Microbiol. Immunol. 1991, 4, 1–9. [Google Scholar] [CrossRef]
- Livieratos, A.; Gogos, C.; Akinosoglou, K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024, 16, 685. [Google Scholar] [CrossRef] [PubMed]
- Siggins, M.K.; Thwaites, R.S.; Openshaw, P.J.M. Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses. Trends Microbiol. 2021, 29, 648–662. [Google Scholar] [CrossRef]
- Ascough, S.; Paterson, S.; Chiu, C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front. Immunol. 2018, 9, 323. [Google Scholar] [CrossRef] [PubMed]
- Orzechowska, B.; Antoszków, Z.; Siemieniec, I.; Lorenc, M.; Jatczak, B.; Błach-Olszewska, Z. Cytokine production by human leukocytes with different expressions of natural antiviral immunity and the effect of antibodies against interferons and TNF-alpha. Arch. Immunol. Ther. Exp. 2007, 55, 111–117. [Google Scholar] [CrossRef]
- Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef]
- Ilyicheva, T.N.; Netesov, S.V.; Gureyev, V.N. COVID-19, Influenza, and Other Acute Respiratory Viral Infections: Etiology, Immunopathogenesis, Diagnosis, and Treatment. Part 2. Other Acute Respiratory Viral Infections. Mol. Genet. Microbiol. Virol. 2022, 37, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Stambas, J.; Lu, C.; Tripp, R.A. Innate and adaptive immune responses in respiratory virus infection: Implications for the clinic. Expert. Rev. Respir. Med. 2020, 14, 1141–1147. [Google Scholar] [CrossRef]
- Franchi, M.; Pellegrini, G.; Cereda, D.; Bortolan, F.; Leoni, O.; Pavesi, G.; Galli, M.; Valenti, G.; Corrao, G. Natural and vaccine-induced immunity are equivalent for the protection against SARS-CoV-2 infection. J. Infect. Public. Health 2023, 16, 1137–1141. [Google Scholar] [CrossRef]
- Mahrokhian, S.H.; Tostanoski, L.H.; Vidal, S.J.; Barouch, D.H. COVID-19 vaccines: Immune correlates and clinical outcomes. Hum. Vaccin. Immunother. 2024, 20, 2324549. [Google Scholar] [CrossRef] [PubMed]
- Rajanala, K.; Upadhyay, A.K. Vaccines for Respiratory Viruses-COVID and Beyond. Vaccines 2024, 12, 936. [Google Scholar] [CrossRef] [PubMed]
Included Studies | Disease | Sample Size (n) | Study Design | Vaccine Type | Durability of Adaptive Immunity | Immunity Assessment |
---|---|---|---|---|---|---|
Vaccine-induced Immunity | ||||||
Ciabattini, A. 2021 (Italy) [49] | SARS-CoV-2 | 145 | Longitudinal Cohort Study | BNT162b2 mRNA Vaccine | 6 months | Memory B cell response |
Zhao, W. et al. 2022 (China) [50] | SARS-CoV-2 | 150 | Longitudinal Observational Study | CoronaVac, Inactivated COVID-19 Vaccine | <12 months | Binding and neutralizing antibody levels, cytokine production, and memory T cells |
Davies, C. W. et al. 2020 (USA) [51] | Influenza | 53 | Longitudinal Study | Inactivated Influenza Vaccine | <12 Months | Bone marrow plasma cells, antibody response, and antibody-secreting cells |
Coughlan, L. et al. 2018 (UK) [52] | Influenza | 73 | Phase 1 Randomized Trial | Chimpanzee Adenovirus Vector Vaccine and Modified Vaccinia Ankara Vector Vaccine | 18 months | T cell response |
Kampmann, B. et al. 2023 (USA) [53] | RSV | 3570 | Clinical Trial | RSVpreF Vaccine, Bivalent Prefusion F Protein-Based Vaccine | 6 months | Time until infection |
Natural Immunity | ||||||
