Platelet Activation and Cytokine Release of Interleukin-8 and Interferon-Gamma-Induced Protein 10 after ChAdOx1 nCoV-19 Coronavirus Vaccine Injection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Healthy Volunteers
2.2. Antiplatelet Factor IV Antibody (Anti-PF4 Ab)
2.3. Platelet Surface Markers of Resting and Activated Platelets
2.4. Platelet–Leukocyte Aggregation
2.5. Flow Cytometry
2.6. Cytokine Protein Levels
2.7. Statistical Analysis
3. Results
3.1. Clinical Data
3.2. Anti-PF4 Ab
3.3. Surface Markers of Nonactivated Platelets
3.4. Surface Markers of Activated Platelets
3.5. Leukocyte–Platelet Aggregation
3.6. Cytokine Release
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Li, J.; Gao, M.; Fan, H.; Wang, Y.; Xu, X.; Chen, C.; Liu, J.; Kim, J.; Aliyari, R.; et al. Interleukin-8 as a biomarker for disease prognosis of coronavirus disease-2019 patients. Front. Immunol. 2020, 11, 602395. [Google Scholar] [CrossRef] [PubMed]
- Matheson, N.J.; Lehner, P.J. How does SARS-CoV-2 cause COVID-19? Science 2020, 369, 510–511. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Shi, N.; Shan, F.; Zhang, Z.; Shen, J.; Lu, H.; Ling, Y.; Jiang, Y.; Shi, Y. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020, 295, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Emerging understandings of 2019-nCoV. Lancet 2020, 395, 311. [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.-H.; Skattør, T.; Tjønnfjord, G.; et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef]
- Blauenfeldt, R.A.; Kristensen, S.R.; Ernstsen, S.L.; Kristensen, C.C.H.; Simonsen, C.Z.; Hvas, A.M. Thrombocytopenia with acute ischemic stroke and bleeding in a patient newly vaccinated with an adenoviral vector-based COVID-19 vaccine. J. Thromb. Haemost. 2021, 19, 1771–1775. [Google Scholar] [CrossRef]
- Noppacham, U.; Krissana, P.; Songphol, T.; Kulwara, D.; Pakanat, D.; Peerapat, K.; Rossanun, S.; Phandee, W.; Udomsak, B.; Ponlapat, R. ChAdOx1 nCoV-19 vaccine-associated thrombocytopenia: Three cases of immune thrombocytopenia after 107 720 doses of ChAdOx1 vaccination in Thailand. Blood Coagul. Fibrinolysis 2022, 33, 67–70. [Google Scholar]
- Chou, S.C.; Chang, Y.C.; Liao, C.K.; Chen, T.C.; Sun, K.J.; Huang, W.H.; Wu, Y.-F. New presentations and exacerbations of immune thrombocytopenia after coronavirus disease 2019 vaccinations: The Taiwan experience. Platelets 2022, 33, 531–535. [Google Scholar] [CrossRef]
- Scully, M.; Singh, D.; Lown, R.; Poles, A.; Solomon, T.; Levi, M.; Goldblatt, D.; Kotoucek, P.; Thomas, W.; Lester, W. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 2021, 384, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Lassila, R. Platelet function tests in bleeding disorders. Semin. Thromb. Hemost. 2016, 42, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, S.R.; Søgaard, O.S.; Tolstrup, M.; Stærke, N.B.; Lundgren, J.; Østergaard, L.; Hvas, A.-M. Inflammation and platelet activation after COVID-19 vaccines—Possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis. Front. Immunol. 2021, 12, 779453. [Google Scholar] [CrossRef] [PubMed]
