Antibody Response to SARS-CoV-2 Vaccines in Transplant Recipients and Hemodialysis Patients: Data from the Dominican Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects Ethics Statement
2.2. Subject Data Analysis
2.3. Sample Collection
2.4. mPlex-CoV Assay
2.5. Measurement of Hemoglobin (Hgb) and Adjustment of Antibody Concentration
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Vaccination Characteristics and Prior COVID-19 Status
3.3. Generalized Linear Modeling
3.4. Time Varying Anti-SARS-CoV-2 IgG Response
3.5. SARS-CoV-2 Anti-Spike and Anti-Nucleocapsid IgG Responses
3.6. SARS-CoV-2 Anti-Spike and Anti-Nucleocapsid IgG Response in Previously Infected and Non-Infected Subjects
3.7. SARS-CoV-2 Anti-Spike and Anti-Nucleocapsid IgG Responses and Vaccine Type
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO | Control group |
CONABIOS | National Health Bioethics Committee of the Dominican Republic |
(the Spanish acronym) | |
COVID-19 | Coronavirus disease 2019 |
DOAJ | Directory of Open Access Journals |
ESRD | End-Stage Renal Disease |
GLMM | Generalized Linear Mixed Models |
HD | Hemodialysis Patients |
Hgb | Hemoglobin |
IgG | Immunoglobin G |
INCORT | Instituto Nacional de Coordinación de Trasplante |
IRB | Institutional Review Boards |
MDPI | Multidisciplinary Digital Publishing Institute |
mPlex-CoV | Fluorescent Multiplex Assay |
N | Nucleocapsid |
PCR | Polymerase Chain Reaction |
RNA | Ribonucleic acid |
S | Spike |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
TR | Transplant Recipients |
VAMS | Volumetric Micro Sampling |
References
- World Health Organization. WHO Caronavirus Dashboard. Available online: https://covid19.who.int/ (accessed on 10 September 2024).
- World Health Organization. Status of COVID-19 Vaccines Within WHO EUL/PQ Evaluation Process. 2023. Available online: https://extranet.who.int/prequal/sites/default/files/document_files/Status_COVID_VAX_08AUgust2023.pdf (accessed on 14 September 2024).
- Carr, E.J.; Kronbichler, A.; Graham-Brown, M.; Abra, G.; Argyropoulos, C.; Harper, L.; Lerma, E.V.; Suri, R.S.; Topf, J.; Willicombe, M.; et al. Systematic Review of Early Immune Response to SARS-CoV-2 Vaccination Among Patients with Chronic Kidney Disease. Kidney Int. Rep. 2021, 6, 2292–2304. [Google Scholar] [CrossRef] [PubMed]
- Goffin, E.; Candellier, A.; Vart, P.; Noordzij, M.; Arnol, M.; Covic, A.; Lentini, P.; Malik, S.; Reichert, L.J.; Sever, M.S.; et al. COVID-19 related mortality in kidney transplant and hemodialysis patients: A comparative, prospective registry based study. Nephrol. Dial. Transplant. 2021, 36, 2094–2105. [Google Scholar] [CrossRef] [PubMed]
- Wijewickrama, E.S.; Abdul Hafidz, M.I.; Robinson, B.M.; Johnson, D.W.; Liew, A.; Dreyer, G.; Caskey, F.J.; Bello, A.K.; Zaidi, D.; Damster, S.; et al. Availability and prioritisation of COVID-19 vaccines among patients with advanced chronic kidney disease and kidney failure during the height of the pandemic: A global survey by the International Society of Nephrology. BMJ Open 2022, 12, e065112. [Google Scholar] [CrossRef]
- Cameron, A.; Porterfield, C.A.; Byron, L.; Wang, C.; Pearson, Z.; Bohrhunter, J.L.; Cardillo, A.B.; Ryan-Muntz, L.; Sorensen, R.A.; Caserta, M.; et al. A Multiplex Microsphere IgG Assay for SARS-CoV-2 Using ACE2-Mediated Inhibition as a Surrogate for Neutralization. J. Clin. Microbiol. 2021, 59, 10-1128. [Google Scholar] [CrossRef]
