Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harith, A.A.; Ab Gani, M.H.; Griffiths, R.; Abdul Hadi, A.; Abu Bakar, N.A.; Myers, J.; Mahjom, M.; Robat, R.M.; Zubir, M.Z. Incidence, Prevalence, and Sources of COVID-19 Infection among Healthcare Workers in Hospitals in Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 12485. [Google Scholar] [CrossRef] [PubMed]
- Duradoni, M.; Fiorenza, M.; Guazzini, A. When Italians Follow the Rules against COVID Infection: A Psychological Profile for Compliance. COVID 2021, 1, 246–262. [Google Scholar] [CrossRef]
- Moran, K.R.; Valle, S.Y.D. A meta-analysis of the association between gender and protective behaviors in response to respiratory epidemics and pandemics. PLoS ONE 2016, 11, e0164541. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Cowling, B.; Lam, W.T.; Ng, M.W.; Fielding, R. Situational awareness and health protective responses to pandemic influenza A (H1N1) in Hong Kong: A cross-sectional study. PLoS ONE 2010, 5, e13350. [Google Scholar] [CrossRef]
- Susło, R.; Pobrotyn, P.; Mierzecki, A.; Drobnik, J. Fear of Illness and Convenient Access to Vaccines Appear to Be the Missing Keys to Successful Vaccination Campaigns: Analysis of the Factors Influencing the Decisions of Hospital Staff in Poland concerning Vaccination against Influenza and COVID-19. Vaccines 2022, 10, 1026. [Google Scholar] [CrossRef] [PubMed]
- Baldner, C.; Di Santo, D.; Viola, M.; Pierro, A. Perceived COVID-19 Threat and Reactions to Noncompliant Health-Protective Behaviors: The Mediating Role of Desired Cultural Tightness and the Moderating Role of Age. Int. J. Environ. Res. Public Health 2022, 19, 2364. [Google Scholar] [CrossRef]
- Galende, N.; Redondo, I.; Dosil-Santamaria, M.; Ozamiz-Etxebarria, N. Factors Influencing Compliance with COVID-19 Health Measures: A Spanish Study to Improve Adherence Campaigns. Int. J. Environ. Res. Public Health 2022, 19, 4853. [Google Scholar] [CrossRef]
- Żółtowska, B.; Barańska, I.; Szczerbińska, K.; Różańska, A.; Mydel, K.; Sydor, W.; Heczko, P.B.; Jachowicz, E.; Wójkowska-Mach, J. Preparedness of Health Care Workers and Medical Students in University Hospital in Krakow for COVID-19 Pandemic within the CRACoV Project. J. Clin. Med. 2021, 10, 3487. [Google Scholar] [CrossRef]
- Shahrabani, S.; Bord, S.; Admi, H.; Halberthal, M. Physicians’ Compliance with COVID-19 Regulations: The Role of Emotions and Trust. Healthcare 2022, 10, 582. [Google Scholar] [CrossRef]
- Drobnik, J.; Susło, R.; Pobrotyn, P.; Fabich, E.; Magiera, V.; Diakowska, D.; Uchmanowicz, I. COVID-19 among Healthcare Workers in the University Clinical Hospital in Wroclaw, Poland. Int. J. Environ. Res. Public Health 2021, 18, 5600. [Google Scholar] [CrossRef]
- Lakoh, S.; Firima, E.; Williams, C.E.E.; Conteh, S.K.; Jalloh, M.B.; Sheku, M.G.; Adekanmbi, O.; Sevalie, S.; Kamara, S.A.; Kamara, M.A.S.; et al. An Intra-COVID-19 Assessment of Hand Hygiene Facility, Policy and Staff Compliance in Two Hospitals in Sierra Leone: Is There a Difference between Regional and Capital City Hospitals? Trop. Med. Infect. Dis. 2021, 6, 204. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Thomas, P.G.; Randolph, A.G. Immunology of SARS-CoV-2 infection in children. Nat. Immunol. 2022, 23, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Azzolino, D.; Spolidoro, G.C.I.; Mazzocchi, A.; Agostoni, C.; Cesari, M. When the Pandemic Will Be Over: Lots of Hope and Some Concerns. Geriatrics 2022, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Gómez de la Torre, J.C.; Cáceres-DelAguila, J.A.; Muro-Rojo, C.; De La Cruz-Escurra, N.; Copaja-Corzo, C.; Hueda-Zavaleta, M.; Arenas Siles, D.; Benites-Zapata, V.A. Humoral Immune Response Induced by the BBIBP-CorV Vaccine (Sinopharm) in Healthcare Workers: A Cohort Study. Trop. Med. Infect. Dis. 2022, 7, 66. [Google Scholar] [CrossRef]