- Thaler, J.; Ay, C.; Gleixner, K.V.; Hauswirth, A.W.; Cacioppo, F.; Grafeneder, J.; Quehenberger, P.; Pabinger, I.; Knöbl, P. Successful treatment of vaccine-induced prothrombotic immune thrombocytopenia (VIPIT). J. Thromb. Haemost. 2021, 19, 1819–1822. [Google Scholar] [CrossRef]
- Spurgeon, B.E.J.; Linden, M.D.; Michelson, A.D.; Frelinger, A.L., 3rd. Immunophenotypic analysis of platelets by flow cytometry. Curr. Protoc. 2021, 1, e178. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L.; Lippi, G. Review and evolution of guidelines for diagnosis of COVID-19 vaccine induced thrombotic thrombocytopenia (VITT). Clin. Chem. Lab. Med. 2022, 60, 7–17. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Sørvoll, I.H.; Horvei, K.D.; Ernstsen, S.L.; Laegreid, I.J.; Lund, S.; Grønli, R.H.; Olsen, M.K.; Jacobsen, H.K.; Eriksson, A.; Halstensen, A.M.; et al. An observational study to identify the prevalence of thrombocytopenia and anti-PF4/polyanion antibodies in Norwegian health care workers after COVID-19 vaccination. J. Thromb. Haemost. 2021, 19, 1813–1818. [Google Scholar] [CrossRef]
- Uaprasert, N.; Watanaboonyongcharoen, P.; Vichitratchaneekorn, R.; Trithiphen, S.; Akkawat, B.; Sukperm, A.; Tongbai, T.; Jantarabenjakul, W.; Paitoonpong, L.; Rojnuckarin, P. Prevalence of thrombocytopenia, anti-platelet factor 4 antibodies and D-dimer elevation in Thai people after ChAdOx1 nCoV-19 vaccination. Res. Pract. Thromb. Haemost. 2021, 5, e12580. [Google Scholar] [CrossRef]
- Zaid, Y.; Guessous, F.; Puhm, F.; Elhamdani, W.; Chentoufi, L.; Morris, A.C.; Cheikh, A.; Jalali, F.; Boilard, E.; Flamand, L. Platelet reactivity to thrombin differs between patients with COVID-19 and those with ARDS unrelated to COVID-19. Blood Adv. 2021, 5, 635–639. [Google Scholar] [CrossRef]
- Christensen, B.; Favaloro, E.J.; Lippi, G.; Van Cott, E.M. Hematology laboratory abnormalities in patients with coronavirus disease 2019 (COVID-19). Semin. Thromb. Hemost. 2020, 46, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Althaus, K.; Möller, P.; Uzun, G.; Singh, A.; Beck, A.; Bettag, M.; Bösmüller, H.; Guthoff, M.; Dorn, F.; Petzold, G.C.; et al. Antibody-mediated procoagulant platelets in SARS-CoV-2-vaccination associated immune thrombotic thrombocytopenia. Haematologica 2021, 106, 2170–2179. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots. BMJ 2021, 372, n699. [Google Scholar] [CrossRef]
- Mahase, E. Covid-19: WHO says rollout of AstraZeneca vaccine should continue, as Europe divides over safety. BMJ 2021, 372, n728. [Google Scholar] [CrossRef]
