COVID-19 Vaccination and Transient Increase in CD4/CD8 Cell Counts in People with HIV: Evidence from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population and Study Design
2.2. Ethical Considerations
2.3. Data Collection
2.4. Statistical Analysis
2.4.1. Propensity Score Matching Analysis
2.4.2. Comparison of Variables
2.5. Vaccines
3. Results
3.1. Baseline Characteristics
Characteristics | Unadjusted | After Propensity Score Matching | ||||
---|---|---|---|---|---|---|
Unvaccinated (n = 35) | Vaccinated (n = 337) | p | Unvaccinated (n = 34) | Vaccinated (n = 96) | p | |
Personal History | ||||||
Age (years) | 33.4 ± 10.0 | 31.3 ± 8.4 | 0.160 | 33.5 ± 10.1 | 33.8 ± 8.8 | 0.866 |
Male, n (%) | 34 (97.1) | 325 (96.4) | 0.767 | 33 (97.1) | 93 (96.9) | 1.000 |
BMI (kg/m2) | 23.6 ± 2.0 | 23.7 ± 2.3 | 0.750 | 23.6 ± 2.0 | 23.5 ± 2.4 | 0.763 |
Smoking, n (%) | 10 (28.6) | 142 (42.1) | 0.120 | 10 (29.4) | 39 (40.6) | 0.246 |
Drinking, n (%) | 6 (17.1) | 119 (35.3) | 0.030 | 6 (17.6) | 22 (22.9) | 0.521 |
Comorbidities, n (%) | ||||||
Hypertension | 1 (2.9) | 14 (4.2) | 0.710 | 1 (2.9) | 1 (1.0) | 0.456 |
Diabetes mellitus | 5 (14.3) | 25 (7.4) | 0.183 | 4 (11.8) | 10 (10.4) | 0.759 |
Cardiovascular disease | 1 (2.9) | 5 (1.5) | 0.450 | 1 (2.9) | 1 (1.0) | 0.456 |
Chronic kidney disease | 5 (14.3) | 32 (9.5) | 0.371 | 5 (14.7) | 13 (13.5) | 1.000 |
Pre-COVID-19 HIV markers | ||||||
CD4 count | 468.0 (356.0, 636.5) | 562.0 (402.0, 740.0) | 0.039 | 472.0 (389.0, 644.0) | 490.0 (345.0, 659.0) | 0.962 |
CD4/CD8 ratio | 0.56 (0.44, 0.81) | 0.65 (0.47, 0.89) | 0.236 | 0.59 (0.44, 0.81) | 0.58 (0.38, 0.79) | 0.571 |
3.2. ART and HIV Markers in the Matched Cohort
3.3. Changes in CD4 and CD8 Counts Before and After Vaccination
3.4. Association Between Changes in CD4 Count and CD4/CD8 Ratio and Vaccine Doses
3.5. HIV Viral Load During the Epidemic
3.6. Changes in Biochemical Indicators in PWH with Previous COVID-19 Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Bash, K.; Sacha, G.; Latifi, M. COVID-19: A management update. Cleve. Clin. J. Med. 2023, 90, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Brolly, J.; Chadwick, D.R. COVID-19 infection in people living with HIV. Br. Med. Bull. 2023, 147, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Thornhill, J.; Orkin, C.; Cevik, M. Estimating the global impact of coronavirus disease 2019 on people living with HIV. Curr. Opin. Infect. Dis. 2023, 36, 20–25. [Google Scholar] [CrossRef]
- Ao, D.; He, X.; Liu, J.; Xu, L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct. Target. Ther. 2023, 8, 466. [Google Scholar] [CrossRef]
- Levy, I.; Rahav, G. The effect of HIV on COVID-19 vaccine responses. Curr. Opin. HIV AIDS 2023, 18, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Salo, J.; Hägg, M.; Kortelainen, M.; Leino, T.; Saxell, T.; Siikanen, M.; Sääksvuori, L. The indirect effect of mRNA-based COVID-19 vaccination on healthcare workers’ unvaccinated household members. Nat. Commun. 2022, 13, 1162. [Google Scholar] [CrossRef]
