Social Media Sentiment about COVID-19 Vaccination Predicts Vaccine Acceptance among Peruvian Social Media Users the Next Day
Abstract
1. Introduction
1.1. Social Amplification of Risk and Social Media
1.2. Social Media Risk Amplification, Heuristics, and Vaccine Acceptance
2. Materials and Methods
2.1. Study Context: Peru
2.2. Methodology
2.2.1. Step 1: Data Collection—Sentinel Surveillance
2.2.2. Step 2: Measuring Social Media Amplification of Risk
2.2.3. Step 3: Assessing Downstream Effects of Social Media Amplification of Risk on Vaccine Acceptance
3. Results
3.1. Risk Signal
3.2. H1 and H2: Social Media Amplification and Vaccine Acceptance
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyu, J.C.; Han, E.L.; Luli, G.K. COVID-19 Vaccine–Related Discussion on Twitter: Topic Modeling and Sentiment Analysis. J. Med. Internet Res. 2021, 23, e24435. [Google Scholar] [CrossRef] [PubMed]
- Pierri, F.; Perry, B.L.; DeVerna, M.R.; Yang, K.-C.; Flammini, A.; Menczer, F.; Bryden, J. Online Misinformation Is Linked to Early COVID-19 Vaccination Hesitancy and Refusal. Sci. Rep. 2022, 12, 5966. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.L.; Wiysonge, C. Social Media and Vaccine Hesitancy. BMJ Glob. Health 2020, 5, e004206. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, N.; Yitbarek, E. Trust in Social Media and COVID-19 Beliefs and Behaviours. PLoS ONE 2022, 17, e0275969. [Google Scholar] [CrossRef] [PubMed]
- Henrich, J.; Heine, S.J.; Norenzayan, A. The Weirdest People in the World? Behav. Brain Sci. 2010, 33, 61–83. [Google Scholar] [CrossRef]
- Neff, T.; Kaiser, J.; Pasquetto, I.; Jemielniak, D.; Dimitrakopoulou, D.; Grayson, S.; Gyenes, N.; Ricaurte, P.; Ruiz-Soler, J.; Zhang, A. Vaccine Hesitancy in Online Spaces: A Scoping Review of the Research Literature, 2000–2020. Harv. Kennedy Sch. Misinform. Rev. 2021. [Google Scholar] [CrossRef]
- Wirz, C.D.; Xenos, M.A.; Brossard, D.; Scheufele, D.; Chung, J.H.; Massarani, L. Rethinking Social Amplification of Risk: Social Media and Zika in Three Languages. Risk Anal. 2018, 38, 2599–2624. [Google Scholar] [CrossRef]
- Valencia, S. Misinformation Online Is Bad in English. But It’s Far Worse in Spanish. Available online: https://www.washingtonpost.com/outlook/2021/10/28/misinformation-spanish-facebook-social-media/ (accessed on 3 November 2021).
- DeVerna, M.R.; Pierri, F.; Truong, B.T.; Bollenbacher, J.; Axelrod, D.; Loynes, N.; Torres-Lugo, C.; Yang, K.-C.; Menczer, F.; Bryden, J. CoVaxxy: A Collection of English-Language Twitter Posts about COVID-19 Vaccines. In Proceedings of the Fifteenth International AAAI Conference on Web and Social Media, Virtual, 7–10 June 2021. [Google Scholar]
- Muric, G.; Wu, Y.; Ferrara, E. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Dataset of Anti-Vaccine Content, Vaccine Misinformation and Conspiracies. JMIR Public Health Surveill. 2021, 7, e30642. [Google Scholar] [CrossRef]
- Awijen, H.; Ben Zaied, Y.; Nguyen, D.K. COVID-19 Vaccination, Fear and Anxiety: Evidence from Google Search Trends. Soc. Sci. Med. 2022, 297, 114820. [Google Scholar] [CrossRef]
- Kaiser, J.; Rauchfleisch, A.; Córdova, Y. Comparative Approaches to Mis/Disinformation|Fighting Zika with Honey: An Analysis of YouTube’s Video Recommendations on Brazilian YouTube. Int. J. Commun. 2021, 15, 19. [Google Scholar]
- Karlinsky, A.; Kobak, D. Tracking Excess Mortality across Countries during the COVID-19 Pandemic with the World Mortality Dataset. eLife 2021, 10, e69336. [Google Scholar] [CrossRef]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The Social Amplification of Risk: A Conceptual Framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef]
- Slovic, P.; Peters, E. Risk Perception and Affect. Curr. Dir. Psychol. Sci. 2006, 15, 322–325. [Google Scholar] [CrossRef]
- Cummings, L. The “Trust” Heuristic: Arguments from Authority in Public Health. Health Commun. 2014, 29, 1043–1056. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Stewart, K.; Kommareddy, A.R.; Garcia, A.; O’Brien, J.; Bradford, A.; Deng, X.; Chiu, S.; Kreuter, F.; et al. The University of Maryland Social Data Science Center Global COVID-19 Trends and Impact Survey, in Partnership with Facebook. 2020. Available online: https://covidmap.umd.edu/ (accessed on 10 December 2022).