- Limami, Y.; Khalki, L.; Zaid, N.; Khyatti, M.; Turk, J.E.; Ammara, M.; El Mtairag, M.; Oudghiri, M.; Naya, A.; Taberkant, M.; et al. Oxford-AstraZeneca ChAdOx1 COVID-19 vaccine does not alter platelet aggregation. Semin. Thromb. Hemost. 2022, 48, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; Wu, Y.F. Flow cytometry for evaluating platelet immunophenotyping and function in patients with thrombocytopenia. Tzu. Chi. Med. J. 2022, 34, 381–387. [Google Scholar]
- Gerrits, A.J.; Frelinger, A.L., 3rd; Michelson, A.D. Whole blood analysis of leukocyte-platelet aggregates. Curr. Protoc. Cytom. 2016, 78, 1–10. [Google Scholar]
- Azzarone, B.; Veneziani, I.; Moretta, L.; Maggi, E. Pathogenic mechanisms of vaccine-induced immune thrombotic thrombocytopenia in people receiving anti-COVID-19 adenoviral-based vaccines: A proposal. Front. Immunol. 2021, 12, 728513. [Google Scholar] [CrossRef]
- McGonagle, D.; De Marco, G.; Bridgewood, C. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J. Autoimmun. 2021, 121, 102662. [Google Scholar] [CrossRef]
- Hursting, M.J.; Pai, P.J.; McCracken, J.E.; Hwang, F.; Suvarna, S.; Lokhnygina, Y.; Bandarenko, N.; Arepally, G.M. Platelet factor 4/heparin antibodies in blood bank donors. Am. J. Clin. Pathol. 2010, 134, 774–780. [Google Scholar] [CrossRef]
- Thiele, T.; Ulm, L.; Holtfreter, S.; Schönborn, L.; Kuhn, S.O.; Scheer, C.; Warkentin, T.E.; Bröker, B.M.; Becker, K.; Aurich, K.; et al. Frequency of positive anti-PF4/polyanion antibody tests after COVID-19 vaccination with ChAdOx1 nCoV-19 and BNT162b2. Blood 2021, 138, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-mediated inflammatory responses: From mechanisms to potential therapeutic tools. Virol. Sin. 2020, 35, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020, 108, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Altan-Bonnet, G.; Mukherjee, R. Cytokine-mediated communication: A quantitative appraisal of immune complexity. Nat. Rev. Immunol. 2019, 19, 205–217. [Google Scholar] [CrossRef]
- Capucetti, A.; Albano, F.; Bonecchi, R. Multiple roles for chemokines in neutrophil biology. Front. Immunol. 2020, 11, 1259. [Google Scholar] [CrossRef] [PubMed]
- Luster, A.D.; Unkeless, J.C.; Ravetch, J.V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 1985, 315, 672–676. [Google Scholar] [CrossRef]
- Tut, G.; Lancaster, T.; Sylla, P.; Butler, M.S.; Kaur, N.; Spalkova, E.; Bentley, C.; Amin, U.; Jadir, A.; Hulme, S.; et al. Antibody and cellular immune responses following dual COVID-19 vaccination within infection-naive residents of long-term care facilities: An observational cohort study. Lancet Healthy Longev. 2022, 3, e461–e469. [Google Scholar] [CrossRef]
