Induction of Innate and Adaptive Immune Response against Recombinant HBsAg Protein Entrapped in Docosahexaenoic Acid Nanovesicles through Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
In Vivo Protocol
- Group 1: Normal group—the animals did not receive LRPDNV or vehicles.
- Group 2: Product treatment group—the LRPDNV vaccine was administered intraperitoneally to the animals at a volume of 0.5 mL, which was equivalent to 1 mcg.
- Group 3: Vehicle treatment group—the animals were immunized with 0.5 mL of lyophilized nanovesicles intraperitoneally.
- Group 4: Standard vaccine treatment group—the animals were immunized with 0.5 mL of marketed HBsAg (1 mcg) vaccine intraperitoneally.
2.2. Determination of Biological Markers
2.2.1. Interleukin-2 (IL-2)
2.2.2. Interleukin-4 (IL-4)
2.2.3. Interleukin-10 (IL-10)
2.2.4. Interferon Gamma (IFN-γ)
2.2.5. Interleukin-6 (IL-6)
2.2.6. Interleukin 8 Receptor Alpha (IL-8 R)
2.2.7. Interleukin-12 (IL-12)
2.2.8. IgE Antibody
2.2.9. C-Reactive Protein (CRP)
2.3. Statistical Analysis
3. Results and Discussion
Proposed Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hepatitis, B. The World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 5 September 2022).
- Arndt, V.; Tim, M.; Gonzalo, S.; Riad, S.; Anna, S. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Shen, S.; Ge, S.; Zhang, Z.; Ma, J.; Jiao, Y.; Li, Q.; Liang, Y.; Li, S. Persistence of Immunity in Adults after 1, 5 and 10 Years with Recombinant Hepatitis B Vaccine in Beijing in 2010–2020. Vaccines 2022, 10, 181. [Google Scholar] [CrossRef]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef]
- Kim, S.K.; Fujii, T.; Kim, S.R.; Nakai, A.; Lim, Y.S.; Hagiwara, S.; Kudo, M. Hepatitis B virus treatment and Hepatocellular Carcinoma: Controversies and approaches to Consensus. Liver Cancer 2022, 11, 497–510. [Google Scholar] [CrossRef]
- Tripathi, N.K.; Shrivastava, A. Recent developments in recombinant protein–based dengue vaccines. Front. Immunol. 2018, 9, 1919. [Google Scholar] [CrossRef]
- Walayat, S.; Ahmed, Z.; Martin, D.; Puli, S.; Cashman, M.; Dhillon, S. Recent advances in vaccination of non-responders to standard dose hepatitis B virus vaccine. World J Hepatol. 2015, 7, 2503–2509. [Google Scholar] [CrossRef]
- Körber, N.; Pohl, L.; Weinberger, B.; Grubeck-Loebenstein, B.; Wawer, A.; Knolle, P.A.; Roggendorf, H.; Protzer, U.; Bauer, T. Hepatitis B vaccine non-responders show higher frequencies of CD24 high CD38 high regulatory B cells and lower levels of IL-10 expression compared to responders. Front. Immunol. 2021, 12, 713351. [Google Scholar] [CrossRef]
- Bakkari, M.A.; Moni, S.S.; Alshammari, A.; Salawi, A.; Sultan, M.H.; Madkhali, O.A.; Alqahtani, S.S.; Alam, M.F.; Shaheen, E.S.; Elmobark, M.E. Design, Characterization, and Immune Augmentation of Docosahexaenoic Acid Nanovesicles as a Potential Delivery System for Recombinant HBsAg Protein. Vaccines 2022, 10, 954. [Google Scholar] [CrossRef]
- Medzhitov, R.; Janeway, C.A., Jr. Innate immunity: The virtues of a nonclonal system of recognition. Cell 1997, 91, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Gourley, T.S.; Wherry, E.J.; Masopust, D.; Ahmed, R. Generation and maintenance of immunological memory. Semin. Immunol. 2004, 16, 323–333. [Google Scholar] [CrossRef]