- Slovic, P. Perception of Risk: Reflections on the Psychometric Paradigm. In Social Theories of Risk; Krimsky, S., Golding, D., Eds.; Praeger: New York, NY, USA, 1992; pp. 117–152. [Google Scholar]
- Strekalova, Y.A.; Krieger, J.L. Beyond Words: Amplification of Cancer Risk Communication on Social Media. J. Health Commun. 2017, 22, 849–857. [Google Scholar] [CrossRef]
- Vulpe, S.-N.; Rughiniş, C. Social Amplification of Risk and “Probable Vaccine Damage”: A Typology of Vaccination Beliefs in 28 European Countries. Vaccine 2021, 39, 1508–1515. [Google Scholar] [CrossRef]
- Renn, O. Risk Communication and the Social Amplification of Risk. In Communicating Risks to the Public; Kasperson, R.E., Stallen, P.J.M., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 287–324. ISBN 978-94-010-7372-1. [Google Scholar]
- Allport, A. The Historical Background of Social Psychology. In Handbook of Social Psychology; Lindzey, G., Aronson, E., Eds.; Random House: New York, NY, USA, 1985; Volume 1, pp. 1–46. ISBN 978-0-394-35049-3. [Google Scholar]
- Berkowitz, L. Frustrations, Comparisons, and Other Sources of Emotion Arousal as Contributors to Social Unrest. J. Soc. Issues 1972, 28, 77–91. [Google Scholar] [CrossRef]
- Cialdini, R.B.; Reno, R.R.; Kallgren, C.A. A Focus Theory of Normative Conduct: Recycling the Concept of Norms to Reduce Littering in Public Places. J. Pers. Soc. Psychol. 1990, 58, 1015–1026. [Google Scholar] [CrossRef]
- Turner, J.C. Social Influence. In Mapping Social Psychology; Thomson Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1991; ISBN 978-0-335-15341-1. [Google Scholar]
- Sherif, M. The Psychology of Social Norms; Harper & Brothers: New York, NY, USA; London, UK, 1936. [Google Scholar]
- Chong, M.; Choy, M. The Social Amplification of Haze-Related Risks on the Internet. Health Commun. 2018, 33, 14–21. [Google Scholar] [CrossRef]
- Fellenor, J.; Barnett, J.; Potter, C.; Urquhart, J.; Mumford, J.D.; Quine, C.P. The Social Amplification of Risk on Twitter: The Case of Ash Dieback Disease in the United Kingdom. J. Risk Res. 2018, 21, 1163–1183. [Google Scholar] [CrossRef]
- Fung, I.C.-H.; Tse, Z.T.H.; Cheung, C.-N.; Miu, A.S.; Fu, K.-W. Ebola and the Social Media. Lancet 2014, 384, 2207. [Google Scholar] [CrossRef]
- Hopfer, S.; Fields, E.J.; Lu, Y.; Ramakrishnan, G.; Grover, T.; Bai, Q.; Huang, Y.; Li, C.; Mark, G. The Social Amplification and Attenuation of COVID-19 Risk Perception Shaping Mask Wearing Behavior: A Longitudinal Twitter Analysis. PLoS ONE 2021, 16, e0257428. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Y. Online Amplification of Air Pollution Risk Perception: The Moderating Role of Affect in Information. Inf. Commun. Soc. 2018, 21, 80–93. [Google Scholar] [CrossRef]
- Binder, A.R.; Cacciatore, M.A.; Scheufele, D.; Brossard, D. The Role of News Media in the Social Amplification of Risk. In The Sage Handbook of Risk Communication; Cho, H., Reimer, T., McComas, K., Eds.; SAGE Publications: Los Angeles, CA, USA, 2014; pp. 69–85. ISBN 978-1-4522-5868-3. [Google Scholar]
- Finucane, M.L.; Alhakami, A.; Slovic, P.; Johnson, S.M. The Affect Heuristic in Judgments of Risks and Benefits. J. Behav. Decis. Mak. 2000, 13, 1–17. [Google Scholar] [CrossRef]
- Hastie, R.; Park, B. The Relationship between Memory and Judgment Depends on Whether the Judgment Task Is Memory-Based or on-Line. Psychol. Rev. 1986, 93, 258–268. [Google Scholar] [CrossRef]
- King, J.; Slovic, P. The Affect Heuristic in Early Judgments of Product Innovations. J. Consum. Behav. 2014, 13, 411–428. [Google Scholar] [CrossRef]
- Strekalova, Y.A.; Krieger, J.L. Social Amplification of Risk in Health and Risk Messaging. Available online: https://oxfordre.com/communication/view/10.1093/acrefore/9780190228613.001.0001/acrefore-9780190228613-e-286 (accessed on 1 November 2021).