- Jian, Z.-W.; Zhang, X.-M.; Huang, G.-S. Clinical value of the platelet and inflammatory factor activation in vascular endothelial injury in essential hypertension. Clin. Hemorheol. Microcirc. 2022. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, H.; Yang, G.; Wang, Y.; Wang, Y.; Zhao, S.; Zhao, M.; Peng, S. IQCA-TAVV: To explore the effect of P-selectin, GPIIb/IIIa, IL-2, IL-6 and IL-8 on deep venous thrombosis. Oncotarget 2017, 8, 91391–91401. [Google Scholar] [CrossRef] [PubMed]
Prevaccine | Day 1 | Day 7 | Pre vs. Day 1 | Pre vs. Day 7 | Day 1 vs. Day 7 | |
---|---|---|---|---|---|---|
WBC (/μL) | 6946 ± 1887 (6401−7492) | 6333 ± 1748 (5828−6839) | 6653 ± 1654 (6175−7131) | 0.007 ** | 0.141 | 0.072 |
Hb (g/dL) | 12.99 ± 1.32 (12.61−13.37) | 13.03 ± 1.32 (12.65−13.41) | 13.09 ± 1.33 (12.70−13.47) | 0.245 | 0.050 | 0.418 |
PLT (×103/μL) | 285 ± 65 (266−303) | 276 ± 66 (257−295) | 286 ± 64 (267−304) | 0.018 * | 0.705 | 0.039 * |
MPV (fL) | 12.24 ± 1.23 (9.88−10.60) | 10.13 ± 1.14 (9.80−10.46) | 9.92 ± 1.03 (9.63−10.22) | 0.205 | 0.002 ** | 0.016 * |
PDW | 10.69 ± 1.70 (10.20−11.18) | 10.87 ± 1.52 (10.43−11.31) | 10.64 ± 1.52 (10.21−11.08) | 0.407 | 0.415 | 0.064 |
Myeloid (%) | 60.8 ± 7.83 (58.5− 63.1) | 59.5 ± 7.80 (57.2−61.7) | 59.9 ± 7.70 (57.7−62.2) | 0.206 | 0.344 | 0.666 |
Lymphocyte (%) | 30.6 ± 7.15 (28.5−32.7) | 31.8 ± 7.10 (29.7−33.8) | 32.0 ± 7.14 (29.9−34.0) | 0.207 | 0.110 | 0.834 |
Monocyte (%) | 5.54 ± 1.31 (5.16−5.92) | 5.95 ± 1.43 (5.53−6.36) | 5.16 ± 1.10 (4.84−5.48) | 0.031 * | 0.019 * | <0.001 ** |
p-Value | ||||||
---|---|---|---|---|---|---|
Day 0 | Day 1 | Day 7 | Day 0 vs. Day 1 | Day 0 vs. Day 7 | Day 1 vs. Day 7 | |
D-dimer (mg/dL) | 0.41 ± 0.19 | 0.52 ± 0.62 | 0.35 ± 0.18 | - | - | - |
PF4 (OD) | - | - | 0.21 ± 0.12 | - | - | - |
Resting Platelet | ||||||
CD41 MFI | 40.90 ± 10.39 | 37.48 ± 7.10 | 40.99 ± 10.33 | 0.052 | 0.295 | 0.088 |
CD42b MFI | 30.91 ± 6.84 | 31.98 ± 6.04 | 30.35 ± 8.08 | 0.153 | 0.602 | 0.283 |
CD42a MFI | 78.29 ± 15.70 | 73.12 ± 10.04 | 80.32 ± 15.69 | 0.093 | 0.189 | 0.007 ** |
Leukocyte–Platelet Aggregation (Percentage %) | ||||||
Myeloid% | 29.11 ± 8.41 | 26.91 ± 9.45 | 31.44 ± 10.68 | 0.128 | 0.078 | 0.008 ** |
Lymphocyte% | 23.27 ± 5.97 | 20.41 ± 6.53 | 20.94 ± 5.70 | 0.019 * | 0.029 * | 0.605 |
Monocyte% | 49.43 ± 14.65 | 46.54 ± 18.21 | 57.08 ± 18.04 | 0.396 | 0.009 ** | <0.001 ** |
Activated Platelets | ||||||
CD42b MFI | 77.20 ± 17.06 | 83.72 ± 18.44 | 80.63 ± 27.94 | 0.042 * | 0.602 | 0.629 |
FSC | 101.28 ± 20.51 | 98.21 ± 21.19 | 108.12 ± 25.42 | 0.667 | 0.004 ** | <0.001 ** |
PAC-1 Percentage (%) | ||||||
Low ADP | 68.85 ± 14.61 | 70.55 ± 14.16 | 71.46 ± 13.41 | 0.258 | 0.223 | 0.7839 |
High ADP | 88.17 ± 6.87 | 89.67 ± 5.63 | 88.47 ± 6.58 | 0.035 * | 0.785 | 0.1898 |
Low TRAP | 81.60 ± 11.52 | 83.80 ± 11.00 | 83.46 ± 10.92 | 0.053 | 0.273 | 0.8777 |
