The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV
Abstract
:1. Introduction
2. Induction of Antibody-Secreting Plasma Cells and Memory B Cells
3. HIV-Induced Defects and Perturbations in the B Cell Compartment
4. Impact of Anti-Retroviral Therapy (ART) on B Cells in PWH
5. CD4+ T Cell Help for B Cells in PWH
6. PWH’s Responses to COVID-19 Vaccines
7. Potential Strategies for Improving Vaccine-Induced Immune Responses
8. Conclusions
- HIV causes intense polyclonal activation of B cells, resulting in hypergammaglobulinemia, perturbations and functional defects in all B cell subsets.
- It also causes the expansion of TFH; however, the expanded TFH become functionally defective in providing help to B cells.
- It causes global defects in memory B cells and induces the appearance of atypical memory B cells.
- The virus drives the maturation and differentiation of activated B cells via the extrafollicular pathway.
- ART normalizes these perturbations and restores cell functionality in TFH inadequately, especially when started late.
- Early ART restores most of the defects and perturbations in various B cell subsets; however, the cells remain in a heightened state of activation and exhaustion in PWH.
- Anti-COVID-19 vaccines are, in general, safe and well tolerated, as well as immunogenic, in PWH unless they are viremic and immune non-responders (CD4+ T cell counts < 350 per mm3).
- Three vaccine doses provide virus-neutralizing antibodies of higher magnitude, more durability and breadth (cross-reactivity with novel variants) as compared to two doses.
- Vaccination induces more robust humoral responses in PWH with prior exposure to SARS-CoV-2, highlighting the beneficial effects of hybrid immunity.
- Live attenuated vaccines are considered risky and are not recommended in PWH. However, in immune responders with improved immune status (CD4+ T cell counts >500 cells per mm3), potential benefits from such vaccines may outweigh the risks.
- More fundamental research is needed to find novel ways of reducing inflammation, exhaustion and aberrant activation in B cell and TFH compartments in PWH.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Su, B.; Zhang, X.; Liu, Y.; Wu, H.; Zhang, T. Incomplete Immune Reconstitution in HIV/AIDS Patients on Antiretroviral Therapy: Challenges of Immunological Non-Responders. J. Leukoc. Biol. 2020, 107, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Korencak, M.; Byrne, M.; Richter, E.; Schultz, B.T.; Juszczak, P.; Ake, J.A.; Ganesan, A.; Okulicz, J.F.; Robb, M.L.; de Los Reyes, B.; et al. Effect of HIV Infection and Antiretroviral Therapy on Immune Cellular Functions. JCI Insight 2019, 4, e126675. [Google Scholar] [CrossRef] [PubMed]
- Serrão, R.; Piñero, C.; Velez, J.; Coutinho, D.; Maltez, F.; Lino, S.; Sarmento, E.; Castro, R.; Tavares, A.P.; Pacheco, P.; et al. Non-AIDS-Related Comorbidities in People Living with HIV-1 Aged 50 Years and Older: The AGING POSITIVE Study. Int. J. Infect. Dis. 2019, 79, 94–100. [Google Scholar] [CrossRef]
- Warriner, A.H.; Burkholder, G.A.; Overton, E.T. HIV-Related Metabolic Comorbidities in the Current ART Era. Infect. Dis. Clin. N. Am. 2014, 28, 457–476. [Google Scholar] [CrossRef]
- Samaha, H.; Yigitkanli, A.; Naji, A.; Kazzi, B.; Tanios, R.; Dib, S.M.; Ofotokun, I.; Rouphael, N. Burden of Vaccine-Preventable Diseases in People Living with HIV. Vaccines 2024, 12, 780. [Google Scholar] [CrossRef]
- De Vito, A.; Colpani, A.; Trunfio, M.; Fiore, V.; Moi, G.; Fois, M.; Leoni, N.; Ruiu, S.; Babudieri, S.; Calcagno, A.; et al. Living with HIV and Getting Vaccinated: A Narrative Review. Vaccines 2023, 11, 896. [Google Scholar] [CrossRef]
- Cotugno, N.; De Armas, L.; Pallikkuth, S.; Rinaldi, S.; Issac, B.; Cagigi, A.; Rossi, P.; Palma, P.; Pahwa, S. Perturbation of B Cell Gene Expression Persists in HIV-Infected Children Despite Effective Antiretroviral Therapy and Predicts H1N1 Response. Front. Immunol. 2017, 8, 1083. [Google Scholar] [CrossRef]
- Gitlin, A.D.; Nussenzweig, M.C. Immunology: Fifty Years of B Lymphocytes. Nature 2015, 517, 139–141. [Google Scholar] [CrossRef]
- Morgan, D.; Tergaonkar, V. Unraveling B Cell Trajectories at Single Cell Resolution. Trends Immunol. 2022, 43, 210–229. [Google Scholar] [CrossRef]
- Carsetti, R.; Rosado, M.M.; Wardmann, H. Peripheral Development of B Cells in Mouse and Man. Immunol. Rev. 2004, 197, 179–191. [Google Scholar] [CrossRef]
- Diks, A.M.; Overduin, L.A.; Van Leenen, L.D.; Slobbe, L.; Jolink, H.; Visser, L.G.; Van Dongen, J.J.M.; Berkowska, M.A. B-Cell Immunophenotyping to Predict Vaccination Outcome in the Immunocompromised—A Systematic Review. Front. Immunol. 2021, 12, 690328. [Google Scholar] [CrossRef] [PubMed]
- Syeda, M.Z.; Hong, T.; Huang, C.; Huang, W.; Mu, Q. B Cell Memory: From Generation to Reactivation: A Multipronged Defense Wall against Pathogens. Cell Death Discov. 2024, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Kurosaki, T. Memory B Cells. Nat. Rev. Immunol. 2024, 24, 5–17. [Google Scholar] [CrossRef]
- Elsner, R.A.; Shlomchik, M.J. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2020, 53, 1136–1150. [Google Scholar] [CrossRef]
- Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 2019, 50, 1132–1148. [Google Scholar] [CrossRef]
- Moir, S.; Fauci, A.S. Pathogenic Mechanisms of B-Lymphocyte Dysfunction in HIV Disease. J. Allergy Clin. Immunol. 2008, 122, 12–19. [Google Scholar] [CrossRef]
- Patel, A.M.; Liu, Y.S.; Davies, S.P.; Brown, R.M.; Kelly, D.A.; Scheel-Toellner, D.; Reynolds, G.M.; Stamataki, Z. The Role of B Cells in Adult and Paediatric Liver Injury. Front. Immunol. 2021, 12, 729143. [Google Scholar] [CrossRef]
- Townsley-Fuchs, J.; Neshat, M.S.; Margolin, D.H.; Braun, J.; Goodglick, L. HIV-1 Gp120: A Novel Viral B Cell Superantigen. Int. Rev. Immunol. 1997, 14, 325–338. [Google Scholar] [CrossRef]