- Bollen, J.; Mao, H.; Pepe, A. Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena. Proc. Int. AAAI Conf. Web Soc. Media 2011, 5, 450–453. [Google Scholar] [CrossRef]
- Weeks, B.E.; Garrett, R.K. Emotional Characteristics of Social Media and Political Misperceptions. In Journalism and Truth in an Age of Social Media; Katz, J.E., Mays, K.K., Eds.; Oxford University Press: New York, NY, USA, 2019; pp. 236–250. ISBN 978-0-19-090025-0. [Google Scholar]
- Slovic, P.; Finucane, M.L.; Peters, E.; MacGregor, D.G. Heuristics and Biases: The Psychology on Intuitive Judgement; Chapter The Affect Heuristic; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Slovic, P.; Finucane, M.L.; Peters, E.; MacGregor, D.G. Risk as Analysis and Risk as Feelings: Some Thoughts about Affect, Reason, Risk, and Rationality. Risk Anal. Int. J. 2004, 24, 311–322. [Google Scholar] [CrossRef]
- Betsch, C.; Renkewitz, F.; Betsch, T.; Ulshöfer, C. The Influence of Vaccine-Critical Websites on Perceiving Vaccination Risks. J. Health Psychol. 2010, 15, 446–455. [Google Scholar] [CrossRef]
- Tomljenovic, H.; Bubic, A.; Erceg, N. It Just Doesn’t Feel Right—The Relevance of Emotions and Intuition for Parental Vaccine Conspiracy Beliefs and Vaccination Uptake. Psychol. Health 2020, 35, 538–554. [Google Scholar] [CrossRef]
- Robertson, D.A.; Mohr, K.S.; Barjaková, M.; Lunn, P.D. A Lack of Perceived Benefits and a Gap in Knowledge Distinguish the Vaccine Hesitant from Vaccine Accepting during the COVID-19 Pandemic. Psychol. Med. 2021, 1–4. [Google Scholar] [CrossRef]
- Larson, H.J.; Clarke, R.M.; Jarrett, C.; Eckersberger, E.; Levine, Z.; Schulz, W.S.; Paterson, P. Measuring Trust in Vaccination: A Systematic Review. Hum. Vaccines Immunother. 2018, 14, 1599–1609. [Google Scholar] [CrossRef]
- Sturgis, P.; Brunton-Smith, I.; Jackson, J. Trust in Science, Social Consensus and Vaccine Confidence. Nat. Hum. Behav. 2021, 5, 1528–1534. [Google Scholar] [CrossRef]
- López-Navarro, M.Á.; Llorens-Monzonís, J.; Tortosa-Edo, V. The Effect of Social Trust on Citizens’ Health Risk Perception in the Context of a Petrochemical Industrial Complex. Int. J. Environ. Res. Public. Health 2013, 10, 399–416. [Google Scholar] [CrossRef]
- Vosoughi, S.; Roy, D.; Aral, S. The Spread of True and False News Online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef]
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodés-Guirao, L. A Global Database of COVID-19 Vaccinations. Nat. Hum. Behav. 2021, 5, 947–953. [Google Scholar] [CrossRef]
- Wellcome Wellcome Global Monitor 2018|Reports. Available online: https://wellcome.org/reports/wellcome-global-monitor/2018 (accessed on 3 November 2021).