Sherina, N. et al. 2021 (Sweden) [54] | SARS-CoV-2 | 88 | Observational study | N/A | 6–8 months | Antibody levels, memory B cells, CD8+ T cells, and CD4+ T cells |
Pitiriga, V. C. et al. 2023 (Greece) [55] | SARS-CoV-2 | 182 | Retrospective Cohort Study | N/A | >12 months | T-cell response |
Sridhar, S. et al. 2014 (UK) [56] | Influenza | 53 | Observational study | N/A | >15 months | Hemagglutination-inhibition antibody levels |
Ranjeva, S. et al. 2019 (USA) [57] | Influenza | 706 | Retrospective Cohort Study | N/A | 50% reduction after 3.5–7 years | Hemagglutination AB levels |
Blunck, B. N. et al. 2022 (USA) [58] | RSV | 19 | Prospective Cohort Study | N/A | 3–4 months | Memory T cell response |
Hybrid Immunity | ||||||
Hall, V. et al. 2022 (UK) [59] | SARS-CoV-2 | 35,768 | Prospective Cohort Study | BNT162b2 mRNA Vaccine ChAdOx1 nCoV-19 Vaccine | 51% after 6 months | Repeat PCR-confirmed infections |
Goldberg, Y. et al. 2022 (Israel) [60] | SARS-CoV-2 | 5,724,810 | Retrospective Cohort Study | BNT162b2 mRNA Vaccine | 2–6 months | Repeat PCR-confirmed infections |
Mazzoni, A. et al. 2021 (Italy) [61] | SARS-CoV-2 | 22 | Observational Study | BNT162b2 mRNA Vaccine | >50 days | antibody levels and T cell activity |
Bonduelle, O. et al. 2014 (France) [62] | Influenza | 50 | Observational study | A(H1N1)pdm09 Adjuvanted Influenza Vaccine | 12 months | antibody levels and T-cell response |
Lee, J. H. et al. 2019 (Korea) [63] | Influenza | 124 | Observational study | Quadrivalent Inactivated Subunit Influenza Vaccine | 6 months | Hemagglutination antibody levels |
Included Studies | Disease | Sample Size (n) | Immunodeficiency | Study Design | Vaccine Type | Durability of Adaptive Immunity | Immunity Assessment |
---|---|---|---|---|---|---|---|
Vaccine-induced Immunity | |||||||
Szekanecz, Z. et al. 2023 (Hungary) [64] | SARS-CoV-2 | 6,391,634 | Hematological malignancies, solid organ transplants, immunosuppressive therapy, and primary immunodeficiency | Observational Study | BNT162b2 mRNA Vaccine | 3–6 months, improved with booster | Rate of confirmed infection and death |
Reeg, D. B. et al. 2023 (Germany) [65] | SARS-CoV-2 | 279 | Cancer, HIV-positive, solid organ Transplant, and immunosuppressive therapy | Observational Cohort Study | BNT162b2 mRNA Vaccine | 6 months | T cell assay |
Sjöwall, J. et al. 2022 (Sweden) [66] | SARS-CoV-2 | 12 | Hematological malignancy, spondyloarthritis, solid organ transplant, and immunosuppressive therapy | Prospective Cohort Study | BNT162b2 mRNA Vaccine ChAdOx1 nCoV-19 | 0–6 months | Spike protein antibody levels, interferon-gamma secretion, and T-cell activation |
Cho, Y. K. et al. 2023 (Korea) [67] | Influenza | 60 | Post-hematopoietic stem cell transplantation and post-chemotherapy | Prospective Study | Quadrivalent Inactivated Subunit Influenza Vaccine | <6 months | Hemagglutination inhibition antibody levels |
Felldin, M. et al. 2014 (Sweden) [68] | Influenza | 49 | Solid organ transplant and immunosuppressive therapy | Prospective Cohort Study | AS03-Adjuvanted Influenza A(H1N1)pdm09 vaccineTrivalent Inactivated Subunit Influenza Vaccine (TIV/10) | <1 year | Hemagglutination inhibition antibody levels |
Natural Immunity | |||||||
Kinoshita, H. et al. 2021 (USA) [69] | SARS-CoV-2 | 5 | Primary antibody deficiency | Observational Study | N/A | 3 months | Spike protein antibody levels and T-cell activation |