- Moir, S.; Fauci, A.S. B Cells in HIV Infection and Disease. Nat. Rev. Immunol. 2009, 9, 235–245. [Google Scholar] [CrossRef]
- Jelicic, K.; Cimbro, R.; Nawaz, F.; Huang, D.W.; Zheng, X.; Yang, J.; Lempicki, R.A.; Pascuccio, M.; Van Ryk, D.; Schwing, C.; et al. The HIV-1 Envelope Protein Gp120 Impairs B Cell Proliferation by Inducing TGF-Β1 Production and FcRL4 Expression. Nat. Immunol. 2013, 14, 1256–1265. [Google Scholar] [CrossRef]
- Qiao, X.; He, B.; Chiu, A.; Knowles, D.M.; Chadburn, A.; Cerutti, A. Human Immunodeficiency Virus 1 Nef Suppresses CD40-Dependent Immunoglobulin Class Switching in Bystander B Cells. Nat. Immunol. 2006, 7, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Santini, P.A.; Sullivan, J.S.; He, B.; Shan, M.; Ball, S.C.; Dyer, W.B.; Ketas, T.J.; Chadburn, A.; Cohen-Gould, L.; et al. HIV-1 Evades Virus-Specific IgG2 and IgA Responses by Targeting Systemic and Intestinal B Cells via Long-Range Intercellular Conduits. Nat. Immunol. 2009, 10, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Kardava, L.; Moir, S.; Wang, W.; Ho, J.; Buckner, C.M.; Posada, J.G.; O’Shea, M.A.; Roby, G.; Chen, J.; Sohn, H.W.; et al. Attenuation of HIV-Associated Human B Cell Exhaustion by siRNA Downregulation of Inhibitory Receptors. J. Clin. Investig. 2011, 121, 2614–2624. [Google Scholar] [CrossRef]
- Sciaranghella, G.; Tong, N.; Mahan, A.E.; Suscovich, T.J.; Alter, G. Decoupling Activation and Exhaustion of B Cells in Spontaneous Controllers of HIV Infection. AIDS 2013, 27, 175–180. [Google Scholar] [CrossRef]
- Koncz, G.; Hueber, A.-O. The Fas/CD95 Receptor Regulates the Death of Autoreactive B Cells and the Selection of Antigen-Specific B Cells. Front. Immun. 2012, 3, 207. [Google Scholar] [CrossRef]
- Jia, J.; Zhao, Y.; Yang, J.-Q.; Lu, D.-F.; Zhang, X.-L.; Mao, J.-H.; Wang, K.-H.; Wang, J.-H.; Kuang, Y.-Q. Naïve B Cells with Low Differentiation Improve the Immune Reconstitution of HIV-Infected Patients. iScience 2022, 25, 105559. [Google Scholar] [CrossRef]
- Moir, S.; Buckner, C.M.; Ho, J.; Wang, W.; Chen, J.; Waldner, A.J.; Posada, J.G.; Kardava, L.; O’Shea, M.A.; Kottilil, S.; et al. B Cells in Early and Chronic HIV Infection: Evidence for Preservation of Immune Function Associated with Early Initiation of Antiretroviral Therapy. Blood 2010, 116, 5571–5579. [Google Scholar] [CrossRef]
- Titanji, K.; Chiodi, F.; Bellocco, R.; Schepis, D.; Osorio, L.; Tassandin, C.; Tambussi, G.; Grutzmeier, S.; Lopalco, L.; De Milito, A. Primary HIV-1 Infection Sets the Stage for Important B Lymphocyte Dysfunctions. AIDS 2005, 19, 1947–1955. [Google Scholar] [CrossRef]
- Moir, S.; Malaspina, A.; Ho, J.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.; Mican, J.M.; Kottilil, S.; Chun, T.; et al. Normalization of B Cell Counts and Subpopulations after Antiretroviral Therapy in Chronic HIV Disease. J. Infect. Dis. 2008, 197, 572–579. [Google Scholar] [CrossRef]
- Rinaldi, S.; Pallikkuth, S.; George, V.K.; de Armas, L.R.; Pahwa, R.; Sanchez, C.M.; Pallin, M.F.; Pan, L.; Cotugno, N.; Dickinson, G.; et al. Paradoxical Aging in HIV: Immune Senescence of B Cells Is Most Prominent in Young Age. Aging 2017, 9, 1307–1325. [Google Scholar] [CrossRef]
- Rouers, A.; Appanna, R.; Chevrier, M.; Lum, J.; Lau, M.C.; Tan, L.; Loy, T.; Tay, A.; Sethi, R.; Sathiakumar, D.; et al. CD27hiCD38hi Plasmablasts Are Activated B Cells of Mixed Origin with Distinct Function. iScience 2021, 24, 102482. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Moir, S.; Malaspina, A.; Howell, M.L.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.A.; Kwan, R.; Mican, J.M.; et al. Two Overrepresented B Cell Populations in HIV-Infected Individuals Undergo Apoptosis by Different Mechanisms. Proc. Natl. Acad. Sci. USA 2006, 103, 19436–19441. [Google Scholar] [CrossRef] [PubMed]
- Liechti, T.; Kadelka, C.; Braun, D.L.; Kuster, H.; Böni, J.; Robbiani, M.; Günthard, H.F.; Trkola, A. Widespread B Cell Perturbations in HIV-1 Infection Afflict Naive and Marginal Zone B Cells. J. Exp. Med. 2019, 216, 2071–2090. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.; Chagnon-Choquet, J.; Valcke, H.S.; Poudrier, J.; Roger, M. Montreal Primary HIV Infection and Long-Term Non-Progressor Study Groups. High Expression Levels of B Lymphocyte Stimulator (BLyS) by Dendritic Cells Correlate with HIV-Related B-Cell Disease Progression in Humans. Blood 2011, 117, 145–155. [Google Scholar] [CrossRef]
- Krause, R.; Snyman, J.; Shi-Hsia, H.; Muema, D.; Karim, F.; Ganga, Y.; Ngoepe, A.; Zungu, Y.; Gazy, I.; Bernstein, M.; et al. HIV Skews the SARS-CoV-2 B Cell Response towards an Extrafollicular Maturation Pathway. eLife 2022, 11, e79924. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Cheung, A.K.L.; Moog, C.; Xia, H.; Li, Z.; Wang, R.; Ji, Y.; Xia, W.; Liu, Z.; et al. Abnormal Shift in B Memory Cell Profile Is Associated With the Expansion of Circulating T Follicular Helper Cells via ICOS Signaling During Acute HIV-1 Infection. Front. Immunol. 2022, 13, 837921. [Google Scholar] [CrossRef]
- Touizer, E.; Alrubayyi, A.; Ford, R.; Hussain, N.; Gerber, P.P.; Shum, H.-L.; Rees-Spear, C.; Muir, L.; Gea-Mallorquí, E.; Kopycinski, J.; et al. Attenuated Humoral Responses in HIV after SARS-CoV-2 Vaccination Linked to B Cell Defects and Altered Immune Profiles. iScience 2023, 26, 105862. [Google Scholar] [CrossRef]
- Kardava, L.; Moir, S.; Shah, N.; Wang, W.; Wilson, R.; Buckner, C.M.; Santich, B.H.; Kim, L.J.Y.; Spurlin, E.E.; Nelson, A.K.; et al. Abnormal B Cell Memory Subsets Dominate HIV-Specific Responses in Infected Individuals. J. Clin. Investig. 2014, 124, 3252–3262. [Google Scholar] [CrossRef]
- Pillai, S.; Cariappa, A.; Moran, S.T. Marginal Zone B Cells. Annu. Rev. Immunol. 2005, 23, 161–196. [Google Scholar] [CrossRef]