- Okba, N.M.A.; Müller, M.A.; Li, W.; Wang, C.; Geurtsvan-Kessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; Bruin, E.D.; Chandler, F.D. Severe Acute Respiratory Syndrome Coronavirus 2−Specific Antibody Responses in Coronavirus Disease Patients. Emerg. Infect. Dis. 2020, 26, 478–1488. [Google Scholar] [CrossRef]
- Meyer, B.; Reimerink, J.; Torriani, G.; Brouwer, F.; Godeke, G.-J.; Yerly, S.; Hoogerwerf, M.; Vuilleumier, N.; Kaiser, L.; Eckerle, I. Validation and Clinical Evaluation of a SARS-CoV-2 Surrogate Virus Neutralisation Test (SVNT). Emerg. Microbes Infect. 2020, 9, 2394–2403. [Google Scholar] [CrossRef]
- Trougakos, I.P.; Terpos, E.; Zirou, C.; Sklirou, A.D.; Apostolakou, F.; Gumeni, S.; Charitaki, I.; Papanagnou, E.-D.; Bagratuni, T.; Liacos, C.-I. Comparative Kinetics of SARS-CoV-2 Anti-Spike Protein RBD IgGs and Neutralizing Antibodies in Convalescent and Naïve Recipients of the BNT162b2 MRNA Vaccine versus COVID-19 Patients. BMC Med. 2021, 19, 208. [Google Scholar] [CrossRef]
- Murin, C.D.; Wilson, I.A.; Ward, A.B. Antibody Responses to Viral Infections: A Structural Perspective across Three Different Enveloped Viruses. Nat. Microbiol. 2019, 4, 734–747. [Google Scholar] [CrossRef]
- Susło, R.; Pobrotyn, P.; Brydak, L.; Rypicz, Ł.; Grata-Borkowska, U.; Drobnik, J. Seasonal Influenza and Low Flu Vaccination Coverage as Important Factors Modifying the Costs and Availability of Hospital Services in Poland: A Retrospective Comparative Study. Int. J. Environ. Res. Public Health 2021, 18, 5173. [Google Scholar] [CrossRef]
- Summary of Product Characteristics Comirnaty. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220916157154/anx_157154_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Spikevax. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220901156977/anx_156977_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Vaxzevria. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220808156682/anx_156682_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Jcovden. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220525155949/anx_155949_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Nuvoxoid. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220906156980/anx_156980_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Valneva. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220927157104/anx_157104_en.pdf (accessed on 21 October 2022).
- European Medicines Agency—Committee for Medicinal Products for Human Use. EMA Recommends Approval of Comirnaty and Spikevax COVID-19 Vaccines for Children from 6 Months of Age. 2022. Available online: https://www.ema.europa.eu/en/news/ema-recommends-approval-comirnaty-spikevax-COVID-19-vaccines-children-6-months-age (accessed on 21 October 2022).
- Ng, D.L.C.; Gan, G.G.; Chai, C.S. The willingness of parents to vaccinate their children younger than 12 years against COVID-19: A cross-sectional study in Malaysia. BMC Public Health 2022, 22, 1265. [Google Scholar] [CrossRef]
- Smith, P.J.; Chu, S.Y.; Barker, L.E. Children Who Have Received No Vaccines: Who Are They and Where Do They Live? Pediatrics 2004, 114, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Reiss, D.R. The law and vaccine resistance. Science 2019, 363, 795. [Google Scholar] [CrossRef] [PubMed]