- Sasikala, M.; Shashidhar, J.; Deepika, G.; Ravikanth, V.; Krishna, V.V.; Sadhana, Y.; Pragathi, K.; Reddy, D.N. Immunological memory and neutralizing activity to a single dose of COVID-19 vaccine in previously infected individuals. Int. J. Infect. Dis. 2021, 108, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Wisnivesky, J.P.; Stone, K.; Bagiella, E.; Doernberg, M.; Mendu, D.R.; Lin, J.J.; Kale, M. Long-term Persistence of Neutralizing Antibodies to SARS-CoV-2 Following Infection. J. Gen. Intern. Med. 2021, 36, 3289–3291. [Google Scholar] [CrossRef]
- Anand, S.; Montez-Rath, M.E.; Han, J.; Garcia, P.; Cadden, L.; Hunsader, P.; Kerschmann, R.; Beyer, P.; Dittrich, M.; Block, G.A.; et al. Antibody Response to COVID-19 Vaccination in Patients Receiving Dialysis. J. Am. Soc. Nephrol. 2021, 32, 2435–2438. [Google Scholar] [CrossRef]
- Windpessl, M.; Bruchfeld, A.; Anders, H.J.; Kramer, H.; Waldman, M.; Renia, L.; Ng, L.F.P.; Xing, Z.; Kronbichler, A. COVID-19 vaccines and kidney disease. Nat. Reviews. Nephrol. 2021, 17, 291–293. [Google Scholar] [CrossRef]
- Bertrand, D.; Hamzaoui, M.; Lemée, V.; Lamulle, J.; Hanoy, M.; Laurent, C.; Lebourg, L.; Etienne, I.; Lemoine, M.; Le Roy, F.; et al. Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients. J. Am. Soc. Nephrol. 2021, 32, 2147–2152. [Google Scholar] [CrossRef]
- Marion, O.; Abravanel, F.; Couat, C.; Faguer, S.; Esposito, L.; Hebral, A.L.; Izopet, J.; Kamar, N. Safety and Immunogenicity of Anti–SARS-CoV-2 Messenger RNA Vaccines in Recipients of Solid Organ Transplants. Ann. Intern. Med. 2021, 174, 1336–1338. [Google Scholar] [CrossRef]
- Simon, B.; Rubey, H.; Treipl, A.; Gromann, M.; Hemedi, B.; Zehetmayer, S.; Kirsch, B. Hemodialysis Patients Show a Highly Diminished Antibody Response after COVID-19 mRNA Vaccination Compared to Healthy Controls. Nephrol. Dial. Transplant. 2021, 36, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Ziemba, R.; Campbell, K.N.; Yang, T.H.; Schaeffer, S.E.; Mayo, K.M.; McGann, P.; Quinn, S.; Roach, J.; Huff, E.D. Excess Death Estimates in Patients with End-Stage Renal Disease—United States, February-August 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Banham, G.D.; Godlee, A.; Faustini, S.E.; Cunningham, A.F.; Richter, A.; Harper, L.; Group, o.b.o.t.C.H.B.S. Hemodialysis Patients Make Long-Lived Antibodies against SARS-CoV-2 that May Be Associated with Reduced Reinfection. J. Am. Soc. Nephrol. 2021, 32, 2140–2142. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA 2021, 325, 2204–2206. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients. JAMA 2021, 325, 1784–1786. [Google Scholar] [CrossRef]
- Benotmane, I.; Gautier, G.; Perrin, P.; Olagne, J.; Cognard, N.; Fafi-Kremer, S.; Caillard, S. Antibody Response After a Third Dose of the mRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients with Minimal Serologic Response to 2 Doses. JAMA 2021, 326, 1063–1065. [Google Scholar] [CrossRef]
- Ducloux, D.; Colladant, M.; Chabannes, M.; Yannaraki, M.; Courivaud, C. Humoral response after three doses of BNT162b2 mRNA COVID-19 vaccine in patients on hemodialysis. Kidney Int. 2021, 100, 702–704. [Google Scholar] [CrossRef]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; Del Bello, A. Three Doses of an mRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef]
- Han, A.; Min, S.; Jo, E.A.; Lee, H.; Kim, Y.C.; Han, S.S.; Kang, H.G.; Ahn, Y.H.; Oh, I.; Song, E.Y.; et al. Association between Low Anti-spike Antibody Levels After the Third Dose of SARS-CoV-2 Vaccination and Hospitalization due to Symptomatic Breakthrough Infection in Kidney Transplant Recipients. Ann. Lab. Med. 2023, 44, 64–73. [Google Scholar] [CrossRef]