- Kelly, J.D.; Leonard, S.; Hoggatt, K.J.; Boscardin, W.J.; Lum, E.N.; Moss-Vazquez, T.A.; Andino, R.; Wong, J.K.; Byers, A.; Bravata, D.M.; et al. Incidence of Severe COVID-19 Illness Following Vaccination and Booster With BNT162b2, mRNA-1273, and Ad26.COV2.S Vaccines. JAMA 2022, 328, 1427–1437. [Google Scholar] [CrossRef]
- Bozzi, G.; Lombardi, A.; Ludovisi, S.; Muscatello, A.; Manganaro, L.; Cattaneo, D.; Gori, A.; Bandera, A. Transient increase in plasma HIV RNA after COVID-19 vaccination with mRNA-1272. Int. J. Infect. Dis. 2021, 113, 125–126. [Google Scholar] [CrossRef]
- Levy, I.; Wieder-Finesod, A.; Litchevsky, V.; Biber, A.; Indenbaum, V.; Olmer, L.; Huppert, A.; Mor, O.; Goldstein, M.; Levin, E.G.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1. Clin. Microbiol. Infect. 2021, 27, 1851–1855. [Google Scholar] [CrossRef]
- Fusco, F.M.; Carleo, M.A.; Sangiovanni, N.; D’Abbraccio, M.; Tambaro, O.; Borrelli, F.; Viglietti, R.; Camaioni, C.; Bruner, V.; Falanga, R.; et al. Does COVID-19 Vaccination with BNT162b2 Influence HIV-Related Immunological and Virological Markers? Data from 235 Persons Living with HIV at Cotugno Hospital, Naples, Italy: Immune Response After Second and Third Doses, and Influence on Immunovirological Markers. Viral Immunol. 2023, 36, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Vergori, A.; Cozzi-Lepri, A.; Tavelli, A.; Mazzotta, V.; Azzini, A.M.; Gagliardini, R.; Mastrorosa, I.; Latini, A.; Pellicanò, G.; Taramasso, L.; et al. SARS-CoV-2 mRNA vaccination and short-term changes in viral load and CD4/CD8 T-cell counts in people living with HIV. Int. J. Infect. Dis. 2024, 144, 107065. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Maldonado, D.R.; Kowalski, B.L.; Miecznikowski, K.B.; Kyin, C.; Gornbein, J.A.; Domb, B.G. Best Practice Guidelines for Propensity Score Methods in Medical Research: Consideration on Theory, Implementation, and Reporting. A Review. Arthroscopy 2022, 38, 632–642. [Google Scholar] [CrossRef]
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y.; Al Qahtani, M.M.; Abdulrazzaq, N.; Al Nusair, M.; Hassany, M.; Jawad, J.S.; Abdalla, J.; et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Zhang, H.; Yao, P.; Xu, N.; Sun, Y.; Lu, H.; Xu, F.; Liao, Y.; Yang, J.; Mao, H.; et al. Immunogenicity and immune-persistence of the CoronaVac or Covilo inactivated COVID-19 Vaccine: A 6-month population-based cohort study. Front. Immunol. 2022, 13, 939311. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef]
- CDC. COVID-19 Vaccines for People Who Are Moderately or Severely Immunocompromised. 2023. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html (accessed on 28 March 2023).