- Alvarez-Risco, A.; Mejia, C.R.; Delgado-Zegarra, J.; Del-Aguila-Arcentales, S.; Arce-Esquivel, A.A.; Valladares-Garrido, M.J.; Rosas del Portal, M.; Villegas, L.F.; Curioso, W.H.; Sekar, M.C.; et al. The Peru Approach against the COVID-19 Infodemic: Insights and Strategies. Am. J. Trop. Med. Hyg. 2020, 103, 583–586. [Google Scholar] [CrossRef]
- Incio, J. Handbook COVID-19 Perú—Noticias Falsas. Available online: https://jincio.github.io/COVID_19_PERU/Fake.html (accessed on 2 November 2021).
- Salud con Lupa Coronavirus: La Vida en Tiempos de Pandemia. Available online: https://saludconlupa.com/series/coronavirus/ (accessed on 2 November 2021).
- Salud sin Bulos Teorías Conspiranoicas y Falsos Remedios Contra COVID19-SaludsinBulos. Salud Sin Bulos 2020. Available online: https://saludsinbulos.com/observatorio/teorias-conspiranoicas-falsos-remedios-covid19/ (accessed on 3 November 2021).
- @MinjusDH_Peru Those Who Misinform the Public with False News to Obtain a Benefit or Disturb the Public Tranquility Will Be Punished with Imprisonment. Share Only Official Information from #COVID-19, Don’t Spread #FakeNews!#PerúEstáEnNuestrasManos. Twitter. 2020. Available online: https://twitter.com/MinjusDH_Peru/status/1247871817815150592?s=20 (accessed on 3 November 2021).
- Red Ama Llulla Versión de Candidato al Congreso por Fuerza Popular Sobre Que la Vacuna Produce COVID-19 es Falsa. Available online: https://ojo-publico.com/2549/version-de-bustamante-sobre-que-la-vacuna-produce-covid-19-es-falsa (accessed on 3 November 2021).
- Red Ama Llulla Versión de la Diresa de Pasco Sobre los Efectos Secundarios de la Vacuna de AstraZeneca es Falsa. Available online: https://ojo-publico.com/2667/version-de-la-diresa-de-pasco-sobre-la-vacuna-de-astrazeneca-es-falsa (accessed on 3 November 2021).
- Red Ama Llulla Afirmación de Rafael López Aliaga Acerca de Que Ningún País Aparte del Perú ha Aprobado la Vacuna de Sinopharm es Falsa. Available online: https://ojo-publico.com/2534/afirmacion-de-rafael-lopez-aliaga-sobre-vacuna-de-sinopharm-es-falsa (accessed on 3 November 2021).
- Red Ama Llulla Afirmación del Candidato Alberto Morote Acerca de Que las Vacunas Contra la COVID-19 Desarrollan Genes Animales en las Personas es Falsa. Available online: https://ojo-publico.com/2432/es-falso-que-las-vacunas-desarrollen-genes-animales-en-las-personas (accessed on 3 November 2021).
- Salud con Lupa Sinopharm: La Vacuna Que un Sector Sigue Descalificando a Pesar de la Evidencia. Available online: https://saludconlupa.com/noticias/sinopharm-la-vacuna-que-un-sector-sigue-descalificando-a-pesar-de-la-evidencia/ (accessed on 3 November 2021).
- Valvidia, A. Desinformación Causó Que 2,5 Millones No Tengan Vacuna. Available online: https://larepublica.pe/sociedad/2021/05/05/desinformacion-causo-que-25-millones-no-tengan-vacunas/ (accessed on 3 November 2021).
- Tweet Binder How Many Tweets about COVID-19 and Coronavirus? 508 MM Tweets so Far. Available online: https://www.tweetbinder.com/blog/covid-19-coronavirus-twitter/ (accessed on 25 October 2021).