- Gandhi, R.; Laroni, A.; Weiner, H.L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2010, 221, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitty-Lopez, M.; Imanirad, D.S.; Leiding, J.W. Above the Regular Tide: Primary Immune Regulatory Disorders (PIRD) Diagnosis and Treatment Considerations. Encycl. Infect. Immun. 2022, 3, 507–518. [Google Scholar] [CrossRef]
- Sarkar, I.; Garg, R.; van Drunen Littel-van den Hurk, S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev. Vaccines 2019, 18, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.S.; Arunachalam, P.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- Tonya, C.W.; Elvira, L.L.; O’Byrne, K.J.; William, C.S.C.; Steven, M.D. 14—Microenvironment and Lung Cancer. In Scagliotti, IASLC Thoracic Oncology, 2nd ed.; Pass, H.I., Ball, D., Scagliotti, G.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 121–128.e4. [Google Scholar] [CrossRef]
- Nunberg, J.H.; Doyle, M.V.; York, S.M.; York, C.J. Interleukin 2 acts as an adjuvant to increase the potency of inactivated rabies virus vaccine. Proc. Natl. Acad. Sci. USA 1989, 86, 4240–4243. [Google Scholar] [CrossRef] [Green Version]
- Chawansuntati, K.; Chaiklang, K.; Chaiwarith, R.; Praparattanapan, J.; Supparatpinyo, K.; Wipasa, J. Hepatitis B Vaccination Induced TNF-α- and IL-2-Producing T Cell Responses in HIV- Healthy Individuals Higher than in HIV+ Individuals Who Received the Same Vaccination Regimen. J. Immunol. Res. 2018, 2018, 8350862. [Google Scholar] [CrossRef] [Green Version]
- Kwaśniak, K.; Czarnik-Kwaśniak, J.; Maziarz, A.; Aebisher, D.; Zielińska, K.; Karczmarek-Borowska, B.; Tabarkiewicz, J. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent. Eur. J. Immunol. 2019, 44, 190–200. [Google Scholar] [CrossRef]
- Eun Youn, R.; Eun Young, S.; Jong Hyun, Y.; Sohee, O.; Ju Young, C.; Hyunwoong, P.; Soo Hyun, S.; Sue, S. Effects of interleukin-4 and interleukin-12b gene polymorphisms on hepatitis B virus vaccination. Ann. Hepatol. 2017, 16, 63–70. [Google Scholar] [CrossRef]
- Wen, S.; Wu, Y.; Pan, Y.; Cao, M.; Zhao, D.; Wang, C.; Wang, C.; Kong, F.; Li, J.; Niu, J.; et al. Association of IL-10 and IL-10RA single nucleotide polymorphisms with the responsiveness to HBV vaccination in Chinese infants of HBsAg(+)/HBeAg(−) mothers: A nested case-control study. BMJ Open 2018, 8, e022334. [Google Scholar] [CrossRef] [Green Version]
- Magda, R.; Anna, W.; Alicja, S.; Tomasz, R.; Piotr, S.; Marcin, D.; Eloi, R.V.; Thomas, F.B.; Krzysztof, P.B. Genetic variation in IL-10 influences the progression of hepatitis B infection. Int. J. Infect. Dis. 2020, 96, 260–265. [Google Scholar] [CrossRef]
- Brenna, C.S.; Philip, R.S.; Dana, J.T.B.; Carolyn, Z.; Samantha, C.; Tammy, L.C.; Minjun, A.; Hazel, D.B.; Gaelen, D.; Mary, S.; et al. Alongitudinal hepatitis b vaccine cohort demonstrates long-lasting hepatitis b virus (HBV) cellular immunity despite loss of antibody against HBV surface antigen. Int. J. Infect. Dis. 2016, 214, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.E. Cytokines and Chemokines. In Van Regenmortel, Encyclopedia of Virology, 3rd ed.; Mahy Brian, W.J., Marc, H.V., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 620–624. [Google Scholar] [CrossRef]