- Weiss, A.; Hendrickx, R.; Stensgaard, E.; Jellingsø, M.; Sommer, M.O. Kidney Transplant and Dialysis Patients Remain at Increased Risk for Succumbing to COVID-19. Transplantation 2023, 107, 1136–1138. [Google Scholar] [CrossRef]
- Barreiro, P.; Candel, F.J.; Carretero, M.M.; San Román, J. Risk of severe COVID in solid organ transplant recipient. Rev. Esp. Quimioter. 2023, 36 (Suppl. S1), 15–17. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.P.Y.; Abedon, A.T.; Alejo, J.L.; Segev, D.L.; Massie, A.B.; Werbel, W.A. Incident COVID-19 and Hospitalizations by Variant Era Among Vaccinated Solid Organ Transplant Recipients. JAMA Netw. Open 2023, 6, e2329736. [Google Scholar] [CrossRef] [PubMed]
- Pinchera, B.; Buonomo, A.R.; Trucillo, E.; Susini, S.; D’Agostino, A.; Di Filippo, I.; Tanzillo, A.; Villari, R.; Carrano, R.; Troisi, R.I.; et al. COVID-19 in solid organ transplant recipients after 2 years of pandemic: Outcome and impact of antiviral treatments in a single-center study. Front. Transplant. 2023, 2, 1095225. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C. En República Dominicana, 5275 Pacientes Reciben Hemodiálisis y 500 Esperan un Riñón. Diario Libre. March 2023. Available online: https://www.diariolibre.com/actualidad/salud/2023/03/10/en-rd-5275-reciben-hemodialisis-y-500-esperan-un-rinon/2250175 (accessed on 3 September 2024).
- Instituto Nacional de Coordinación de Trasplante (INCORT). Trasplantes de órganos y Tejidos de la República Dominicana 2008–2023. Incort. Santo Domingo, Dominican Republic. 2024. Available online: https://incortrd.com/trasplantes-de-organos-y-tejidos-de-la-republica-dominicana-2008-2022/ (accessed on 19 August 2024).
- Ministerio de Salud Pública de La República Dominicana. Gobierno Presenta Plan Nacional de Vacunación Contra COVID-19. 15 February 2021. Available online: https://dominicantoday.com/dr/health/2021/02/13/vaccines-that-the-country-will-use-are-very-effective/ (accessed on 2 August 2024).
- Dominican Today. Vaccines That the Dominican Republic Will Use Are Very Effective. 13 February 2021. Available online: https://dominicantoday.com/dr/health/2021/02/13/vaccines-that-the-country-will-use-are-very-effective/ (accessed on 2 August 2024).
- Pecora, N.D.; Zand, M.S. Measuring the Serologic Response to Severe Acute Respiratory Syndrome Coronavirus 2: Methods and Meaning. Clin. Lab. Med. 2020, 40, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, D.; Zhou, Q.; Wiltse, A.; Zand, M.S. Antibody Mediated Immunity to SARS-CoV-2 and Human Coronaviruses: Multiplex Beads Assay and Volumetric Absorptive Microsampling to Generate Immune Repertoire Cartography. Front. Immunol. 2021, 12, 696370. [Google Scholar] [CrossRef]
- Kompaniyets, L.; Pennington, A.F.; Goodman, A.B.; Rosenblum, H.G.; Belay, B.; Ko, J.Y.; Chevinsky, J.R.; Schieber, L.Z.; Summers, A.D.; Lavery, A.M.; et al. Underlying Medical Conditions and Severe Illness Among 540,667 Adults Hospitalized with COVID-19, March 2020–March 2021. Prev. Chronic. Dis. 2021, 18, E66. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Wiltse, A.; Emo, J.; Hilchey, S.P.; Zand, M.S. Application of volumetric absorptive microsampling (VAMS) to measure multidimensional anti-influenza IgG antibodies by the mPlex-Flu assay. J. Clin. Transl. Sci. 2019, 3, 332–343. [Google Scholar] [CrossRef]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef]
- United Nations Population Fund (UNFPA). Encuesta Nacional de Autopercepción Racial y Étnica en República Dominicana. March 2022. Available online: https://dominicanrepublic.unfpa.org/es/publications/breve-encuesta-nacional-de-autopercepcion-racial-y-etnica-en-republica-dominicana (accessed on 3 September 2024).