- Gallagher, R.J.; Doroshenko, L.; Shugars, S.; Lazer, D.; Foucault Welles, B. Sustained Online Amplification of COVID-19 Elites in the United States. Soc. Media Soc. 2021, 7, 20563051211024956. [Google Scholar] [CrossRef]
- Osborne, M.T.; Malloy, S.S.; Nisbet, E.C.; Bond, R.M.; Tien, J.H. Sentinel Node Approach to Monitoring Online COVID-19 Misinformation. Sci. Rep. 2022, 12, 9832. [Google Scholar] [CrossRef]
- Schaechter, M. (Ed.) Encyclopedia of Microbiology, 3rd ed.; Academic Press Elsevier: Amsterdam, The Netherlands; Heidelberg, Germany, 2009; ISBN 978-0-12-373939-1. [Google Scholar]
- Newman, M.E.J. Networks, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2018; ISBN 978-0-19-880509-0. [Google Scholar]
- Wejnert, C.; Heckathorn, D.D. Web-Based Network Sampling: Efficiency and Efficacy of Respondent-Driven Sampling for Online Research. Sociol. Methods Res. 2008, 37, 105–134. [Google Scholar] [CrossRef]
- Sloan, L.; Morgan, J. Who Tweets with Their Location? Understanding the Relationship between Demographic Characteristics and the Use of Geoservices and Geotagging on Twitter. PLoS ONE 2015, 10, e0142209. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.J. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 10, P10008. [Google Scholar] [CrossRef]
- Tien, J.H.; Eisenberg, M.C.; Cherng, S.T.; Porter, M.A. Online Reactions to the 2017 ‘Unite the Right’ Rally in Charlottesville: Measuring Polarization in Twitter Networks Using Media Followership. Appl. Netw. Sci. 2020, 5, 10. [Google Scholar] [CrossRef]
- Weir, W.H.; Emmons, S.; Gibson, R.; Taylor, D.; Mucha, P.J. Post-Processing Partitions to Identify Domains of Modularity Optimization. Algorithms 2017, 10, 93. [Google Scholar] [CrossRef]
- Harrison, C.; Horwitz, L.; Zissis, C. Timeline: Tracking Latin America’s Road to Vaccination. Available online: https://www.as-coa.org/articles/timeline-tracking-latin-americas-road-vaccination (accessed on 18 December 2021).
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19); Published Online at OurWorldInData.org. Available online: https://ourworldindata.org/coronavirus (accessed on 1 March 2023).
- Plataforma Nacional de Datos Abiertos Data Completa de Vacunación COVID-19; Ministerio de Salud: 2022. Available online: https://www.datosabiertos.gob.pe/dataset/vacunaci%C3%B3n-contra-covid-19-ministerio-de-salud-minsa/resource/6d290d1d-a116-4b2d-8ee8 (accessed on 23 March 2023).
- Ophir, Y.; Walter, D.; Arnon, D.; Lokmanoglu, A.; Tizzoni, M.; Carota, J.; D’Antiga, L.; Nicastro, E. The Framing of COVID-19 in Italian Media and Its Relationship with Community Mobility: A Mixed-Method Approach. J. Health Commun. 2021, 26, 161–173. [Google Scholar] [CrossRef]
- Koo, J.; Kim, M. Feminism Without Morality, Neoliberalism as Feminist Praxis: A Computational Textual Analysis of Womad, a South Korean Online “Feminist” Community. Int. J. Commun. 2021, 15, 21. [Google Scholar]
- Shanthakumar, S.G.; Seetharam, A.; Ramesh, A. Analyzing Societal Impact of COVID-19: A Study during the Early Days of the Pandemic. In Proceedings of the 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Exeter, UK, 17–19 December 2020. [Google Scholar]
- Xue, J.; Chen, J.; Hu, R.; Chen, C.; Zheng, C.; Liu, X.; Zhu, T. Twitter Discussions and Emotions about COVID-19 Pandemic: A Machine Learning Approach. arXiv 2020, arXiv:2005.12830. [Google Scholar] [CrossRef]
- Maier, D.; Waldherr, A.; Miltner, P.; Wiedemann, G.; Niekler, A.; Keinert, A.; Pfetsch, B.; Heyer, G.; Reber, U.; Häussler, T.; et al. Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology. Commun. Methods Meas. 2018, 12, 93–118. [Google Scholar] [CrossRef]
- Walter, D.; Ophir, Y. News Frame Analysis: An Inductive Mixed-Method Computational Approach. Commun. Methods Meas. 2019, 13, 248–266. [Google Scholar] [CrossRef]
- Moor, N. _ldatuning: Tuning of the Latent Dirichlet Allocation Models Parameters. R Package Version 1.0.2. 2021. Available online: https://CRAN.R-project.org/package=ldatuning (accessed on 10 December 2021).