- Beladiya, J.; Kumar, A.; Vasava, Y.; Parmar, K.; Patel, D.; Patel, S.; Dholakia, S.; Sheth, D.; Boddu, S.H.S.; Patel, C. Safety and efficacy of COVID-19 vaccines: A systematic review and meta-analysis of controlled and randomized clinical trials. Rev. Med. Virol. 2024, 34, e2507. [Google Scholar] [CrossRef]
- Griffin, D.W.J.; Pai Mangalore, R.; Hoy, J.F.; McMahon, J.H. Immunogenicity, effectiveness, and safety of SARS-CoV-2 vaccination in people with HIV. AIDS. 2023, 37, 1345–1360. [Google Scholar] [CrossRef]
- Negredo, E.; Domingo, P.; Sambeat, M.A.; Rabella, N.; Vázquez, G. Effect of pneumococcal vaccine on plasma HIV-1 RNA of stable patients undergoing effective highly active antiretroviral therapy. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 287–288. [Google Scholar] [CrossRef]
- Rey, D.; Krantz, V.; Partisani, M.; Schmitt, M.P.; Meyer, P.; Libbrecht, E.; Wendling, M.J.; Vetter, D.; Nicolle, M.; Kempf-Durepaire, G.; et al. Increasing the number of hepatitis B vaccine injections augments anti-HBs response rate in HIV-infected patients. Effects on HIV-1 viral load. Vaccine 2000, 18, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Günthard, H.F.; Wong, J.K.; Spina, C.A.; Ignacio, C.; Kwok, S.; Christopherson, C.; Hwang, J.; Haubrich, R.; Havlir, D.; Richman, D.D. Effect of influenza vaccination on viral replication and immune response in persons infected with human immunodeficiency virus receiving potent antiretroviral therapy. J. Infect. Dis. 2000, 181, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Höft, M.A.; Burgers, W.A.; Riou, C. The immune response to SARS-CoV-2 in people with HIV. Cell Mol. Immunol. 2024, 21, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.K.; Musa, M.S.; Tsiga-Ahmed, F.I.; Sulaiman, A.K.; Bako, A.T. A systematic review and meta-analysis of the global prevalence and determinants of COVID-19 vaccine acceptance and uptake in people living with HIV. Nat. Hum. Behav. 2024, 8, 100–114. [Google Scholar] [CrossRef]
- Kaida, A.; Brotto, L.A.; Murray, M.C.M.; Côté, H.C.F.; Albert, A.Y.; Nicholson, V.; Gormley, R.; Gordon, S.; Booth, A.; Smithm, L.W.; et al. Intention to Receive a COVID-19 Vaccine by HIV Status Among a Population-Based Sample of Women and Gender Diverse Individuals in British Columbia, Canada. AIDS Behav. 2022, 26, 2242–2255. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Santos Aleluia, I.R.; de Castro, C.T.; de Almeida Oliveira, T.; Cunha, M.S.; Magno, L.; Dourado, I.; Barreto, F.; Natividade, M.; Appiah, S.C.Y.; et al. COVID-19 Vaccine Acceptance and Hesitancy among People Living with HIV: Review and Meta-Analysis. AIDS Behav. 2024, 28, 2193–2204. [Google Scholar] [CrossRef]
- Yi, Y.; Han, X.; Cui, X.; Wang, P.; Wang, X.; Liu, H.; Wang, Y.; Zhu, N.; Li, Y.; Lin, Y.; et al. Safety and Immunogenicity of the Inactivated COVID-19 Vaccine Booster in People Living with HIV in China. Vaccines 2023, 11, 1019. [Google Scholar] [CrossRef]
- Datwani, S.; Kalikawe, R.; Waterworth, R.; Mwimanzi, F.M.; Liang, R.; Sang, Y.; Lapointe, H.R. T-Cell Responses to COVID-19 Vaccines and Breakthrough Infection in People Living with HIV Receiving Antiretroviral Therapy. Viruses 2024, 16, 661. [Google Scholar] [CrossRef]