- Jiménez, M.; Pastor, L.; Urrea, V.; Rodríguez De La Concepción, M.L.; Parker, E.; Fuente-Soro, L.; Jairoce, C.; Mandomando, I.; Carrillo, J.; Naniche, D.; et al. A Longitudinal Analysis Reveals Early Activation and Late Alterations in B Cells During Primary HIV Infection in Mozambican Adults. Front. Immunol. 2021, 11, 614319. [Google Scholar] [CrossRef]
- Hart, M.; Steel, A.; Clark, S.A.; Moyle, G.; Nelson, M.; Henderson, D.C.; Wilson, R.; Gotch, F.; Gazzard, B.; Kelleher, P. Loss of Discrete Memory B Cell Subsets Is Associated with Impaired Immunization Responses in HIV-1 Infection and May Be a Risk Factor for Invasive Pneumococcal Disease. J. Immunol. 2007, 178, 8212–8220. [Google Scholar] [CrossRef] [PubMed]
- Titanji, K.; De Milito, A.; Cagigi, A.; Thorstensson, R.; Grützmeier, S.; Atlas, A.; Hejdeman, B.; Kroon, F.P.; Lopalco, L.; Nilsson, A.; et al. Loss of Memory B Cells Impairs Maintenance of Long-Term Serologic Memory during HIV-1 Infection. Blood 2006, 108, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
- Moir, S.; Ho, J.; Malaspina, A.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.; Kottilil, S.; Arthos, J.; Proschan, M.A.; et al. Evidence for HIV-Associated B Cell Exhaustion in a Dysfunctional Memory B Cell Compartment in HIV-Infected Viremic Individuals. J. Exp. Med. 2008, 205, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Wang, X.; Zhang, T.; Sun, L.; Wang, R.; Li, W.; Ji, Y.; Wu, H.; Liu, C. Regulatory B Cells Correlate with HIV Disease Progression. Microbiol. Immunol. 2014, 58, 449–455. [Google Scholar] [CrossRef]
- Afzali, S.; Salehi, S.; Shahi, A.; Amirzargar, A. B Cell Modulation Strategies in the Improvement of Transplantation Outcomes. Mol. Immunol. 2020, 125, 140–150. [Google Scholar] [CrossRef]
- Sokoya, T.; Steel, H.C.; Nieuwoudt, M.; Rossouw, T.M. HIV as a Cause of Immune Activation and Immunosenescence. Mediat. Inflamm. 2017, 2017, 6825493. [Google Scholar] [CrossRef]
- Doyon-Laliberté, K.; Aranguren, M.; Chagnon-Choquet, J.; Batraville, L.-A.; Dagher, O.; Richard, J.; Paniconi, M.; Routy, J.-P.; Tremblay, C.; Quintal, M.-C.; et al. Excess BAFF May Impact HIV-1-Specific Antibodies and May Promote Polyclonal Responses Including Those from First-Line Marginal Zone B-Cell Populations. CIMB 2023, 46, 25–43. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Han, Y.; Qiu, Z.; Song, X.; Li, B.; Zhang, H.; Wang, H.; Feng, K.; Liu, L.; et al. High APRIL Levels Are Associated With Slow Disease Progression and Low Immune Activation in Chronic HIV-1-Infected Patients. Front. Med. 2020, 7, 299. [Google Scholar] [CrossRef]
- Marchetti, G.; Tincati, C.; Silvestri, G. Microbial Translocation in the Pathogenesis of HIV Infection and AIDS. Clin. Microbiol. Rev. 2013, 26, 2–18. [Google Scholar] [CrossRef]
- Levesque, M.C.; Moody, M.A.; Hwang, K.-K.; Marshall, D.J.; Whitesides, J.F.; Amos, J.D.; Gurley, T.C.; Allgood, S.; Haynes, B.B.; Vandergrift, N.A.; et al. Polyclonal B Cell Differentiation and Loss of Gastrointestinal Tract Germinal Centers in the Earliest Stages of HIV-1 Infection. PLoS Med. 2009, 6, e1000107. [Google Scholar] [CrossRef]
- Schnittman, S.M.; Lane, H.C.; Higgins, S.E.; Folks, T.; Fauci, A.S. Direct Polyclonal Activation of Human B Lymphocytes by the Acquired Immune Deficiency Syndrome Virus. Science 1986, 233, 1084–1086. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.C.; Masur, H.; Edgar, L.C.; Whalen, G.; Rook, A.H.; Fauci, A.S. Abnormalities of B-Cell Activation and Immunoregulation in Patients with the Acquired Immunodeficiency Syndrome. N. Engl. J. Med. 1983, 309, 453–458. [Google Scholar] [CrossRef] [PubMed]
- D’Orsogna, L.J.; Krueger, R.G.; McKinnon, E.J.; French, M.A. Circulating Memory B-Cell Subpopulations Are Affected Differently by HIV Infection and Antiretroviral Therapy. AIDS 2007, 21, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
- Moir, S.; Malaspina, A.; Pickeral, O.K.; Donoghue, E.T.; Vasquez, J.; Miller, N.J.; Krishnan, S.R.; Planta, M.A.; Turney, J.F.; Justement, J.S.; et al. Decreased Survival of B Cells of HIV-Viremic Patients Mediated by Altered Expression of Receptors of the TNF Superfamily. J. Exp. Med. 2004, 200, 587–599. [Google Scholar] [CrossRef]
- Malaspina, A.; Moir, S.; Ho, J.; Wang, W.; Howell, M.L.; O’Shea, M.A.; Roby, G.A.; Rehm, C.A.; Mican, J.M.; Chun, T.-W.; et al. Appearance of Immature/Transitional B Cells in HIV-Infected Individuals with Advanced Disease: Correlation with Increased IL-7. Proc. Natl. Acad. Sci. USA 2006, 103, 2262–2267. [Google Scholar] [CrossRef]
- Gauvin, J.; Chagnon-Choquet, J.; Poudrier, J.; Roger, M. Montreal Primary HIV Infection and Slow Progressor Cohorts. Fluctuations in Blood Marginal Zone B-Cell Frequencies May Reflect Migratory Patterns Associated with HIV-1 Disease Progression Status. PLoS ONE 2016, 11, e0155868. [Google Scholar] [CrossRef]
- Lindqvist, M.; Van Lunzen, J.; Soghoian, D.Z.; Kuhl, B.D.; Ranasinghe, S.; Kranias, G.; Flanders, M.D.; Cutler, S.; Yudanin, N.; Muller, M.I.; et al. Expansion of HIV-Specific T Follicular Helper Cells in Chronic HIV Infection. J. Clin. Investig. 2012, 122, 3271–3280. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Z.; Yang, Z.; Jiang, Y.; Han, X.; Xu, J.; Chu, Z.; Ding, H.; He, S.; Shang, H. CD27-CD38+ B Cells Accumulated in Early HIV Infection Exhibit Transitional Profile and Promote HIV Disease Progression. Cell Rep. 2021, 36, 109344. [Google Scholar] [CrossRef]
- Pillai, S.; Cariappa, A. The Follicular versus Marginal Zone B Lymphocyte Cell Fate Decision. Nat. Rev. Immunol. 2009, 9, 767–777. [Google Scholar] [CrossRef]
- Palm, A.-K.E.; Kleinau, S. Marginal Zone B Cells: From Housekeeping Function to Autoimmunity? J. Autoimmun. 2021, 119, 102627. [Google Scholar] [CrossRef]