- Liu, B. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions; Cambridge University Press: New York, NY, USA, 2015; ISBN 978-1-107-01789-4. [Google Scholar]
- Du, J.; Xu, J.; Song, H.-Y.; Tao, C. Leveraging Machine Learning-Based Approaches to Assess Human Papillomavirus Vaccination Sentiment Trends with Twitter Data. BMC Med. Inform. Decis. Mak. 2017, 17, 69. [Google Scholar] [CrossRef]
- Hussain, A.; Tahir, A.; Hussain, Z.; Sheikh, Z.; Gogate, M.; Dashtipour, K.; Ali, A.; Sheikh, A. Artificial Intelligence–Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study. J. Med. Internet Res. 2021, 23, e26627. [Google Scholar] [CrossRef]
- Salathé, M.; Khandelwal, S. Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control. PLoS Comput. Biol. 2011, 7, e1002199. [Google Scholar] [CrossRef]
- Wolff, K. COVID-19 Vaccination Intentions: The Theory of Planned Behavior, Optimistic Bias, and Anticipated Regret. Front. Psychol. 2021, 12, 648289. [Google Scholar] [CrossRef]
- Jun, J.; Zain, A.; Chen, Y.; Kim, S.-H. Adverse Mentions, Negative Sentiment, and Emotions in COVID-19 Vaccine Tweets and Their Association with Vaccination Uptake: Global Comparison of 192 Countries. Vaccines 2022, 10, 735. [Google Scholar] [CrossRef]
- Mohammad, S.M.; Turney, P.D. Crowdsourcing a Word–Emotion Association Lexicon. Comput. Intell. 2013, 29, 436–465. [Google Scholar] [CrossRef]
- Prati, G. Intention to Receive a Vaccine against SARS-CoV-2 in Italy and Its Association with Trust, Worry and Beliefs about the Origin of the Virus. Health Educ. Res. 2020, 35, 505–511. [Google Scholar] [CrossRef]
- Astley, C.M.; Tuli, G.; Mc Cord, K.A.; Cohn, E.L.; Rader, B.; Varrelman, T.J.; Chiu, S.L.; Deng, X.; Stewart, K.; Farag, T.H.; et al. Global Monitoring of the Impact of the COVID-19 Pandemic through Online Surveys Sampled from the Facebook User Base. Proc. Natl. Acad. Sci. USA 2021, 118, e2111455118. [Google Scholar] [CrossRef]
- Kreuter, F.; Barkay, N.; Bilinski, A.; Bradford, A.; Chiu, S.; Eliat, R.; Fan, J.; Galili, T.; Haimovich, D.; Kim, B.; et al. Partnering with a Global Platform to Inform Research and Public Policy Making. Surv. Res. Methods 2020, 14, 159–163. [Google Scholar] [CrossRef]
- Kemp Digital 2022: Peru. Available online: https://datareportal.com/reports/digital-2022-peru (accessed on 20 March 2023).
- Aria, M.; Cuccurullo, C.; D’Aniello, L.; Misuraca, M.; Spano, M. Thematic Analysis as a New Culturomic Tool: The Social Media Coverage on COVID-19 Pandemic in Italy. Sustainability 2022, 14, 3643. [Google Scholar] [CrossRef]
- Badillo-Goicoechea, E.; Chang, T.-H.; Kim, E.; LaRocca, S.; Morris, K.; Deng, X.; Chiu, S.; Bradford, A.; Garcia, A.; Kern, C.; et al. Global Trends and Predictors of Face Mask Usage during the COVID-19 Pandemic. BMC Public Health 2021, 21, 2099. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.S.; May, A.; Varsavsky, T.; Sudre, C.H.; Murray, B.; Kläser, K.; Antonelli, M.; Canas, L.S.; Molteni, E.; Modat, M.; et al. Knowledge Barriers in a National Symptomatic-COVID-19 Testing Programme. PLoS Glob. Public Health 2022, 2, e0000028. [Google Scholar] [CrossRef] [PubMed]
- Rufino, J.; Ramirez, J.; Baquero, C.; Champati, J.; Frey, D.; Lillo, R.; Anta, A.F. Consistent Comparison of Symptom-Based Methods for COVID-19 Infection Detection. Prepr. Res. Sq. 2022. in review. [Google Scholar]
- Lessler, J.; Grabowski, M.K.; Grantz, K.H.; Badillo-Goicoechea, E.; Metcalf, C.J.E.; Lupton-Smith, C.; Azman, A.S.; Stuart, E.A. Household COVID-19 Risk and in-Person Schooling. Science 2021, 372, 1092–1097. [Google Scholar] [CrossRef]
- Barkay, N.; Cobb, C.; Eilat, R.; Galili, T.; Haimovich, D.; LaRocca, S.; Morris, K.; Sarig, T. Weights and Methodology Brief for the COVID-19 Symptom Survey by University of Maryland and Carnegie Mellon University, in Partnership with Facebook. 2020. Available online: https://arxiv.org/abs/2009.14675 (accessed on 23 March 2023).
