Factors Influencing Antibody Response to SARS-CoV-2 Vaccination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Data Collection
2.2. Ethical Consent
2.3. Statistical Analysis
3. Results
3.1. Descriptive and Inferential Statistics Results
3.2. Multivariate Logistic Regression Results
4. Discussion
4.1. Summary and Contributions
4.2. Strengths and Limitations
4.3. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IU | International Units |
BAU | Binding Antibody Units |
AU | Arbitrary Units |
RBD | Receptor Binding Domain |
CoP | Correlate of Protection |
CI | Confidence Interval |
AUC | Area Under the Curve |
References
- McDonald, I.; Murray, S.M.; Reynolds, C.J.; Altmann, D.M.; Boyton, R.J. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. npj Vaccines 2021, 6, 74. [Google Scholar] [CrossRef]
- Wei, J.; Stoesser, N.; Matthews, P.C.; Ayoubkhani, D.; Studley, R.; Bell, I.; Bell, J.I.; Newton, J.N.; Farrar, J.; Diamond, I. Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom. Nat. Microbiol. 2021, 6, 1140–1149. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B. 1.1. 529) and delta (B. 1.617. 2) variants in England: A cohort study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D.; Carta, M. Improvements and limits of anti SARS-CoV-2 antibodies assays by WHO (NIBSC 20/136) standardization. Diagnosis 2022, 9, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- McMahan, K.; Yu, J.; Mercado, N.B.; Loos, C.; Tostanoski, L.H.; Chandrashekar, A.; Liu, J.; Peter, L.; Atyeo, C.; Zhu, A. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 2021, 590, 630–634. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, P.A.; Paich, H.A.; Handy, J.; Karlsson, E.A.; Hudgens, M.G.; Sammon, A.B.; Holland, L.A.; Weir, S.; Noah, T.L.; Beck, M.A. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 2012, 36, 1072–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Wielen, M.; Van Damme, P.; Chlibek, R.; Smetana, J.; von Sonnenburg, F. Hepatitis A/B vaccination of adults over 40 years old: Comparison of three vaccine regimens and effect of influencing factors. Vaccine 2006, 24, 5509–5515. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, A.; Anticoli, S.; D’Ambrosio, A.; Giordani, L.; Viora, M. The influence of sex and gender on immunity, infection and vaccination. Ann. Ist. Super Sanita 2016, 52, 198–204. [Google Scholar]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Domenico, E.G. Initial observations on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2 vaccine. EClinicalMedicine 2021, 36, 100928. [Google Scholar] [CrossRef]
- Nachtigall, I.; Bonsignore, M.; Hohenstein, S.; Bollmann, A.; Günther, R.; Kodde, C.; Englisch, M.; Ahmad-Nejad, P.; Schröder, A.; Glenz, C. Effect of gender, age and vaccine on reactogenicity and incapacity to work after COVID-19 vaccination: A survey among health care workers. BMC Infect. Dis. 2022, 22, 291. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.; Stromme, M.; Moyassari, S.; Chadha, A.S.; Tartaglia, M.C.; Szoeke, C.; Ferretti, M.T. COVID-19 vaccines: Considering sex differences in efficacy and safety. Contemp. Clin. Trials 2022, 115, 106700. [Google Scholar] [CrossRef] [PubMed]
- Lipsitch, M.; Krammer, F.; Regev-Yochay, G.; Lustig, Y.; Balicer, R.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol. 2022, 22, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Tien, N.; Chang, Y.-C.; Chen, P.-K.; Lin, H.-J.; Chang, S.-H.; Lan, J.-L.; Hsueh, P.-R.; Chang, C.-K.; Chen, D.-Y. The Immunogenicity and Safety of Three Types of SARS-CoV-2 Vaccines in Adult Patients with Immune-Mediated Inflammatory Diseases: A Longitudinal Cohort Study. Biomedicines 2022, 10, 911. [Google Scholar] [CrossRef]