- Frater, J.; Ewer, K.J.; Ogbe, A.; Pace, M.; Adele, S.; Adland, E.; Alagaratnam, J.; Aley, P.K.; Ali, M.; Ansari, M.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: A single-arm substudy of a phase 2/3 clinical trial. Lancet HIV 2021, 8, e474–e485. [Google Scholar] [CrossRef]
- Antinori, A.; Cicalini, S.; Meschi, S.; Bordoni, V.; Lorenzini, P.; Vergori, A.; Lanini, S.; De Pascale, L.; Matusali, G.; Mariotti, D.; et al. Humoral and Cellular Immune Response Elicited by mRNA Vaccination Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in People Living with Human Immunodeficiency Virus Receiving Antiretroviral Therapy Based on Current CD4 T-Lymphocyte Count. Clin. Infect. Dis. 2022, 75, e552–e563. [Google Scholar] [CrossRef]
- Woldemeskel, B.A.; Karaba, A.H.; Garliss, C.C.; Beck, E.J.; Wang, K.H.; Laeyendecker, O.; Cox, A.L.; Blankson, J.N. The BNT162b2 mRNA Vaccine Elicits Robust Humoral and Cellular Immune Responses in People Living with Human Immunodeficiency Virus (HIV). Clin. Infect. Dis. 2022, 74, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Tuan, J.J.; Zapata, H.; Critch-Gilfillan, T.; Ryall, L.; Turcotte, B.; Mutic, S.; Andrews, L.; Roh, M.E.; Friedland, G.; Barakat, L.; et al. Qualitative assessment of anti-SARS-CoV-2 spike protein immunogenicity (QUASI) after COVID-19 vaccination in older people living with HIV. HIV Med. 2022, 23, 178–185. [Google Scholar] [CrossRef]
- Ogbe, A.; Pace, M.; Bittaye, M.; Tipoe, T.; Adele, S.; Alagaratnam, J.; Aley, P.K.; Ansari, M.A.; Bara, A.; Broadhead, S.; et al. Durability of ChAdOx1 nCoV-19 vaccination in people living with HIV. JCI Insight 2022, 7, e157031. [Google Scholar] [CrossRef]
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021, 374, abm0829. [Google Scholar] [CrossRef] [PubMed]
- Au, W.Y.; Cheung, P.P. Effectiveness of heterologous and homologous COVID-19 vaccine regimens: Living systematic review with network meta-analysis. BMJ 2022, 377, e069989. [Google Scholar] [CrossRef] [PubMed]
- Higdon, M.M.; Baidya, A.; Walter, K.K.; Patel, M.K.; Issa, H.; Espié, E.; Feikin, D.R.; Knoll, M.D. Duration of effectiveness of vaccination against COVID-19 caused by the omicron variant. Lancet Infect. Dis. 2022, 22, 1114–1116. [Google Scholar] [CrossRef]
- Chan, D.P.C.; Wong, N.S.; Wong, B.C.K.; Chan, J.M.C.; Lee, S.S. Three-Dose Primary Series of Inactivated COVID-19 Vaccine for Persons Living with HIV, Hong Kong. Emerg. Infect. Dis. 2022, 28, 2130–2132. [Google Scholar] [CrossRef]
- Yin, J.; Chen, Y.; Li, Y.; Wang, C.; Zhang, X. Immunogenicity and efficacy of COVID-19 vaccines in people living with HIV: A systematic review and meta-analysis. Int. J. Infect. Dis. 2022, 124, 212–223. [Google Scholar] [CrossRef]
- Lapointe, H.R.; Mwimanzi, F.; Cheung, P.K.; Sang, Y.; Yaseen, F.; Umviligihozo, G.; Kalikawe, R.; Speckmaier, S.; Moran-Garcia, N.; Datwani, S.; et al. People With Human Immunodeficiency Virus Receiving Suppressive Antiretroviral Therapy Show Typical Antibody Durability After Dual Coronavirus Disease 2019 Vaccination and Strong Third Dose Responses. J. Infect. Dis. 2023, 227, 838–849. [Google Scholar] [CrossRef]