- Narongkiatikhun, P.; Noppakun, K.; Chaiwarith, R.; Winichakoon, P.; Vongsanim, S.; Suteeka, Y.; Pongsuwan, K.; Kusirisin, P.; Wongsarikan, N.; Fanhchaksai, K.; et al. Immunogenicity and Safety of Homologous and Heterologous Prime-Boost of CoronaVac® and ChAdOx1 nCoV-19 among Hemodialysis Patients: An Observational Prospective Cohort Study. Vaccines 2023, 11, 715. [Google Scholar] [CrossRef]
- Pérez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.F.; Malik, A.A.; De la Cruz, E.; Jorge, A.; et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 2022, 28, 481–485. [Google Scholar] [CrossRef]
- Ramos, A.; Cardoso, M.J.; Ribeiro, L.; Guimarães, J.T. Assessing SARS-CoV-2 Neutralizing Antibodies after BNT162b2 Vaccination and Their Correlation with SARS-CoV-2 IgG Anti-S1, Anti-RBD and Anti-S2 Serological Titers. Diagnostics 2022, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- Anichini, G.; Terrosi, C.; Gandolfo, C.; Gori Savellini, G.; Fabrizi, S.; Miceli, G.B.; Cusi, M.G. SARS-CoV-2 Antibody Response in Persons with Past Natural Infection. N. Engl. J. Med. 2021, 385, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Dai, L.; Gao, G.F. Humoral and cellular immunity and the safety of COVID-19 vaccines: A summary of data published by 21 May 2021. Int. Immunol. 2021, 33, 529–540. [Google Scholar] [CrossRef]
- Stumpf, J.; Siepmann, T.; Lindner, T.; Karger, C.; Schwöbel, J.; Anders, L.; Faulhaber-Walter, R.; Schewe, J.; Martin, H.; Schirutschke, H.; et al. Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transplant versus dialysis patients: A prospective, multicenter observational study using mRNA-1273 or BNT162b2 mRNA vaccine. Lancet Reg. Health Eur. 2021, 9, 100178. [Google Scholar] [CrossRef]
- Rouphael, N.; Bausch-Jurken, M. COVID-19 Vaccination Among Patients Receiving Maintenance Renal Replacement Therapy: Immune Response, Real-World Effectiveness, and Implications for the Future. J. Infect. Dis. 2023, 228, S46–S54. [Google Scholar] [CrossRef]
- Jarlhelt, I.; Pérez-Alós, L.; Bayarri-Olmos, R.; Hansen, C.B.; Petersen, M.S.; Weihe, P.; Armenteros, J.J.A.; Madsen, J.R.; Nielsen, J.P.S.; Hilsted, L.M.; et al. Distinguishing SARS-CoV-2 infection and vaccine responses up to 18 months post-infection using nucleocapsid protein and receptor-binding domain antibodies. Microbiol. Spectr. 2023, 11, e01796-23. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Bretones, M.; Fouchier, R.A.M.; Koopmans, M.P.G.; van Nierop, G.P. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J. Clin. Investig. 2023, 133, e162192. [Google Scholar] [CrossRef]
- Qaqish, A.; Abbas, M.M.; Al-Tamimi, M.; Abbas, M.A.; Al-Omari, M.; Alqassieh, R. SARS-CoV-2 Antinucleocapsid Antibody Response of mRNA and Inactivated Virus Vaccines Compared to Unvaccinated Individuals. Vaccines 2022, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Eren Sadioğlu, R.; Demir, E.; Evren, E.; Aktar, M.; Şafak, S.; Artan, A.S.; Meşe, S.; Ağaçfidan, A.; Çınar, G.; Önel, M.; et al. Antibody response to two doses of inactivated SARS-CoV-2 vaccine (CoronaVac) in kidney transplant recipients. Transpl. Infect. Dis. 2021, 23, e13740. [Google Scholar] [CrossRef]