Vigón, L. et al. 2022 (Spain) [70] | SARS-CoV-2 | 9 | Common variable immunodeficiency, hematological malignancy, immunosuppressive therapy | Observational Cohort Study | N/A | 2 months | Spike protein antibody levels, cytokine secretion, and T-cell activation |
Søfteland, J. M. et al. 2021 (Sweden) [71] | SARS-CoV-2 | 65 | Chronic immunosuppressive therapy and solid organ transplant | Longitudinal Observational Study | N/A | 9 months | Spike protein antibody levels, interferon-gamma secretion, and T-cell activation |
Hirzel, C. et al. 2019 (Canada) [72] | Influenza | 196 | Solid organ transplant | Prospective Cohort Study | N/A | 4-week antibody response | Haemagglutinin inhibiting antibody response |
Kim, S. R. et al. 2023 (USA) [73] | RSV | 39 | Hematopoietic cell transplant | Observational Study | N/A | 2 months | Pre-fusion F antibody titers |
Hybrid Immunity | |||||||
Nazaruk, P. et al. 2023 (Poland) [74] | SARS-CoV-2 | 118 | Common variable immunodeficiency, X-linked agammaglobulinemia, and immunosuppressive therapy | Observational Study | BNT162b2 mRNA Vaccine | 8 months | Spike protein antibody levels, interferon-gamma secretion, and T-cell activation |
Rabenstein, M. et al. 2023 (Sweden) [75] | SARS-CoV-2 | 98 | Multiple sclerosis, neuromyelitis optica spectrum disorder, and immunosuppressive therapy | Cohort study | BNT162b2 mRNA Vaccine mRNA-1273 | <6 months | Spike protein antibody levels, interferon-gamma secretion, and T-cell activation |
Ekström, N., et al. 2023 (Finland) [76] | SARS-CoV-2 | 488 | Common variable immunodeficiency, solid organ transplant, hematological malignancy, and immunosuppressive therapy | Observational Cohort Study | BNT162b2 mRNA Vaccine mRNA-1273 | <6 months | Spike protein antibody levels, interferon-gamma secretion, and T-cell activation |
Al-Dury, S. et al. 2023 (Sweden) [77] | SARS-CoV-2 | 98 | Rheumatoid arthritis, systemic lupus erythematosus, Psoriatic arthritis, and immunosuppressive therapy | Observational Study | BNT162b2 mRNA Vaccine mRNA-1273 | >6 months | Spike protein antibody levels, interferon-gamma secretion, and T-cell activation |
Mehta, L. et al. 2017 (USA) [78] | Influenza | 90 | Relapsing-remitting multiple sclerosis | Prospective Cohort Study | Trivalent Iinactivated Subunit Influenza Vaccine | >28 days | Seroprotection and seroconversion rates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livieratos, A.; Schiro, L.E.; Gogos, C.; Akinosoglou, K. Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2. Vaccines 2024, 12, 1444. https://doi.org/10.3390/vaccines12121444
Livieratos A, Schiro LE, Gogos C, Akinosoglou K. Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2. Vaccines. 2024; 12(12):1444. https://doi.org/10.3390/vaccines12121444
Chicago/Turabian StyleLivieratos, Achilleas, Lars Erik Schiro, Charalambos Gogos, and Karolina Akinosoglou. 2024. "Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2" Vaccines 12, no. 12: 1444. https://doi.org/10.3390/vaccines12121444
APA StyleLivieratos, A., Schiro, L. E., Gogos, C., & Akinosoglou, K. (2024). Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2. Vaccines, 12(12), 1444. https://doi.org/10.3390/vaccines12121444