- Vergori, A.; Cozzi Lepri, A.; Cicalini, S.; Matusali, G.; Bordoni, V.; Lanini, S.; Meschi, S.; Iannazzo, R.; Mazzotta, V.; Colavita, F.; et al. Immunogenicity to COVID-19 mRNA vaccine third dose in people living with HIV. Nat. Commun. 2022, 13, 4922. [Google Scholar] [CrossRef]
- Minervina, A.A.; Pogorelyy, M.V.; Kirk, A.M.; Crawford, J.C.; Allen, E.K.; Chou, C.H.; Mettelman, R.C.; Allison, K.J.; Lin, C.Y.; Brice, D.C.; et al. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nat. Immunol. 2022, 23, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Coburn, S.B.; Humes, E.; Lang, R.; Stewart, C.; Hogan, B.C.; Gebo, K.A.; Napravnik, S.; Edwards, J.K.; Browne, L.E.; Park, L.S.; et al. Analysis of Postvaccination Breakthrough COVID-19 Infections Among Adults with HIV in the United States. JAMA Netw. Open 2022, 5, e2215934. [Google Scholar] [CrossRef] [PubMed]
- Keeton, R.; Tincho, M.B.; Suzuki, A.; Benede, N.; Ngomti, A.; Baguma, R.; Chauke, M.V.; Mennen, M.; Skelem, S.; Adriaanse, M.; et al. Impact of SARS-CoV-2 exposure history on the T cell and IgG response. Cell Rep. Med. 2023, 4, 100898. [Google Scholar] [CrossRef] [PubMed]
- Matveev, V.A.; Mihelic, E.Z.; Benko, E.; Budylowski, P.; Grocott, S.; Lee, T.; Korosec, C.S.; Colwill, K.; Stephenson, H.; Law, R.; et al. Immunogenicity of COVID-19 vaccines and their effect on HIV reservoir in older people with HIV. iScience 2023, 26, 107915. [Google Scholar] [CrossRef]
- Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 2019, 99, 1047–1078. [Google Scholar] [CrossRef]
- Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef]
- Hu, W.S.; Jiang, F.Y.; Shu, W.; Zhao, R.; Cao, J.M.; Wang, D.P. Liver injury in COVID-19: A minireview. World J. Gastroenterol. 2022, 28, 6716–6731. [Google Scholar] [CrossRef]
- Ely, E.W.; Brown, L.M.; Fineberg, H.V.; National Academies of Sciences, Engineering, and Medicine Committee on Examining the Working Definition for Long Covid. Long Covid Defined. N. Engl. J. Med. 2024, 391, 1746–1753. [Google Scholar] [CrossRef]
- Willyard, C. Are repeat COVID infections dangerous? What the science says. Nature. 2023, 616, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Y.; Huo, Z.; Zhang, L.; Jing, S.; Dai, Z.; Huang, Y.; Si, M.; Xin, Y.; Qu, Y.; et al. COVID-19 Vaccine Hesitancy Among People Living with HIV: A Systematic Review and Meta-Analysis. AIDS Behav. 2024, 28, 2183–2192. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Unvaccinated (n = 34) | Vaccinated (n = 96) | p |
---|---|---|---|
ART, n (%) | |||
TDF/AZT+3TC+EFV/NVP | 28 (82.4) | 75 (78.1) | 0.601 |
TDF/AZT+3TC+LPV/r | 4 (11.8) | 10 (10.4) | 0.759 |
Compound agents (BIC/FTC/TAF) | 1 (2.9) | 5 (5.2) | 1.000 |
Compound agents (DTG/3TC) | 1 (2.9) | 6 (6.3) | 0.675 |
Frequency of COVID-19 infection, n (%) | |||
0 | 7 (20.6) | 11 (11.4) | 0.372 |
1 | 25 (73.5) | 76 (79.2) | |
2 | 2 (5.9) | 9 (9.4) | |
HIV markers | |||
Two months after first dose | |||
CD4 count, cells/uL | 500.0 (401.0, 676.0) | 579.0 (455.5, 709.0) | 0.511 |
CD8 count, cells/uL | 808.5 (680.0, 958.0) | 780.0 (579.5, 1002.0) | 0.585 |
CD4/CD8 ratio | 0.65 (0.57, 0.78) | 0.80 (0.68, 0.95) | 0.315 |