- Ibrahim, K.Y.; Moreira, R.M.; Santos, C.F.D.; Strabelli, T.M.V.; Belizário, J.C.; Pinto, M.I.M.; Marinho, A.; Pereira, J.M.; Mello, L.S.; Ando, M.C.; et al. Immunogenicity of COVID-19 adsorbed inactivated vaccine (CoronaVac) and additional doses of mRNA BNT162b2 vaccine in immunocompromised adults compared with immunocompetent persons. Rev. Inst. Med. Trop. São Paulo 2024, 66, e24. [Google Scholar] [CrossRef]
- Lin, C.; Tu, P.; Beitsch, L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines 2021, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Wallace, H.; Mount, P.F. COVID-19 beliefs and vaccination uptake in dialysis patients: Lessons from an anonymous patient survey. Intern. Med. J. 2022, 52, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.A.; Bloomstone, S.J.; Walder, J.; Crawford, S.; Fouayzi, H.; Mazor, K.M. Attitudes Toward a Potential SARS-CoV-2 Vaccine: A Survey of U.S. Adults. Ann. Intern. Med. 2020, 173, 964–973. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Control, n = 33 1 | Hemodialysis, n = 13 1 | Transplant, n = 24 1 | p-Value 2 |
---|---|---|---|---|
Age | 0.150 | |||
18–24 | 6 (18%) | 1 (7.7%) | 3 (13%) | |
25–44 | 21 (64%) | 5 (38%) | 11 (46%) | |
45–65 | 6 (18%) | 7 (54%) | 10 (42%) | |
Sex | 0.200 | |||
Female | 19 (58%) | 4 (31%) | 10 (42%) | |
Male | 14 (42%) | 9 (69%) | 14 (58%) | |
Race | <0.001 | |||
Asian | 1 (3.0%) | 0 (0%) | 0 (0%) | |
Black | 15 (45%) | 10 (77%) | 24 (100%) | |
White | 7 (21%) | 0 (0%) | 0 (0%) | |
Not reported | 10 (30%) | 3 (23%) | 0 (0%) | |
Ethnicity | 0.009 | |||
Hispanic or Latino | 19 (58%) | 10 (77%) | 19 (79%) | |
Non-Hispanic or non-Latino | 4 (12%) | 0 (0%) | 5 (21%) | |
Not reported | 10 (30%) | 3 (23%) | 0 (0%) | |
Education level | <0.001 | |||
Less than high school | 1 (3.0%) | 5 (38%) | 1 (4.2%) | |
High school graduate | 4 (12%) | 3 (23%) | 7 (29%) | |
Higher education | 9 (27%) | 0 (0%) | 15 (63%) | |
Graduate education | 3 (9.1%) | 0 (0%) | 0 (0%) | |
Not reported | 16 (48%) | 5 (38%) | 1 (4.2%) | |
Underlying conditions | <0.001 | |||
None | 27 (82%) | 0 (0%) | 1 (4.2%) | |
At least one | 6 (18%) | 2 (15%) | 6 (25%) | |
Two or more | 0 (0%) | 11 (85%) | 17 (71%) | |
COVID-19 positive before first fingerstick | 0.053 | |||
Yes | 10 (30%) | 6 (46%) | 15 (63%) | |
No | 23 (70%) | 7 (54%) | 9 (38%) |
Characteristic | Control, n = 33 1 | Hemodialysis, n = 13 1 | Transplant, n = 24 1 | p-Value 2 |
---|---|---|---|---|
Vaccine doses | <0.001 | |||
One dose | 11 (33%) | 5 (38%) | 2 (8.3%) | |
Two doses | 20 (61%) | 4 (31%) | 11 (46%) | |
Fully vaccinated and one booster | 2 (6.1%) | 2 (15%) | 10 (42%) | |
Two or more boosters | 0 (0%) | 0 (0%) | 1 (4.2%) | |