- Feng, G.C. Factors Affecting Internet Diffusion in China: A Multivariate Time Series Analysis. Telemat. Inform. 2015, 32, 681–693. [Google Scholar] [CrossRef]
- Freeman, J.R.; Williams, J.T.; Lin, T. Vector Autoregression and the Study of Politics. Am. J. Polit. Sci. 1989, 33, 842. [Google Scholar] [CrossRef]
- Hanke, J.E.; Wichern, D.W. Business Forecasting, 9th ed.; Pearson Education Limited: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-230120-6. [Google Scholar]
- Lütkepohl, H. Impulse Response Function. In Macroeconometrics and Time Series Analysis; Durlauf, S.N., Blume, L.E., Eds.; Palgrave Macmillan: London, UK, 2010; pp. 145–150. ISBN 978-0-230-23885-5. [Google Scholar]
- Duan, Z.; Li, J.; Lukito, J.; Yang, K.-C.; Chen, F.; Shah, D.V.; Yang, S. Algorithmic Agents in the Hybrid Media System: Social Bots, Selective Amplification, and Partisan News about COVID-19. Hum. Commun. Res. 2022, 48, 516–542. [Google Scholar] [CrossRef]
- Yang, K.-C.; Pierri, F.; Hui, P.-M.; Axelrod, D.; Torres-Lugo, C.; Bryden, J.; Menczer, F. The COVID-19 Infodemic: Twitter versus Facebook. Big Data Soc. 2021, 8, 20539517211013860. [Google Scholar] [CrossRef]
- Ginossar, T.; Cruickshank, I.J.; Zheleva, E.; Sulskis, J.; Berger-Wolf, T. Cross-Platform Spread: Vaccine-Related Content, Sources, and Conspiracy Theories in YouTube Videos Shared in Early Twitter COVID-19 Conversations. Hum. Vaccines Immunother. 2022, 18, 1–13. [Google Scholar] [CrossRef]
- McGuire, W.J. Possible Excuses for Claiming Massive Media Effects despite the Weak Evidence. In The Mass Media in Liberal Democratic Societies; Rothman, S., Ed.; World Social Systems; Paragon House: New York, NY, USA, 1992; pp. 121–146. ISBN 978-0-943852-92-8. [Google Scholar]
- Red Ama Llulla Afirmación de la Candidata al Congreso Rosa María Apaza Acerca de Que Vacuna Contra COVID-19 Fue Autorizada Sin Evidencia es Engañosa. Available online: https://ojo-publico.com/2453/version-de-apaza-sobre-falta-de-pruebas-de-vacuna-covid-19-es-enganosa (accessed on 3 November 2021).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Stewart, K.; Kommareddy, A.R.; Garcia, A.; O’Brien, J.; Bradford, A.; Deng, X.; Chiu, S.; Kreuter, F.; et al. Vaccine. Available online: https://gisumd.github.io/COVID-19-API-Documentation/docs/indicators/indicators_vaccine.html (accessed on 10 December 2021).