- Bautista, D.; Vásquez, C.; Ayala-Ramírez, P.; Téllez-Sosa, J.; Godoy-Lozano, E.; Martínez-Barnetche, J.; Franco, M.; Angel, J. Differential Expression of IgM and IgD Discriminates Two Subpopulations of Human Circulating IgM+IgD+CD27+ B Cells That Differ Phenotypically, Functionally, and Genetically. Front. Immunol. 2020, 11, 736. [Google Scholar] [CrossRef] [PubMed]
- Guerrier, T.; Youinou, P.; Pers, J.-O.; Jamin, C. TLR9 Drives the Development of Transitional B Cells towards the Marginal Zone Pathway and Promotes Autoimmunity. J. Autoimmun. 2012, 39, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Li, J.; Fang, Y.; Lu, L. Roles of B Cell-Intrinsic TLR Signals in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2015, 16, 13084–13105. [Google Scholar] [CrossRef] [PubMed]
- Pasqualucci, L.; Migliazza, A.; Fracchiolla, N.; William, C.; Neri, A.; Baldini, L.; Chaganti, R.S.; Klein, U.; Küppers, R.; Rajewsky, K.; et al. BCL-6 Mutations in Normal Germinal Center B Cells: Evidence of Somatic Hypermutation Acting Outside Ig Loci. Proc. Natl. Acad. Sci. USA 1998, 95, 11816–11821. [Google Scholar] [CrossRef]
- Zhao, Y.; Uduman, M.; Siu, J.H.Y.; Tull, T.J.; Sanderson, J.D.; Wu, Y.-C.B.; Zhou, J.Q.; Petrov, N.; Ellis, R.; Todd, K.; et al. Spatiotemporal Segregation of Human Marginal Zone and Memory B Cell Populations in Lymphoid Tissue. Nat. Commun. 2018, 9, 3857. [Google Scholar] [CrossRef]
- Cheng, Z.; Que, H.; Chen, L.; Sun, Q.; Wei, X. Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022, 14, 1372. [Google Scholar] [CrossRef]
- Odendahl, M.; Mei, H.; Hoyer, B.F.; Jacobi, A.M.; Hansen, A.; Muehlinghaus, G.; Berek, C.; Hiepe, F.; Manz, R.; Radbruch, A.; et al. Generation of Migratory Antigen-Specific Plasma Blasts and Mobilization of Resident Plasma Cells in a Secondary Immune Response. Blood 2005, 105, 1614–1621. [Google Scholar] [CrossRef]
- Kardava, L.; Buckner, C.M.; Moir, S. B-Cell Responses to SARS-CoV-2 mRNA Vaccines. Pathog. Immun. 2022, 7, 93–119. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Saney, C.; Hentenaar, I.T.; Cabrera-Mora, M.; Capric, V.; Woodruff, M.C.; Andrews, J.; Lonial, S.; Sanz, I.; Lee, F.E.-H. Majority of Human Circulating IgG Plasmablasts Stop Blasting in a Cell-Free pro-Survival Culture. Sci. Rep. 2024, 14, 3616. [Google Scholar] [CrossRef]
- Nutt, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The Generation of Antibody-Secreting Plasma Cells. Nat. Rev. Immunol. 2015, 15, 160–171. [Google Scholar] [CrossRef]
- Budeus, B.; Kibler, A.; Küppers, R. Human IgM–Expressing Memory B Cells. Front. Immunol. 2023, 14, 1308378. [Google Scholar] [CrossRef] [PubMed]
- Beckers, L.; Somers, V.; Fraussen, J. IgD−CD27− Double Negative (DN) B Cells: Origins and Functions in Health and Disease. Immunol. Lett. 2023, 255, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.K.Y.; Gong, L.; Kwong, D.L.; Lee, V.H.; Lee, A.W.; Guan, X.; Kam, N.; Dai, W. Functions of Double-negative B Cells in Autoimmune Diseases, Infections, and Cancers. EMBO Mol. Med. 2023, 15, e17341. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, G.R.A.; Hsu, J.T.; Gartland, L.; Leu, C.-M.; Zhang, S.; Davis, R.S.; Cooper, M.D. Expression of the Immunoregulatory Molecule FcRH4 Defines a Distinctive Tissue-Based Population of Memory B Cells. J. Exp. Med. 2005, 202, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Moir, S.; Fauci, A.S. Insights into B Cells and HIV-Specific B-Cell Responses in HIV-Infected Individuals. Immunol. Rev. 2013, 254, 207–224. [Google Scholar] [CrossRef]
- Portugal, S.; Obeng-Adjei, N.; Moir, S.; Crompton, P.D.; Pierce, S.K. Atypical Memory B Cells in Human Chronic Infectious Diseases: An Interim Report. Cell. Immunol. 2017, 321, 18–25. [Google Scholar] [CrossRef]
- Mouat, I.C.; Goldberg, E.; Horwitz, M.S. Age-Associated B Cells in Autoimmune Diseases. Cell. Mol. Life Sci. 2022, 79, 402. [Google Scholar] [CrossRef]
- Medina, F.; Segundo, C.; Campos-Caro, A.; González-García, I.; Brieva, J.A. The Heterogeneity Shown by Human Plasma Cells from Tonsil, Blood, and Bone Marrow Reveals Graded Stages of Increasing Maturity, but Local Profiles of Adhesion Molecule Expression. Blood 2002, 99, 2154–2161. [Google Scholar] [CrossRef]
- Tellier, J.; Nutt, S.L. The Secret to Longevity, Plasma Cell Style. Nat. Immunol. 2022, 23, 1507–1508. [Google Scholar] [CrossRef]
- Coker, W.J.; Jeter, A.; Schade, H.; Kang, Y. Plasma Cell Disorders in HIV-Infected Patients: Epidemiology and Molecular Mechanisms. Biomark. Res. 2013, 1, 8. [Google Scholar] [CrossRef]
- Cossarini, F.; Shang, J.; Krek, A.; Al-Taie, Z.; Hou, R.; Canales-Herrerias, P.; Tokuyama, M.; Tankelevich, M.; Tillowiz, A.; Jha, D.; et al. Gastrointestinal Germinal Center B Cell Depletion and Reduction in IgA + Plasma Cells in HIV-1 Infection. Sci. Immunol. 2024, 9. [Google Scholar] [CrossRef] [PubMed]
- Vadasz, Z.; Peri, R.; Eiza, N.; Slobodin, G.; Balbir-Gurman, A.; Toubi, E. The Expansion of CD25highIL-10highFoxP3high B Regulatory Cells Is in Association with SLE Disease Activity. J. Immunol. Res. 2015, 2015, 254245. [Google Scholar] [CrossRef] [PubMed]
- Mauri, C.; Bosma, A. Immune Regulatory Function of B Cells. Annu. Rev. Immunol. 2012, 30, 221–241. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Egwuagu, C.E. Interleukin 35 Regulatory B Cells. J. Mol. Biol. 2021, 433, 166607. [Google Scholar] [CrossRef] [PubMed]
- Veh, J.; Ludwig, C.; Schrezenmeier, H.; Jahrsdörfer, B. Regulatory B Cells—Immunopathological and Prognostic Potential in Humans. Cells 2024, 13, 357. [Google Scholar] [CrossRef]
- Siewe, B.; Stapleton, J.T.; Martinson, J.; Keshavarzian, A.; Kazmi, N.; Demarais, P.M.; French, A.L.; Landay, A. Regulatory B Cell Frequency Correlates with Markers of HIV Disease Progression and Attenuates Anti-HIV CD8+ T Cell Function in Vitro. J. Leukoc. Biol. 2013, 93, 811–818. [Google Scholar] [CrossRef]