- Faucette, A.N.; Pawlitz, M.D.; Pei, B.; Yao, F.; Chen, K. Hum. Immunization of pregnant women: Future of early infant protection. Vaccin. Immunother. 2015, 11, 2549–2555. [Google Scholar] [CrossRef]
- Proveaux, T.; Lambach, P.; Ortiz, J.R.; Hombach, J.; Halsey, N.A. Review of prescribing information for influenza vaccines for pregnant and lactating women. Vaccine 2016, 34, 5406–5409. [Google Scholar] [CrossRef] [PubMed]
- Kfouri Rde, Á.; Richtmann, R. Influenza vaccine in pregnant women: Immunization coverage and associated factors. Einstein 2013, 11, 53–57. [Google Scholar] [CrossRef]
- Brydak, L.B.; Nitsch-Osuch, A. Vaccination against influenza in pregnant women. Acta Biochim. Pol. 2014, 61, 589–591. Available online: http://www.actabp.pl/pdf/3_2014/589.pdf (accessed on 21 October 2022). [CrossRef]
- Nitsch-Osuch, A.; Woźniak Kosek, A.; Brydak, L.B. Szczepienia przeciwko grypie u kobiet ciezarnych—Bezpieczeństwo i efektywność [Vaccination against influenza in pregnant women—Safety and effectiveness]. Ginekol. Pol. 2013, 84, 56–61. (In Polish) [Google Scholar] [CrossRef]
- Ilska, M.; Kołodziej-Zaleska, A.; Brandt-Salmeri, A.; Preis, H.; Lobel, M. Pandemic Stress and Its Correlates among Pregnant Women during the Second Wave of COVID-19 in Poland. Int. J. Environ. Res. Public Health 2021, 18, 11140. [Google Scholar] [CrossRef]
- Chen, S.; Murphy, E.A.; Pendergrass, A.G.; Sukhu, A.C.; Eng, D.; Jurkiewicz, M.; Mohammed, I.; Rand, S.; White, L.J.; Hupert, N.; et al. Estimating the Effectiveness of Shielding during Pregnancy against SARS-CoV-2 in New York City during the First Year of the COVID-19 Pandemic. Viruses 2022, 14, 2408. [Google Scholar] [CrossRef]
- Hasibuan, A.S.; Koesnoe, S.; Widhani, A.; Muhadi, M.; Shatri, H.; Ginanjar, E.; Yunihastuti, E.; Soewondo, P.; Aman Nasution, S.; Djauzi, S.; et al. Incidence and Associated Factors of SARS-CoV-2 Infection Post-mRNA-1273 Booster Vaccination in Health-Care Workers. Vaccines 2023, 11, 481. [Google Scholar] [CrossRef]
- Bogogiannidou, Z.; Speletas, M.; Vontas, A.; Nikoulis, D.J.; Dadouli, K.; Kyritsi, M.A.; Mouchtouri, V.A.; Mina, P.; Anagnostopoulos, L.; Koureas, M.; et al. Repeated Leftover Serosurvey of SARS-CoV-2 IgG Antibodies in Greece, May to August 2020. Vaccines 2021, 9, 504. [Google Scholar] [CrossRef]
- Esquivel-Chirino, C.; Valero-Princet, Y.; Gaitán-Cepeda, L.A.; Hernández-Hernández, C.; Hernández, A.M.; Laparra-Escareño, H.; Ventura-Gallegos, J.L.; Montes-Sánchez, D.; Lopéz-Macay, A.; Hernández-Sánchez, F.; et al. The Effects of COVID-19 on Healthcare Workers and Non-Healthcare Workers in Mexico: 14 Months into the Pandemic. Medicina 2021, 57, 1353. [Google Scholar] [CrossRef] [PubMed]
- Novelli, V.; Fassio, F.; Resani, G.; Bussa, M.; Durbano, A.; Meloni, A.; Oliva, G.; Cutti, S.; Girardi, D.; Odone, A.; et al. Clinical Characteristics and Potential Risk Factors Associated with the SARS-CoV-2 Infection: Survey on a Health Care Workers (HCWs) Population in Northern Italy. Int. J. Environ. Res. Public Health 2022, 19, 8194. [Google Scholar] [CrossRef] [PubMed]
- Paduano, S.; Galante, P.; Berselli, N.; Ugolotti, L.; Modenese, A.; Poggi, A.; Malavolti, M.; Turchi, S.; Marchesi, I.; Vivoli, R.; et al. Seroprevalence Survey of Anti-SARS-CoV-2 Antibodies in a Population of Emilia-Romagna Region, Northern Italy. Int. J. Environ. Res. Public Health 2022, 19, 7882. [Google Scholar] [CrossRef]