Variable Name | Definition |
---|---|
Independent Variables (x) | |
Topic Cluster: COVID-19 Vaccination Sentiment | Topic prominence per tweet multiplied by the net sentiment (positive–negative sentiment count) calculated by the NRC lexicon |
Topic Cluster: COVID-19 Vaccination Trust Emotion | Topic prominence per tweet multiplied by the trust emotion count calculated by the NRC lexicon |
Dependent Variables (y) | |
Vaccination Acceptance | Respondents who had a vaccine, an appointment to get vaccinated or who would definitely or probably choose to get vaccinated if a COVID-19 vaccine were offered to them, a value between 0 and 1, from The UMD Social Data Science Center Global COVID-19 Trends and Impact Survey |
Statistic | N | Mean | St. Dev. | Min | Pctl (25) | Pctl (75) | Max |
---|---|---|---|---|---|---|---|
Topic Cluster: COVID-19 Vaccination Sentiment | 231 | 0.018 | 0.008 | −0.002 | 0.013 | 0.020 | 0.071 |
Topic Cluster: COVID-19 Vaccination Trust Emotion | 231 | 0.059 | 0.009 | 0.041 | 0.053 | 0.061 | 0.108 |
Vaccination Acceptance | 230 | 0.84 | 0.077 | 0.661 | 0.791 | 0.905 | 0.959 |
MODEL 1 | Dependent Vaccination | Variable Acceptance | (y): | MODEL 2 | Dependent Vaccination | Variable Acceptance | (y): |
---|---|---|---|---|---|---|---|
Coefficients | Confidence Interval | Coefficients | Confidence Interval | ||||
Sentiment (lag 1) | 0.58 * (0.22) | [0.1385, 1.0184] | Trust (lag 1) | 0.55 * (0.23) | [0.1084, 0.9988] | ||
Sentiment (lag 2) | −0.38 (0.24) | [−0.8575, 0.1001] | Trust (lag 2) | −0.41 (0.25) | [−0.9078, 0.0788] | ||
Sentiment (lag 3) | 0.02 (0.24) | [−0.4587, 0.4971] | Trust (lag 3) | −0.18 (0.25) | [−0.6754, 0.3034] | ||
Sentiment (lag 4) | 0.03 (0.21) | [−0.3746, 0.4410] | Trust (lag 4) | 0.32 (0.21) | [−0.0975, 0.7392] | ||
const | 0.18 ** (0.05) | [0.0727, 0.2838] | const | 0.17 ** (0.06) | [0.0614, 0.2797] | ||
trend | 0.0003 ** (0.00) | [0.0001, 0.0004] | trend | 0.0003 *** (0.00) | [0.0001, 0.0005] | ||
Observations | 227 | Observations | 227 | ||||
R2/R2 adjusted | 0.943/0.941 | R2/R2 adjusted | 0.944/0.942 | ||||
log-Likelihood | 592.96 | log-Likelihood | 593.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lokmanoglu, A.D.; Nisbet, E.C.; Osborne, M.T.; Tien, J.; Malloy, S.; Cueva Chacón, L.; Villa Turek, E.; Abhari, R. Social Media Sentiment about COVID-19 Vaccination Predicts Vaccine Acceptance among Peruvian Social Media Users the Next Day. Vaccines 2023, 11, 817. https://doi.org/10.3390/vaccines11040817
Lokmanoglu AD, Nisbet EC, Osborne MT, Tien J, Malloy S, Cueva Chacón L, Villa Turek E, Abhari R. Social Media Sentiment about COVID-19 Vaccination Predicts Vaccine Acceptance among Peruvian Social Media Users the Next Day. Vaccines. 2023; 11(4):817. https://doi.org/10.3390/vaccines11040817
Chicago/Turabian StyleLokmanoglu, Ayse D., Erik C. Nisbet, Matthew T. Osborne, Joseph Tien, Sam Malloy, Lourdes Cueva Chacón, Esteban Villa Turek, and Rod Abhari. 2023. "Social Media Sentiment about COVID-19 Vaccination Predicts Vaccine Acceptance among Peruvian Social Media Users the Next Day" Vaccines 11, no. 4: 817. https://doi.org/10.3390/vaccines11040817
APA StyleLokmanoglu, A. D., Nisbet, E. C., Osborne, M. T., Tien, J., Malloy, S., Cueva Chacón, L., Villa Turek, E., & Abhari, R. (2023). Social Media Sentiment about COVID-19 Vaccination Predicts Vaccine Acceptance among Peruvian Social Media Users the Next Day. Vaccines, 11(4), 817. https://doi.org/10.3390/vaccines11040817