- Sailliet, N.; Mai, H.-L.; Dupuy, A.; Tilly, G.; Fourgeux, C.; Braud, M.; Giral, M.; Robert, J.-M.; Degauque, N.; Danger, R.; et al. Human Granzyme B Regulatory B Cells Prevent Effector CD4+CD25- T Cell Proliferation through a Mechanism Dependent from Lymphotoxin Alpha. Front. Immunol. 2023, 14, 1183714. [Google Scholar] [CrossRef]
- Kaltenmeier, C.; Gawanbacht, A.; Beyer, T.; Lindner, S.; Trzaska, T.; van der Merwe, J.A.; Härter, G.; Grüner, B.; Fabricius, D.; Lotfi, R.; et al. CD4+ T Cell-Derived IL-21 and Deprivation of CD40 Signaling Favor the in Vivo Development of Granzyme B-Expressing Regulatory B Cells in HIV Patients. J. Immunol. 2015, 194, 3768–3777. [Google Scholar] [CrossRef]
- Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.S.; et al. HPTN 052 Study Team. Prevention of HIV-1 Infection with Early Antiretroviral Therapy. N. Engl. J. Med. 2011, 365, 493–505. [Google Scholar] [CrossRef]
- Cotugno, N.; Douagi, I.; Rossi, P.; Palma, P. Suboptimal Immune Reconstitution in Vertically HIV Infected Children: A View on How HIV Replication and Timing of HAART Initiation Can Impact on T and B-Cell Compartment. Clin. Dev. Immunol. 2012, 2012, 805151. [Google Scholar] [CrossRef]
- Morris, L.; Binley, J.M.; Clas, B.A.; Bonhoeffer, S.; Astill, T.P.; Kost, R.; Hurley, A.; Cao, Y.; Markowitz, M.; Ho, D.D.; et al. HIV-1 Antigen-Specific and -Nonspecific B Cell Responses Are Sensitive to Combination Antiretroviral Therapy. J. Exp. Med. 1998, 188, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Pensieroso, S.; Galli, L.; Nozza, S.; Ruffin, N.; Castagna, A.; Tambussi, G.; Hejdeman, B.; Misciagna, D.; Riva, A.; Malnati, M.; et al. B-Cell Subset Alterations and Correlated Factors in HIV-1 Infection. AIDS 2013, 27, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Badura, R.; Foxall, R.B.; Ligeiro, D.; Rocha, M.; Godinho-Santos, A.; Trombetta, A.C.; Sousa, A.E. Early ART in Acute HIV-1 Infection: Impact on the B-Cell Compartment. Front. Cell. Infect. Microbiol. 2020, 10, 347. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Mukherjee, A.; Singla, M.; Vajpayee, M.; Negi, N.; Kabra, S.K.; Lodha, R.; Das, B.K. Impact of HIV Infection and Highly Active Antiretroviral Therapy (HAART) on B Cell Subpopulations in Children. J. Med. Virol. 2018, 90, 1222–1231. [Google Scholar] [CrossRef]
- Boswell, K.L.; Paris, R.; Boritz, E.; Ambrozak, D.; Yamamoto, T.; Darko, S.; Wloka, K.; Wheatley, A.; Narpala, S.; McDermott, A.; et al. Loss of Circulating CD4 T Cells with B Cell Helper Function during Chronic HIV Infection. PLoS Pathog. 2014, 10, e1003853. [Google Scholar] [CrossRef]
- Lu, J.; Lv, Y.; Lv, Z.; Xu, Y.; Huang, Y.; Cui, M.; Yan, H. Expansion of Circulating T Follicular Helper Cells Is Associated with Disease Progression in HIV-Infected Individuals. J. Infect. Public Health 2018, 11, 685–690. [Google Scholar] [CrossRef]
- Banga, R.; Procopio, F.A.; Lana, E.; Gladkov, G.T.; Roseto, I.; Parsons, E.M.; Lian, X.; Armani-Tourret, M.; Bellefroid, M.; Gao, C.; et al. Lymph Node Dendritic Cells Harbor Inducible Replication-Competent HIV despite Years of Suppressive ART. Cell Host Microbe 2023, 31, 1714–1731.e9. [Google Scholar] [CrossRef]
- Miles, B.; Connick, E. TFH in HIV Latency and as Sources of Replication-Competent Virus. Trends Microbiol. 2016, 24, 338–344. [Google Scholar] [CrossRef]
- Beck, S.E.; Veenhuis, R.T.; Blankson, J.N. Does B Cell Follicle Exclusion of CD8+ T Cells Make Lymph Nodes Sanctuaries of HIV Replication? Front. Immunol. 2019, 10, 2362. [Google Scholar] [CrossRef]
- Moysi, E.; Pallikkuth, S.; De Armas, L.R.; Gonzalez, L.E.; Ambrozak, D.; George, V.; Huddleston, D.; Pahwa, R.; Koup, R.A.; Petrovas, C.; et al. Altered Immune Cell Follicular Dynamics in HIV Infection Following Influenza Vaccination. J. Clin. Investig. 2018, 128, 3171–3185. [Google Scholar] [CrossRef]
- Bekele, Y.; Amu, S.; Bobosha, K.; Lantto, R.; Nilsson, A.; Endale, B.; Gebre, M.; Aseffa, A.; Rethi, B.; Howe, R.; et al. Impaired Phenotype and Function of T Follicular Helper Cells in HIV-1-Infected Children Receiving ART. Medicine 2015, 94, e1125. [Google Scholar] [CrossRef] [PubMed]
- Chakhtoura, M.; Fang, M.; Cubas, R.; O’Connor, M.H.; Nichols, C.N.; Richardson, B.; Talla, A.; Moir, S.; Cameron, M.J.; Tardif, V.; et al. Germinal Center T Follicular Helper (GC-Tfh) Cell Impairment in Chronic HIV Infection Involves c-Maf Signaling. PLoS Pathog. 2021, 17, e1009732. [Google Scholar] [CrossRef] [PubMed]
- Onabajo, O.O.; Mattapallil, J.J. Expansion or Depletion of T Follicular Helper Cells during HIV Infection: Consequences for B Cell Responses. Curr. HIV Res. 2013, 11, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Pallikkuth, S.; Sharkey, M.; Babic, D.Z.; Gupta, S.; Stone, G.W.; Fischl, M.A.; Stevenson, M.; Pahwa, S. Peripheral T Follicular Helper Cells Are the Major HIV Reservoir within Central Memory CD4 T Cells in Peripheral Blood from Chronically HIV-Infected Individuals on Combination Antiretroviral Therapy. J. Virol. 2015, 90, 2718–2728. [Google Scholar] [CrossRef]
- Miles, B.; Miller, S.M.; Folkvord, J.M.; Kimball, A.; Chamanian, M.; Meditz, A.L.; Arends, T.; McCarter, M.D.; Levy, D.N.; Rakasz, E.G.; et al. Follicular Regulatory T Cells Impair Follicular T Helper Cells in HIV and SIV Infection. Nat. Commun. 2015, 6, 8608. [Google Scholar] [CrossRef]
- Salvatore, B.; Resop, R.; Gordon, B.; Epeldegui, M.; Martinez-Maza, O.; Comin-Anduix, B.; Lam, A.; Wu, T.-T.; Uittenbogaart, C. Characterization of T Follicular Helper Cells and T Follicular Regulatory Cells in HIV-Infected and Sero-Negative Individuals. Cells 2023, 12, 296. [Google Scholar] [CrossRef]
- Sage, P.T.; Sharpe, A.H. The Multifaceted Functions of Follicular Regulatory T Cells. Curr. Opin. Immunol. 2020, 67, 68–74. [Google Scholar] [CrossRef]
- Pallikkuth, S.; De Armas, L.; Rinaldi, S.; Pahwa, S. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection. Front. Immunol. 2017, 8, 1380. [Google Scholar] [CrossRef]