Two months after third dose | |||
CD4 count, cells/uL | 540.0 (443.5, 694.0) | 569,9 (442.0, 749.5) | 0.554 |
CD8 count, cells/uL | 903.5 (690.0, 1000.0) | 807.5 (628.0, 981.0) | 0.185 |
CD4/CD8 ratio | 0.64 (0.49, 0.78) | 0.80 (0.56, 1.03) | 0.037 |
Post-COVID-19 | |||
CD4 count, cells/uL | 613.0 (465.0, 757.0) | 630.0 (444.0, 811.5) | 0.803 |
CD8 count, cells/uL | 769.0 (606.0, 1099.0) | 811.5 (573.0, 1038.0) | 0.947 |
CD4/CD8 ratio | 0.70 (0.56, 0.92) | 0.75 (0.53, 0.96) | 0.677 |
Recent | |||
CD4 count, cells/uL | 589.5 (408.0, 742.0) | 622.5 (470.5, 808.0) | 0.343 |
CD8 count, cells/uL | 708.0 (576.0, 957.0) | 762.0 (575.5, 1021.0) | 0.470 |
CD4/CD8 ratio | 0.73 (0.63, 0.97) | 0.76 (0.61, 1.07) | 0.843 |
Ratio of post-COVID-19 to pre-COVID-19 | |||
Post-CD4/pre-CD4 ratio | 1.12 (1.01, 1.55) | 1.17 (1.05, 1.37) | 0.651 |
(Post-CD4/CD8)/(pre-CD4/CD8) ratio | 1.11 (1.01, 1.42) | 1.20 (1.03, 1.42) | 0.573 |
Ratio of recent to pre-COVID-19 | |||
Recent-CD4/pre-CD4 ratio | 1.10 (0.97, 1.53) | 1.20 (0.98, 1.41) | 0.637 |
(Recent-CD4/CD8)/(pre-CD4/CD8) ratio | 1.27 (1.05, 1.67) | 1.31 (1.08, 1.55) | 0.739 |
Characteristics | Pre-COVID-19 | Post-Vaccination | p |
---|---|---|---|
CD4 count > 500 cells/uL (n = 207) | |||
CD4 count | 695.0 (598.0, 820.0) | 803.0 (669.0, 988.0) | <0.001 |
CD8 count | 981.0 (760.0, 1245.0) | 902.0 (700.0, 1174.0) | 0.432 |
CD4/CD8 ratio | 0.77 (0.59, 1.01) | 0.89 (0.69, 1.13) | <0.001 |
CD4/CD8 ratio > 1 (n = 69) | |||
CD4 count | 701.0 (561.0, 1044.5) | 848.0 (670.5, 1124.0) | <0.001 |
CD8 count | 632.0 (443.0, 821.0) | 658.0 (528.5, 958.0) | 0.009 |
CD4/CD8 ratio | 1.18 (1.06, 1.29) | 1.27 (1.09, 1.52) | 0.007 |
ART initiation > 1 year (n = 263) | |||
CD4 count | 589.0 (422.0, 765.0) | 690.0 (488.0, 888.0) | <0.001 |
CD8 count | 857.0 (639.0, 1131.0) | 823.0 (631.0, 1097.0) | 0.353 |
CD4/CD8 ratio | 0.68 (0.48, 0.98) | 0.81 (0.61, 1.05) | <0.001 |
No COVID-19 infection (n = 37) | |||
CD4 count | 600.0 (409.0, 750.5) | 783.0 (430.5, 878.0) | <0.001 |
CD8 count | 861.0 (518.0, 1251.5) | 769.0 (565.5, 1341.0) | 0.592 |
CD4/CD8 ratio | 0.73 (0.53, 1.00) | 0.84 (0.63, 1.24) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lin, Y.; Yi, Y.; Zhu, N.; Cui, X.; Li, X. COVID-19 Vaccination and Transient Increase in CD4/CD8 Cell Counts in People with HIV: Evidence from China. Vaccines 2024, 12, 1365. https://doi.org/10.3390/vaccines12121365
Li Y, Lin Y, Yi Y, Zhu N, Cui X, Li X. COVID-19 Vaccination and Transient Increase in CD4/CD8 Cell Counts in People with HIV: Evidence from China. Vaccines. 2024; 12(12):1365. https://doi.org/10.3390/vaccines12121365
Chicago/Turabian StyleLi, Yanyan, Yingying Lin, Yunyun Yi, Na Zhu, Xinyu Cui, and Xin Li. 2024. "COVID-19 Vaccination and Transient Increase in CD4/CD8 Cell Counts in People with HIV: Evidence from China" Vaccines 12, no. 12: 1365. https://doi.org/10.3390/vaccines12121365
APA StyleLi, Y., Lin, Y., Yi, Y., Zhu, N., Cui, X., & Li, X. (2024). COVID-19 Vaccination and Transient Increase in CD4/CD8 Cell Counts in People with HIV: Evidence from China. Vaccines, 12(12), 1365. https://doi.org/10.3390/vaccines12121365