High TRAP | 82.79 ± 12.76 | 86.42 ± 9.12 | 87.37 ± 8.43 | 0.027 * | 0.033 * | 0.5827 |
PAC-1 MFI | ||||||
Low ADP | 57.23 ± 40.05 | 53.04 ± 28.87 | 67.04 ± 43.27 | 0.433 | 0.123 | 0.022 * |
High ADP | 108.94 ± 53.79 | 108.05 ± 44.44 | 121.78 ± 57.65 | 0.313 | 0.125 | 0.156 |
Low TRAP | 84.33 ± 48.02 | 85.97 ± 40.87 | 98.46 ± 50.63 | 0.608 | 0.057 | 0.058 |
High TRAP | 92.21 ± 51.15 | 97.03 ± 45.39 | 117.98 ± 57.78 | 0.263 | 0.004 ** | 0.004 ** |
p-Selectin Percentage (%) | ||||||
Low ADP | 26.60 ± 13.69 | 24.66 ± 12.71 | 25.03 ± 11.21 | 0.377 | 0.506 | 0.854 |
High ADP | 44.32 ± 15.38 | 42.99 ± 13.53 | 40.65 ± 16.01 | 0.584 | 0.236 | 0.584 |
Low TRAP | 64.11 ± 12.49 | 62.72 ± 13.12 | 59.42 ± 14.77 | 0.557 | 0.069 | 0.286 |
High TRAP | 76.24 ± 9.54 | 75.51 ± 8.90 | 72.01 ± 14.37 | 0.654 | 0.072 | 0.121 |
p-Selectin MFI | ||||||
Low ADP | 12.40 ± 3.96 | 12.40 ± 4.20 | 11.12 ± 3.31 | 0.867 | 0.061 | 0.092 |
High ADP | 20.42 ± 7.49 | 20.43 ± 7.78 | 17.91 ± 7.49 | 0.925 | 0.062 | 0.153 |
Low TRAP | 33.49 ± 10.75 | 34.44 ± 11.59 | 29.80 ± 10.84 | 0.608 | 0.019 * | 0.049 * |
High TRAP | 49.14 ± 15.98 | 49.29 ± 15.04 | 42.92 ± 17.08 | 0.974 | 0.050 * | 0.139 |
Day 0 | Day 1 | p-Value | |
---|---|---|---|
IFNr | 23.90 ± 15.89 | 26.39 ± 39.92 | 0.576 |
IL-1b | 25.12 ± 16.92 | 22.86 ± 12.44 | 0.219 |
IL-6 | 2.67 ± 4.94 | 2.69 ± 4.33 | 0.972 |
IL-8 | 1.44 ± 0.60 | 1.80 ± 0.85 | 0.009 ** |
IL-15 | 7.81 ± 3.00 | 7.06 ± 2.34 | 0.109 |
IP-10 | 157.98 ± 39.14 | 223.19 ± 95.18 | <0.001 ** |
MCP-1 | 228.05 ± 118.35 | 220.27 ± 108.03 | 0.353 |
M1P-1b | 21.51 ± 6.74 | 22.89 ± 7.67 | 0.147 |
RANTES | 1248.6 ± 249.59 | 1190.4 ± 179.33 | 0.192 |
TNFa | 26.60 ± 23.09 | 30.10 ± 36.93 | 0.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.-L.; Wang, T.-F.; Liu, C.-Z.; Wu, Y.-F. Platelet Activation and Cytokine Release of Interleukin-8 and Interferon-Gamma-Induced Protein 10 after ChAdOx1 nCoV-19 Coronavirus Vaccine Injection. Vaccines 2023, 11, 456. https://doi.org/10.3390/vaccines11020456
Shen C-L, Wang T-F, Liu C-Z, Wu Y-F. Platelet Activation and Cytokine Release of Interleukin-8 and Interferon-Gamma-Induced Protein 10 after ChAdOx1 nCoV-19 Coronavirus Vaccine Injection. Vaccines. 2023; 11(2):456. https://doi.org/10.3390/vaccines11020456
Chicago/Turabian StyleShen, Chih-Lung, Tso-Fu Wang, Chao-Zong Liu, and Yi-Feng Wu. 2023. "Platelet Activation and Cytokine Release of Interleukin-8 and Interferon-Gamma-Induced Protein 10 after ChAdOx1 nCoV-19 Coronavirus Vaccine Injection" Vaccines 11, no. 2: 456. https://doi.org/10.3390/vaccines11020456
APA StyleShen, C. -L., Wang, T. -F., Liu, C. -Z., & Wu, Y. -F. (2023). Platelet Activation and Cytokine Release of Interleukin-8 and Interferon-Gamma-Induced Protein 10 after ChAdOx1 nCoV-19 Coronavirus Vaccine Injection. Vaccines, 11(2), 456. https://doi.org/10.3390/vaccines11020456