- Cole, M.E.; Saeed, Z.; Shaw, A.T.; Guo, Y.; Höschler, K.; Winston, A.; Cooke, G.S.; Fidler, S.; Taylor, G.P.; Pollock, K.M. Responses to Quadrivalent Influenza Vaccine Reveal Distinct Circulating CD4+CXCR5+ T Cell Subsets in Men Living with HIV. Sci. Rep. 2019, 9, 15650. [Google Scholar] [CrossRef]
- Bekker, V.; Westerlaken, G.H.A.; Scherpbier, H.; Alders, S.; Zaaijer, H.; van Baarle, D.; Kuijpers, T. Varicella Vaccination in HIV-1-Infected Children after Immune Reconstitution. AIDS 2006, 20, 2321–2329. [Google Scholar] [CrossRef]
- Rahman, M.M.; Masum, M.H.U.; Wajed, S.; Talukder, A. A Comprehensive Review on COVID-19 Vaccines: Development, Effectiveness, Adverse Effects, Distribution and Challenges. Virusdisease 2022, 33, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Al-Awwal, N.; Dweik, F.; Mahdi, S.; El-Dweik, M.; Anderson, S.H. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens 2022, 11, 368. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.A.; Jamison, D.A.; Guarnieri, J.W.; Zaksas, V.; Topper, M.; Koutnik, A.P.; Park, J.; Clark, K.B.; Enguita, F.J.; Leitão, A.L.; et al. A Comprehensive SARS-CoV-2 and COVID-19 Review, Part 2: Host Extracellular to Systemic Effects of SARS-CoV-2 Infection. Eur. J. Hum. Genet. 2024, 32, 10–20. [Google Scholar] [CrossRef]
- Snyman, J.; Hwa, S.H.; Krause, R.; Muema, D.; Reddy, T.; Ganga, Y.; Karim, F.; Leslie, A.; Sigal, A.; Ndung’u, T.; et al. Similar Antibody Responses Against Severe Acute Respiratory Syndrome Coronavirus 2 in Individuals Living Without and With Human Immunodeficiency Virus on Antiretroviral Therapy During the First South African Infection Wave. Clin. Infect. Dis. 2022, 75, e249–e256. [Google Scholar] [CrossRef]
- Ngalamika, O.; Lidenge, S.J.; Mukasine, M.C.; Kawimbe, M.; Kamanzi, P.; Ngowi, J.R.; Mwaiselage, J.; Tso, F.Y. SARS-CoV-2-Specific T Cell and Humoral Immunity in Individuals with and without HIV in an African Population: A Prospective Cohort Study. Int. J. Infect. Dis. 2023, 127, 106–115. [Google Scholar] [CrossRef]
- Hu, Z.; Luo, Z.; Wan, Z.; Wu, H.; Li, W.; Zhang, T.; Jiang, W. HIV-Associated Memory B Cell Perturbations. Vaccine 2015, 33, 2524–2529. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Nault, L.; Marchitto, L.; Goyette, G.; Tremblay-Sher, D.; Fortin, C.; Martel-Laferrière, V.; Trottier, B.; Richard, J.; Durand, M.; Kaufmann, D.; et al. Covid-19 Vaccine Immunogenicity in People Living with HIV-1. Vaccine 2022, 40, 3633–3637. [Google Scholar] [CrossRef]
- Hassold, N.; Brichler, S.; Ouedraogo, E.; Leclerc, D.; Carroue, S.; Gater, Y.; Alloui, C.; Carbonnelle, E.; Bouchaud, O.; Mechai, F.; et al. Impaired Antibody Response to COVID-19 Vaccination in Advanced HIV Infection. AIDS 2022, 36, F1–F5. [Google Scholar] [CrossRef]
- Khan, K.; Lustig, G.; Bernstein, M.; Archary, D.; Cele, S.; Karim, F.; Smith, M.; Ganga, Y.; Jule, Z.; Reedoy, K.; et al. COMMIT-KZN Team. Immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Ad26.CoV2.S Vaccination in People Living With Human Immunodeficiency Virus (HIV). Clin. Infect. Dis. 2022, 75, e857–e864. [Google Scholar] [CrossRef]
- Cai, S.; Liao, G.; Yu, T.; Gao, Q.; Zou, L.; Zhang, H.; Xu, X.; Chen, J.; Lu, A.; Wu, Y.; et al. Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine in People Living with HIV: A Cross-Sectional Study. J. Med. Virol. 2022, 94, 4224–4233. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, X.; Han, Y.; Fang, Q.; Shen, C.; Liu, H.; Wang, P.; Wang, Y.; Li, X. Safety and Immunogenicity of Inactivated COVID-19 Vaccines Among People Living with HIV in China. IDR 2022, 15, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, M.A.; Peluso, M.J.; Lynch, K.L.; Yun, C.; Glidden, D.V.; Henrich, T.J.; Deeks, S.G.; Gandhi, M. Differences in Post-mRNA Vaccination Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Immunoglobulin G (IgG) Concentrations and Surrogate Virus Neutralization Test Response by Human Immunodeficiency Virus (HIV) Status and Type of Vaccine: A Matched Case-Control Observational Study. Clin. Infect. Dis. 2022, 75, e916–e919. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zou, S.; Ming, F.; Wu, M.; Guo, W.; Xing, Z.; Zhang, Z.; Liu, J.; Tang, W.; Liang, K. Humoral Immune Response to Inactivated COVID-19 Vaccination at the 3rd Month among People Living with HIV. BMC Infect. Dis. 2022, 23, 34. [Google Scholar] [CrossRef]
- Polvere, J.; Fabbiani, M.; Pastore, G.; Rancan, I.; Rossetti, B.; Durante, M.; Zirpoli, S.; Morelli, E.; Pettini, E.; Lucchesi, S.; et al. B Cell Response after SARS-CoV-2 mRNA Vaccination in People Living with HIV. Commun. Med. 2023, 3, 13. [Google Scholar] [CrossRef]
- Lamacchia, G.; Salvati, L.; Kiros, S.T.; Mazzoni, A.; Vanni, A.; Capone, M.; Carnasciali, A.; Farahvachi, P.; Lagi, F.; Di Lauria, N.; et al. Fourth Dose of mRNA COVID-19 Vaccine Transiently Reactivates Spike-Specific Immunological Memory in People Living with HIV (PLWH). Biomedicines 2022, 10, 3261. [Google Scholar] [CrossRef]
- Costiniuk, C.T.; Singer, J.; Lee, T.; Langlois, M.-A.; Arnold, C.; Galipeau, Y.; Needham, J.; Kulic, I.; Jenabian, M.-A.; Burchell, A.N.; et al. COVID-19 Vaccine Immunogenicity in People with HIV. AIDS 2023, 37, F1–F10. [Google Scholar] [CrossRef]
- Lapointe, H.R.; Mwimanzi, F.; Cheung, P.K.; Sang, Y.; Yaseen, F.; Umviligihozo, G.; Kalikawe, R.; Speckmaier, S.; Moran-Garcia, N.; Datwani, S.; et al. People With Human Immunodeficiency Virus Receiving Suppressive Antiretroviral Therapy Show Typical Antibody Durability After Dual Coronavirus Disease 2019 Vaccination and Strong Third Dose Responses. J. Infect. Dis. 2023, 227, 838–849. [Google Scholar] [CrossRef]