- Wu, C.; Xue, Y.; Wang, P.; Lin, L.; Liu, Q.; Li, N.; Xu, J.; Cao, X. IFN-γ Primes Macrophage Activation by Increasing Phosphatase and Tensin Homolog via Downregulation of miR-3473b. J. Immunol. 2014, 193, 3036–3044. [Google Scholar] [CrossRef] [Green Version]
- Mühl, H.; Pfeilschifter, J. Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int. Immunopharmacol. 2003, 3, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark Res. 2020, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Catalán, D.; Mansilla, M.A.; Ferrier, A.; Soto, L.; Oleinika, K.; Aguillón, J.C.; Aravena, O. Immunosuppressive Mechanisms of Regulatory B Cells. Front. Immunol. 2021, 12, 611795. [Google Scholar] [CrossRef]
- Dezfuli, H.T.; Shahbazzadeh, D.; Eidi, A.; Bagheri, K.P.; Pakravan, N.; Amini, S.; Aghasadeghi, M.R.; Mahdavi, M. Induction of IFN-γ cytokine response against hepatitis B surface antigen using melittin. Gastroenterol. Hepatol. Bed Bench 2014, 7, 108–117. [Google Scholar]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Wang, X.F.; Shi, X.H.; Xu, X.X.; Yang, Z.Q.; Hao, H.Y.; Zhang, F.; Wang, B.; Wen, H.X.; Fu, Z.D.; Wang, T.; et al. Effect of interleukin-6 and interleukin-12 on immune response to hepatitis B vaccination in infants of HBsAg-positive mothers. Zhonghua Liu Xing Bing Xue Za Zhi 2017, 38, 950–953. (In Chinese) [Google Scholar] [CrossRef]
- Çelik, İ.; Demirel, G.; Canpolat, F.; Dilmen, U. 1836 Inflammatory responses to hepatitis B virus vaccine among healty term infants at birth. Arch. Dis. Child. 2012, 97, A519. [Google Scholar] [CrossRef] [Green Version]
- Bandar, A.S. Interleukin 6 is a two-edged sword: A centerpiece in the immune response against the SARS-CoV-2. Trends Med. 2021, 21, 1–4. [Google Scholar] [CrossRef]
- David, J.M.; Dominguez, C.; Hamilton, D.H.; Palena, C. The IL-8/IL-8R Axis: A double agent in tumor immune resistance. Vaccines 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathleen, B.; Jialin, Z. xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., David, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Amina, E.A.; David, N.H.; Celeste, C.F. 21—Biomarkers in Burn Patient Care. In Herndon, Total Burn Care, 5th ed.; David, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 232–235.e2. [Google Scholar] [CrossRef]
- Masataka, T.; Nobuhiko, H.; Yizhou, Z.; Misa, Y.; Ojiro, S.; Naoya, O.; Kanma, S.; Yu, I.; Grace, N.M.; Takuro, U.; et al. Endoplasmic reticulum-mediated induction of interleukin-8 occurs by hepatitis B virus infection and contributes to suppression of interferon responsiveness in human hepatocytes. Virology 2018, 525, 48–61. [Google Scholar] [CrossRef]
- Emad, A.M.; Mostafa Abdel, F.E.B.; Assem Mahmoud, E.S.; Mohamed Saeed, A.S.; Mahmoud Mohammed, A.K. Interleukin-12 level and its relation to hepatitis b virus vaccine response in hemodialysis patients. Al-Azhar Med. J. 2017, 6, 113–120. [Google Scholar] [CrossRef]
- Velu, V.; Saravanan, S.; Nandakumar, S.; Shankar, E.M.; Vengatesan, A.; Jadhav, S.S.; Kulkarni, P.S.; Thyagarajan, S.P. Relationship between T-lymphocyte cytokine levels and sero-response to hepatitis B vaccines. World J. Gastroenterol. 2008, 14, 3534–3540. [Google Scholar] [CrossRef]