- Lorent, D.; Nowak, R.; Roxo, C.; Lenartowicz, E.; Makarewicz, A.; Zaremba, B.; Nowak, S.; Kuszel, L.; Stefaniak, J.; Kierzek, R.; et al. Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic. Vaccines 2021, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Mazzatenta, A.; Berardi, A.; Novarria, G.A.; Neri, G. Unmasking the ‘Asymptomatic’ COVID-19: A Nose Question. Life 2022, 12, 1248. [Google Scholar] [CrossRef]
- Polvere, I.; Parrella, A.; Casamassa, G.; D’Andrea, S.; Tizzano, A.; Cardinale, G.; Voccola, S.; Porcaro, P.; Stilo, R.; Vito, P.; et al. Seroprevalence of Anti-SARS-CoV-2 IgG and IgM among Adults over 65 Years Old in the South of Italy. Diagnostics 2021, 11, 483. [Google Scholar] [CrossRef]
- Huynh, A.; Arnold, D.M.; Smith, J.W.; Moore, J.C.; Zhang, A.; Chagla, Z.; Harvey, B.J.; Stacey, H.D.; Ang, J.C.; Clare, R.; et al. Characteristics of Anti-SARS-CoV-2 Antibodies in Recovered COVID-19 Subjects. Viruses 2021, 13, 697. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Li, Q. COVID-19 confirmed patients with negative antibodies results. BMC Infect. Dis. 2020, 20, 698. [Google Scholar] [CrossRef]
- Karachaliou, M.; Moncunill, G.; Espinosa, A. SARS-CoV-2 infection, vaccination, and antibody response trajectories in adults: A cohort study in Catalonia. BMC Med. 2022, 20, 347. [Google Scholar] [CrossRef]
- Israel, A.; Shenhar, Y.; Green, I.; Merzon, E.; Golan-Cohen, A.; Schäffer, A.A.; Ruppin, E.; Vinker, S.; Magen, E. Large-Scale Study of Antibody Titer Decay following BNT162b2 mRNA Vaccine or SARS-CoV-2 Infection. Vaccines 2022, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, B.; Richards, N.; Workman, L.; Patel, J.; Muehling, L.; Canderan, G.; Murphy, D.; Brovero, S.; Ailsworth, S.; Eschenbacher, W.; et al. Trajectory of IgG to SARS-CoV-2 After Vaccination with BNT162b2 or mRNA-1273 in an Employee Cohort and Comparison With Natural Infection. Front. Immunol. 2022, 13, 850987. [Google Scholar] [CrossRef]
- Tretyn, A.; Szczepanek, J.; Skorupa, M.; Jarkiewicz-Tretyn, J.; Sandomierz, D.; Dejewska, J.; Ciechanowska, K.; Jarkiewicz-Tretyn, A.; Koper, W.; Pałgan, K. Differences in the Concentration of Anti-SARS-CoV-2 IgG Antibodies Post-COVID-19 Recovery or Post-Vaccination. Cells 2021, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Owsianka, I.; Pac, A.; Jachowicz, E.; Gutkowska, K.; Szczuciński, W.; Maziarz, B.; Sochacka-Tatara, E.; Heczko, P.; Sydor, W.; Żółtowska, B.; et al. SARS-CoV-2 antibody response after mRNA vaccination in healthcare workers with and without previous COVID-19, a follow-up study from the University Hospital in Krakow, Poland. Front. Immunol. 2023, 13, 1071204. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, S.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.; Pollard, A. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV02. Lancet Infect. Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef] [PubMed]
Sex | Phase 1 n (%) | Phase 2 n (%) | Phase 3 n (%) | Phase 4 n (%) |
---|---|---|---|---|
F | 559 (79.55) | 559 (79.55) | 559 (79.55) | 60 (81.08) |
M | 144 (20.45) | 144 (20.45) | 144 (20.45) | 14 (18.92) |
Total | 703 (100.0) | 703 (100.0) | 703 (100.0) | 74 (100.0) |
Age (Years) | Phase 1 n (%) | Phase 2 n (%) | Phase 3 n (%) | Phase 4 n (%) |
---|---|---|---|---|
20–29 | 23 (3.27) | 23 (3.27) | 23 (3.27) | 1 (1.35) |
30–39 | 66 (9.39) | 66 (9.39) | 66 (9.39) | 5 (6.76) |
40–49 | 154 (21.91) | 154 (21.91) | 154 (21.91) | 30 (40.54) |
50–59 | 289 (41.11) | 289 (41.11) | 289 (41.11) | 33 (44.59) |
60–69 | 153 (21.76) | 153 (21.76) | 153 (21.76) | 5 (6.76) |
70–79 | 11 (1.56) | 11 (1.56) | 11 (1.56) | 0 (0.0) |
80 or more | 7 (1.00) | 7 (1.00) | 7 (1.00) | 0 (0.0) |
Total | 703 (100.0) | 703 (100.0) | 703 (100.0) | 74 (100.0) |