- Cheung, P.K.; Lapointe, H.R.; Sang, Y.; Ennis, S.; Mwimanzi, F.; Speckmaier, S.; Barad, E.; Dong, W.; Liang, R.; Simons, J.; et al. SARS-CoV-2 Live Virus Neutralization after Four COVID-19 Vaccine Doses in People with HIV Receiving Suppressive Antiretroviral Therapy. AIDS 2023, 37, F11–F18. [Google Scholar] [CrossRef]
- He, R.; Zheng, X.; Zhang, J.; Liu, B.; Wang, Q.; Wu, Q.; Liu, Z.; Chang, F.; Hu, Y.; Xie, T.; et al. SARS-CoV-2 Spike-Specific TFH Cells Exhibit Unique Responses in Infected and Vaccinated Individuals. Signal Transduct. Target. Ther. 2023, 8, 393. [Google Scholar] [CrossRef]
- Bieńkowski, C.; Żak, Z.; Fijołek, F.; Cholewik, M.; Stępień, M.; Skrzat-Klapaczyńska, A.; Kowalska, J.D. Immunological and Clinical Responses to Vaccinations among Adults Living with HIV. Life 2024, 14, 540. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.M.; Hall, E.; Tomlin, R. Injectable Long-Acting Cabotegravir-Rilpivirine Therapy for People Living With HIV/AIDS: Addressing Implementation Barriers From the Start. J. Assoc. Nurses AIDS Care 2023, 34, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.M.C.; Plotkin, S.A. The Influence of Interval between Doses on Response to Vaccines. Vaccine 2021, 39, 7123–7127. [Google Scholar] [CrossRef] [PubMed]
- Garg, I.; Sheikh, A.B.; Pal, S.; Shekhar, R. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect. Dis. Rep. 2022, 14, 537–546. [Google Scholar] [CrossRef]
- Kato, M.; Kunkel, T.; Bram, D.; Newman, J.; Lopez, A.; Santana, P.; Clough, L.A.; Hinthorn, D.; El Atrouni, W. 25. Effectiveness of High Dose Influenza Vaccine in HIV-Positive Patients for the Winter 2017–2018 Season. Open Forum Infect. Dis. 2020, 7 (Suppl. S1), S36–S37. [Google Scholar] [CrossRef]
- McKittrick, N.; Frank, I.; Jacobson, J.M.; White, C.J.; Kim, D.; Kappes, R.; DiGiorgio, C.; Kenney, T.; Boyer, J.; Tebas, P. Improved Immunogenicity with High-Dose Seasonal Influenza Vaccine in HIV-Infected Persons: A Single-Center, Parallel, Randomized Trial. Ann. Intern. Med. 2013, 158, 19–26. [Google Scholar] [CrossRef]
- Nunes, M.C.; Cutland, C.L.; Moultrie, A.; Jones, S.; Ortiz, J.R.; Neuzil, K.M.; Klugman, K.P.; Simões, E.A.F.; Weinberg, A.; Madhi, S.A.; et al. Immunogenicity and Safety of Different Dosing Schedules of Trivalent Inactivated Influenza Vaccine in Pregnant Women with HIV: A Randomised Controlled Trial. Lancet HIV 2020, 7, e91–e103. [Google Scholar] [CrossRef]
- Hakim, H.; Allison, K.J.; Van de Velde, L.-A.; Tang, L.; Sun, Y.; Flynn, P.M.; McCullers, J.A. Immunogenicity and Safety of High-Dose Trivalent Inactivated Influenza Vaccine Compared to Standard-Dose Vaccine in Children and Young Adults with Cancer or HIV Infection. Vaccine 2016, 34, 3141–3148. [Google Scholar] [CrossRef]
- Monroe, J.G. Ligand-Independent Tonic Signaling in B-Cell Receptor Function. Curr. Opin. Immunol. 2004, 16, 288–295. [Google Scholar] [CrossRef]
- Tardif, V.; Muir, R.; Cubas, R.; Chakhtoura, M.; Wilkinson, P.; Metcalf, T.; Herro, R.; Haddad, E.K. Adenosine Deaminase-1 Delineates Human Follicular Helper T Cell Function and Is Altered with HIV. Nat. Commun. 2019, 10, 823. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Z.; Zhang, H.; Chen, C.; Zeng, M.; Yunis, J.; Wei, Y.; Wan, Y.; Wang, N.; Zhou, M.; et al. Selenium-GPX4 Axis Protects Follicular Helper T Cells from Ferroptosis. Nat. Immunol. 2021, 22, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Parmigiani, A.; Alcaide, M.L.; Freguja, R.; Pallikkuth, S.; Frasca, D.; Fischl, M.A.; Pahwa, S. Impaired Antibody Response to Influenza Vaccine in HIV-Infected and Uninfected Aging Women Is Associated with Immune Activation and Inflammation. PLoS ONE 2013, 8, e79816. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.; Cabrera-Martinez, B.; Winslow, G.M. TNF-α Contributes to Lymphoid Tissue Disorganization and Germinal Center B Cell Suppression during Intracellular Bacterial Infection. J. Immunol. 2019, 203, 2415–2424. [Google Scholar] [CrossRef] [PubMed]
- Borhis, G.; Trovato, M.; Ibrahim, H.M.; Isnard, S.; Le Grand, R.; Bosquet, N.; Richard, Y. Impact of BAFF Blockade on Inflammation, Germinal Center Reaction and Effector B-Cells During Acute SIV Infection. Front. Immunol. 2020, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, W.A.; Grovit-Ferbas, K.; Namazi, A.; Ovcak-Derzic, S.; Wang, H.J.; Park, J.; Yeramian, C.; Mao, S.H.; Zack, J.A. Human Immunodeficiency Virus-Type 1 Replication Can Be Increased in Peripheral Blood of Seropositive Patients after Influenza Vaccination. Blood 1995, 86, 1082–1089. [Google Scholar] [CrossRef]
- Bozzi, G.; Lombardi, A.; Ludovisi, S.; Muscatello, A.; Manganaro, L.; Cattaneo, D.; Gori, A.; Bandera, A. Transient Increase in Plasma HIV RNA after COVID-19 Vaccination with mRNA-1272. Int. J. Infect. Dis. 2021, 113, 125–126. [Google Scholar] [CrossRef]
- Matveev, V.A.; Mihelic, E.Z.; Benko, E.; Budylowski, P.; Grocott, S.; Lee, T.; Korosec, C.S.; Colwill, K.; Stephenson, H.; Law, R.; et al. Immunogenicity of COVID-19 Vaccines and Their Effect on the HIV Reservoir in Older People with HIV. iScience 2023, 26, 107915. [Google Scholar] [CrossRef]
B Cell or Subset | Phenotype | HIV-Infected, No ART | Early ART | Late ART | Ref. |
---|---|---|---|---|---|
Total B cells | CD19+ | ↓ | Normalized | Sub-normal | [27,28,29] |
Activated/exhausted B cells | CD19+ CD80+ PDL1+ CD21low FcRL4+ | ↑ | Normalized | Above normal | [30] |
Immature/Transitional | CD19+ CD27− CD38++ CD24++ CD10+ IgM+ IgDlow | ↑ | Normalized | Above-normal | [31,32] |
Naïve (Resting) | CD19+ CD10− CD27− CD21++ CD24+ CD38+ IgMlow IgD+ | ↓ | Normalized | Sub-normal | [32,33,34] |
Activated Naive | CD19+ CD10− CD27− CD21low IgM+ CD95+ | ↑ | Normalized | Above-normal | [32,35] |
Resting Memory | CD19+ CD10− CD27+ CD21++ IgM− IgD− | ↓ | Normalized | Sub-normal | [36,37] |
Activated Memory | CD19+ CD10− CD27+ CD21low CD38− | ↑ | Normalized | Above-normal | [37] |