Not reported | 0 (0%) | 2 (15%) | 0 (0%) | |
Vaccine type (prime schedule) | 0.066 | |||
BNT162b2 | 25 (76%) | 7 (64%) | 11 (46%) | |
CoronaVac | 8 (24%) | 4 (36%) | 13 (54%) | |
Booster schedule | 0.700 | |||
Heterologous | 0 (0%) | 1 (50%) | 6 (55%) | |
Homologous | 2 (100%) | 1 (50%) | 5 (45%) | |
COVID-19 positive before first fingerstick | 0.053 | |||
Yes | 10 (30%) | 6 (46%) | 15 (63%) | |
No | 23 (70%) | 7 (54%) | 9 (38%) | |
COVID-19 positive during the study | >0.900 | |||
Yes | 8 (24%) | 2 (15%) | 5 (21%) | |
Not reported | 25 (76%) | 11 (85%) | 19 (79%) |
Variable | 95% CI 1 | p-Value | |
---|---|---|---|
Time point | |||
1 | — | — | |
2 | 0.42 | −0.04, 0.89 | 0.076 |
3 | 0.63 | 0.17, 1.10 | 0.008 |
4 | 0.54 | 0.10, 0.98 | 0.018 |
5 | 0.90 | 0.43, 1.4 | <0.001 |
Cohort | |||
Control | — | — | |
Hemodialysis | 1.30 | −0.13, 2.80 | 0.072 |
Transplant | 0.34 | −0.53, 1.20 | 0.400 |
Vaccine doses | 0.76 | 0.20, 1.30 | 0.008 |
Age | |||
18–24 | — | — | |
25–44 | −0.52 | −1.4, 0.35 | 0.200 |
45–65 | 0.41 | −0.30, 1.1 | 0.300 |
Sex | |||
Female | — | — | |
Male | −0.39 | −1.10, 0.31 | 0.300 |
Underlying conditions | −0.98 | −1.60, −0.40 | 0.001 |
COVID-19 positive before first fingerstick | |||
No | — | — | |
Yes | 1.10 | 0.23, 1.90 | 0.014 |
Vaccine type (prime schedule) | |||
BNT162b2 | — | — | |
CoronaVac | 1.80 | 0.81, 2.80 | <0.001 |
Booster schedule | |||
Heterologous | — | — | |
Homologous | 1.40 | 0.30, 2.50 | 0.014 |
Education level | −0.01 | −0.68, 0.66 | >0.900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcantara Sanchez, L.; Alvarez Guerra, E.; Li, D.; King, S.M.; Hilchey, S.P.; Zhou, Q.; Dewhurst, S.; Fiscella, K.; Zand, M.S. Antibody Response to SARS-CoV-2 Vaccines in Transplant Recipients and Hemodialysis Patients: Data from the Dominican Republic. Vaccines 2024, 12, 1312. https://doi.org/10.3390/vaccines12121312
Alcantara Sanchez L, Alvarez Guerra E, Li D, King SM, Hilchey SP, Zhou Q, Dewhurst S, Fiscella K, Zand MS. Antibody Response to SARS-CoV-2 Vaccines in Transplant Recipients and Hemodialysis Patients: Data from the Dominican Republic. Vaccines. 2024; 12(12):1312. https://doi.org/10.3390/vaccines12121312
Chicago/Turabian StyleAlcantara Sanchez, Lisette, Eloy Alvarez Guerra, Dongmei Li, Samantha M. King, Shannon P. Hilchey, Qian Zhou, Stephen Dewhurst, Kevin Fiscella, and Martin S. Zand. 2024. "Antibody Response to SARS-CoV-2 Vaccines in Transplant Recipients and Hemodialysis Patients: Data from the Dominican Republic" Vaccines 12, no. 12: 1312. https://doi.org/10.3390/vaccines12121312
APA StyleAlcantara Sanchez, L., Alvarez Guerra, E., Li, D., King, S. M., Hilchey, S. P., Zhou, Q., Dewhurst, S., Fiscella, K., & Zand, M. S. (2024). Antibody Response to SARS-CoV-2 Vaccines in Transplant Recipients and Hemodialysis Patients: Data from the Dominican Republic. Vaccines, 12(12), 1312. https://doi.org/10.3390/vaccines12121312