Sex | PCR+ n (%) | PCR− n (%) | Test |
---|---|---|---|
F | 116 (82.3) | 443 (78.8) | Fisher’s |
Total | 141 (100.0) | 562 (100.0) |
Age | PCR+ n (%) | PCR− n (%) | Test |
---|---|---|---|
20–29 | 2 (1.4) | 21(3.7) | Fisher’s |
30–39 | 18 (12.8) | 48 (8.5) | p = 0.091 |
40–49 | 36 (25.5) | 118 (21.0) | |
50–59 | 62 (44.0) | 227 (40.4) | |
60–69 | 21 (14.9) | 132 (23.5) | |
70–79 | 2 (1.4) | 9 (1.6) | |
80 or more | 0 (0.0) | 7 (1.2) | |
Total | 141 (100.0) | 562 (100.0) |
Age | PCR+ n (%) | PCR− n (%) | Participants in Age Group n (%) |
---|---|---|---|
20–29 | 2 (8.7) | 21 (91.3) | 23 (100.0) |
30–39 | 18 (27.3) | 48 (72.7) | 66 (100.0) |
40–49 | 36 (23.4) | 118 (76.6) | 154 (100.0) |
50–59 | 62 (21.5) | 227 (78.5) | 289 (100.0) |
60–69 | 21 (13.7) | 132 (86.3) | 153 (100.0) |
70–79 | 2 (18.2) | 9 (81.8) | 11 (100.0) |
80 or more | 0 (0.0) | 7 (100.0) | 7 (100.0) |
Study Phase | Positive n (%) | Negative n (%) | Total Participants n (%) |
---|---|---|---|
SARS-CoV-2 PCR result April–May 2020 or October 2020 to January 2021. | 141 (20.0) | 562 (80.0) | 703 (100.0) |
SARS-CoV-2 PCR result April–May 2020. | 28 (4.0) | 675 (96.0) | 703 (100.0) |
SARS-CoV-2 PCR result October 2020 to January 2021. | 113 (16.1) | 590 (83.9) | 703 (100.0) |
SARS-CoV-2 IgG result June 2020. | 51 (7.25) | 652 (92.5) | 703 (100.0) |
SARS-CoV-2 IgG result February 2021. | 69 (93.2) | 5 (6.8) | 74 (100.0) |
April–May 2020 SARS-CoV-2 PCR Positive n (%) | April–May 2020 SARS-CoV-2 PCR Negative n (%) | Test | |
---|---|---|---|
June 2020 SARS-CoV-2 IgG positive | 23 (88.5) | 28 (4.3) | Fisher’s p < 0.001 |
June 2020 SARS-CoV-2 IgG negative | 3 (11.5) | 629 (95.7) | |
TOTAL | 26 (100.0) | 657 (100.0) |
Variable | n | Mean | SD | Median | Min | Max |
---|---|---|---|---|---|---|
IgG class anti-SARS-Co-2 antibody levels about 2 months after confirmed COVID-19 disease in April–May 2020 | 11 | 53.6 | 53.7 | 24.3 | 3.8 | 158.0 |
IgG class anti-SARS-CoV-2 antibody levels after COVID-19 vaccination in February 2021 | 68 | 245.7 | 162.9 | 315.5 | 8.3 | 401.0 |
October 2020 to January 2021 SARS-CoV-2 PCR Positive n (%) | October 2020 to January 2021 SARS-CoV-2 PCR Negative n (%) | Test | |
---|---|---|---|
April–May 2020 SARS-CoV-2 PCR positive | 0 (0.0) | 28 (100.0) | Fisher’s p = 0.015 |
April–May 2020 SARS-CoV-2 PCR negative | 113 (16.7) | 563 (83.3) |
October 2020 to January 2021 SARS-CoV-2 PCR Positive n (%) | October 2020 to January 2021 SARS-CoV-2 PCR Negative n (%) | Test | |
---|---|---|---|
June 2020 SARS-CoV-2 IgG positive | 4 (14.3) | 24 (85.7) | Fisher’s p = 1 |
June 2020 SARS-CoV-2 IgG negative | 103 (16.4) | 526 (83.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziejewska, J.; Arkowski, J.; Susło, R.; Kędzierski, K.; Wawrzyńska, M. Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland. Vaccines 2023, 11, 1198. https://doi.org/10.3390/vaccines11071198
Radziejewska J, Arkowski J, Susło R, Kędzierski K, Wawrzyńska M. Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland. Vaccines. 2023; 11(7):1198. https://doi.org/10.3390/vaccines11071198
Chicago/Turabian StyleRadziejewska, Jadwiga, Jacek Arkowski, Robert Susło, Kamil Kędzierski, and Magdalena Wawrzyńska. 2023. "Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland" Vaccines 11, no. 7: 1198. https://doi.org/10.3390/vaccines11071198
APA StyleRadziejewska, J., Arkowski, J., Susło, R., Kędzierski, K., & Wawrzyńska, M. (2023). Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland. Vaccines, 11(7), 1198. https://doi.org/10.3390/vaccines11071198