Atypical Memory | CD19++ CD20+ CD21low/− CD38− CD27− IgD− | ↑ | Normalized | Above-normal | [30,38] |
Marginal Zone-like | CD19+ CD27+ IgM+ CD21++ CD23− CD1c++ | ↓ | Normalized | Subnormal | [39,40] |
IgM-only Memory | CD19+ CD27+ IgM+ IgD− | ↓ | Normalized | Sub-normal | [27,41,42] |
TL-MBC | CD19+ CD10− CD27− CD21low CD20+ FcRL4+ CD11c+ | ↑ | Normalized | Above-normal | [37,43] |
Plasmablasts | CD19+ CD27++ CD20− CD21low CD38++ CD24− | ↑ | Normalized | Above-normal | [31,40] |
Regulatory B cells | CD19++ CD25++ CD1d++ IL-10+ CD45RB++ PDL1+ CD24++ | ↑ | Normalized | Above-normal | [44,45] |
B cell activation | CD19+ CD25+ | ↑ | ↑ | ↑ | [19] |
Apoptosis prone | CD19+ CD95+ | ↑ | ↑ | ↑ | [19] |
Year | Authors | Vaccine Type | Cohorts | Results & Conclusions | Ref. |
---|---|---|---|---|---|
2022 | Nault et al. | mRNA; 1 dose | 121 PWH, 21 HIV-healthcare workers (naïve to COVID-19 | Anti-RBD IgG responses 3–4 weeks post-vaccination were lower in PWH with CD4 counts < 250; higher age associated with decreased immunogenicity | [118] |
2022 | Khan et al. | Ad26.CoV2.S; 1 dose | PWH with well controlled HIV, and HIV-controls with and without previous SARS-CoV-2 infection | Live virus neutralization response two months post-vaccination to Delta variant was not inferior in PWH with controlled viremia; viremic PWH had lower responses | [120] |
2022 | Cai et al. | Inactiva-ted SARS-CoV-2 vaccine; 2 doses | 143 PWH and 50 HIV-healthy controls | The vaccine was safe in PWH; virus-specific antibody titers were significantly higher in controls than in PWH; PWH with higher CD4 counts had higher % of seropositivity; virus-neutralization titers against wild type and Delta variants were similar between PWH and controls | [121] |
2022 | Han et al. | Inactiva-ted SARS-CoV-2 vaccine; 2 doses | PWH and healthy controls without a prion infection with SARS-CoV-2 | The vaccine was safe in PWH; neutralizing antibody responses to the D614G variant and delta variant were lower in PWH than controls; antibodies titers decreased but were maintained for 3 months; PWH with CD4 counts < 350 showed lower responses | [122] |
2022 | Spinelli et al. | 2 doses; mRNA (BNT162b2 and mRNA-1273) vaccines | 100 PWH and 1:1 matched HIV-healthy controls | PWH had lower surrogate virus neutralization and anti-RBD antibody titers; PWH also showed a trend towards lower IgG titers; the responses were particularly lower in PWH with lower CD4 counts; serological responses were higher in mRNA-1273 vaccinees | [123] |
2022 | Wu et al. | Inactivated virus vaccine; 2 doses | 138 PWH and 35 HIV-healthy controls | Serocoversion rates were similar between PHW and controls 3 months post-vaccination; virus neutralization titers were lower in PWH; CD4 counts < 200 were associated with lower titers in PWH | [124] |
2022 | Hassold et al. | 2 doses; mRNA vaccines or ChAdOx1 | PWH with different CD4+ T cell counts | PWH with <500, in particular <200, CD4 counts had less S-specific antibody titers 1–3 months post-vaccination with BNT162b2, mRNA-1273 or ChAdOx1 nCoV-19 | [119] |
2022 | Lamacchia et al. | 4 doses; mRNA vaccines | 8 PWH | S-specific CD4+ T cells transiently re-activated after 4th dose; and declined in two weeks; the 4th dose increased cross-reactive Omicron-specific MBC | [126] |
2023 | Polvere et al. | 2 doses; mRNA vaccines | 84 PWH and 79 healthy controls | S-specific antibodies lasted for six months; less response in PWH with CD4 counts < 350; comparable % of S-specific MBC in PWH and controls; PWH had higher % of DN and lower % of SMBC than controls | [125] |
2023 | Costiniuk et al. | 3 doses of | 294 PWH and 267 controls | S-specific IgG titers were similar at month 3 post 2nd dose and 1-month post 3rd dose in both cohorts; they declined earlier in some PWH after the second dose | [127] |
2023 | Lapointe et al. | 3 doses of mRNA vaccine | 99 PLWH and 152 healthy controls (some controls received 2 doses of ChAdOx1 and a third dose of mRNA vaccine | No evidence of faster decline in S-specific antibodies in PWH with undetectable viremia; 3rd dose increased Omicron-specific antibodies in PWH but they remained lower than in controls | [128] |
2023 | Touizer et al. | 3 doses; mRNA vaccine (BNT162b2, mRNA-1273 or ChAdOx1) | 110 PWH and 64 HIV-controls | Delayed development and reduced titers of virus-neutralizing antibodies linked to reduced numbers of S-specific MBC and cTFH in PWH; despite these cellular deficits, 3rd doses increases magnitude and breadth of antibody responses in PWH | [37] |
2023 | Cheung et al. | 4 doses; mRNA vaccines | PWH with or without prior SARS-CoV-2 infection | 4th dose enhances vaccine responses in PWH irrespective of prior SARS-CoV-2 experiences, and enhances WT and variant-specific antibodies | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Vulesevic, B.; Vigano, M.; As’sadiq, A.; Kang, K.; Fernandez, C.; Samarani, S.; Anis, A.H.; Ahmad, A.; Costiniuk, C.T. The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines 2024, 12, 1372. https://doi.org/10.3390/vaccines12121372
Wang L, Vulesevic B, Vigano M, As’sadiq A, Kang K, Fernandez C, Samarani S, Anis AH, Ahmad A, Costiniuk CT. The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines. 2024; 12(12):1372. https://doi.org/10.3390/vaccines12121372
Chicago/Turabian StyleWang, Lixing, Branka Vulesevic, MariaLuisa Vigano, Alia As’sadiq, Kristina Kang, Cristina Fernandez, Suzanne Samarani, Aslam H. Anis, Ali Ahmad, and Cecilia T. Costiniuk. 2024. "The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV" Vaccines 12, no. 12: 1372. https://doi.org/10.3390/vaccines12121372
APA StyleWang, L., Vulesevic, B., Vigano, M., As’sadiq, A., Kang, K., Fernandez, C., Samarani, S., Anis, A. H., Ahmad, A., & Costiniuk, C. T. (2024). The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines, 12(12), 1372. https://doi.org/10.3390/vaccines12121372