- Celik, I.H.; Demirel, G.; Canpolat, F.E.; Erdeve, O.; Dilmen, U. Inflammatory responses to hepatitis B virus vaccine in healthy term infants. Eur. J. Pediatr. 2013, 172, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Wivine, B.; Arnaud, M.; Caroline, H.; Andrea, C.; Magalie, C.; Laurence, F.; Lien, G.; Catherine, L.; Cheikh, N.; Fernanda, T.D.S.; et al. Inflammatory parameters associated with systemic reactogenicity following vaccination with adjuvanted hepatitis B vaccines in humans. Vaccine 2019, 37, 2004–2015. [Google Scholar] [CrossRef]
Type of Cytokines | Group 1 | Group 2 | Group 3 | Group 4 | ||||
---|---|---|---|---|---|---|---|---|
14th Day | 30th Day | 14th Day | 30th Day | 14th Day | 30th Day | 14th Day | 30th Day | |
IL-2 | 0.6 ± 0.1 | 0.7 ± 0.15 | 80.4 ± 6.9 | 89.4 ± 1.9 | 4.17 ± 0.9 | 4.7 ± 0.9 | 54.8 ± 0.8 | 67.2 ± 4.8 |
IL-4 | 0.4 ± 0.04 | 0.6 ± 0.04 | 3.3 ± 0.2 | 4.2 ± 0.2 | 1 ± 0.3 | 0.9 ± 0.4 | 1.9 ± 0.09 | 2.28 ± 0.16 |
IL-10 | 40.3 ± 1.3 | 39.8 ± 0.9 | 74.2 ± 3.9 | 83.4 ± 2.7 | 69.6 ± 1.8 | 80.5 ± 2.4 | 65.6 ± 3.9 | 79.6 ± 2.4 |
IL-6 | 46.03 ± 0.3 | 45.9 ± 0.9 | 224.7 ± 10.7 | 358.6 ± 13.3 | 127.7 ± 3.8 | 138.7 ± 6.6 | 236.7 ± 18.4 | 241.62 ± 5.1 |
IL-8 R | 0.5 ± 0.3 | 0.6 ± 0.2 | 4.76 ± 1.2 | 5.72 ± 1.1 | 1.96 ± 0.2 | 2.29 ± 0.8 | 2.15 ± 0.2 | 3.23 ± 1 |
IFN-γ | 4.7 ± 2.2 | 5.7 ± 2.3 | 27.6 ± 1.8 | 30.3 ± 1.9 | 24.8 ± 1.8 | 26.1 ± 3.2 | 25.6 ± 1.1 | 23.9 ± 1.4 |
IL-12 | 33.3 ± 6.8 | 32.8 ± 7.8 | 746.2 ± 79.5 | 787 ± 22.3 | 28.9 ± 8.5 | 32.3 ± 5.7 | 659.4 ± 123.3 | 619.2 ± 117.6 |
CRP | 2.3 ± 0.8 | 2.2 ± 0.6 | 10.3 ± 0.5 | 10.81 ± 0.9 | 5.45 ± 0.7 | 4.45 ± 0.2 | 6.4 ± 1 | 5.9 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakkari, M.A.; Moni, S.S.; Alshammari, A.; Sultan, M.H.; Madkhali, O.A.; Almoshari, Y.; Alam, M.F.; Elmobark, M.E. Induction of Innate and Adaptive Immune Response against Recombinant HBsAg Protein Entrapped in Docosahexaenoic Acid Nanovesicles through Biomarkers. Vaccines 2023, 11, 457. https://doi.org/10.3390/vaccines11020457
Bakkari MA, Moni SS, Alshammari A, Sultan MH, Madkhali OA, Almoshari Y, Alam MF, Elmobark ME. Induction of Innate and Adaptive Immune Response against Recombinant HBsAg Protein Entrapped in Docosahexaenoic Acid Nanovesicles through Biomarkers. Vaccines. 2023; 11(2):457. https://doi.org/10.3390/vaccines11020457
Chicago/Turabian StyleBakkari, Mohammed Ali, Sivakumar S. Moni, Abdulrahman Alshammari, Muhammad H. Sultan, Osama A. Madkhali, Yosif Almoshari, Mohammad Firoz Alam, and Mohamed Eltaib Elmobark. 2023. "Induction of Innate and Adaptive Immune Response against Recombinant HBsAg Protein Entrapped in Docosahexaenoic Acid Nanovesicles through Biomarkers" Vaccines 11, no. 2: 457. https://doi.org/10.3390/vaccines11020457
APA StyleBakkari, M. A., Moni, S. S., Alshammari, A., Sultan, M. H., Madkhali, O. A., Almoshari, Y., Alam, M. F., & Elmobark, M. E. (2023). Induction of Innate and Adaptive Immune Response against Recombinant HBsAg Protein Entrapped in Docosahexaenoic Acid Nanovesicles through Biomarkers. Vaccines, 11(2), 457. https://doi.org/10.3390/vaccines11020457