- Krammer, F. A correlate of protection for SARS-CoV-2 vaccines is urgently needed. Nat. Med. 2021, 27, 1147–1148. [Google Scholar] [CrossRef]
- Danese, E.; Montagnana, M.; Salvagno, G.L.; Gelati, M.; Peserico, D.; Pighi, L.; De Nitto, S.; Henry, B.M.; Porru, S.; Lippi, G. Comparison of five commercial anti-SARS-CoV-2 total antibodies and IgG immunoassays after vaccination with BNT162b2 mRNA. J. Med. Biochem. 2021, 40, 335. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.H.; Wang, Y.J.; Li, W.; Li, Q.L.; Xu, Q.Y.; Niu, J.J.; Liu, L.L. Anti-Receptor-Binding Domain Immunoglobulin G Antibody as a Predictor of Seropositivity for Anti-SARS-CoV-2 Neutralizing Antibody. Arch. Pathol. Lab. Med. 2022, 146, 814–821. [Google Scholar] [CrossRef]
- Piccoli, L.; Park, Y.-J.; Tortorici, M.A.; Czudnochowski, N.; Walls, A.C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L.E.; Bowen, J.E. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 2020, 183, 1024–1042.e21. [Google Scholar] [CrossRef]
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jürjenson, V.; Adamson, A.; Haljasmägi, L.; Rumm, A.P.; Maruste, R.; Kärner, J. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health Eur. 2021, 10, 100208. [Google Scholar] [CrossRef]
- Collier, D.A.; Ferreira, I.A.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; Baker, S.; Dougan, G.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef]
- Coggins, S.A.A.; Laing, E.D.; Olsen, C.H.; Goguet, E.; Moser, M.; Jackson-Thompson, B.M.; Olsen, C.H.; Goguet, E.; Moser, M.; Jackson-Thompson, B.M.; et al. Adverse effects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers. In Open Forum Infectious Diseases; Oxford University Press US: Oxford, UK, 2022. [Google Scholar]
- Lapić, I.; Rogić, D.; Šegulja, D.; Zaninović, L. Antibody response and self-reported adverse reactions following vaccination with Comirnaty: A pilot study from a Croatian university hospital. J. Clin. Pathol. 2021, 75, 782–786. [Google Scholar] [CrossRef]
- Rechavi, Y.; Shashar, M.; Yana, M.; Yakubovich, D.; Sharon, N. Occurrence of BNT162b2 Vaccine Adverse Reactions Is Associated with Enhanced SARS-CoV-2 IgG Antibody Response. Vaccines 2021, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, J.A.; Englund, J.A.; Wang, X.; Brown, J.C.; Zerr, D.M.; Strelitz, B.; Klein, E.J. Higher Antibody Concentrations in U.S. Health Care Workers Associated with Greater Reactogenicity Post-Vaccination. Vaccines 2022, 10, 601. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.; Rush, M.; Morgan-Capner, P.; Hutchinson, D.; Hindle, L. Immunity to diphtheria in adults in England. BMJ Br. Med. J. 1994, 308, 598. [Google Scholar] [CrossRef] [Green Version]
- Hainz, U.; Jenewein, B.; Asch, E.; Pfeiffer, K.-P.; Berger, P.; Grubeck-Loebenstein, B. Insufficient protection for healthy elderly adults by tetanus and TBE vaccines. Vaccine 2005, 23, 3232–3235. [Google Scholar] [CrossRef]
- Bignucolo, A.; Scarabel, L.; Mezzalira, S.; Polesel, J.; Cecchin, E.; Toffoli, G. Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Vaccines 2021, 9, 825. [Google Scholar] [CrossRef]
- Fischinger, S.; Boudreau, C.M.; Butler, A.L.; Streeck, H.; Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.P.; Zeng, C.; Carlin, C.; Lozanski, G.; Saif, L.J.; Oltz, E.M.; Gumina, R.J.; Liu, S.-L. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci. Transl. Med. 2022, 14, eabn8057. [Google Scholar] [CrossRef]
- Markewitz, R.D.H.; Juhl, D.; Pauli, D.; Görg, S.; Junker, R.; Rupp, J.; Engel, S.; Steinhagen, K.; Herbst, V.; Zapf, D.; et al. Differences in Immunogenicity of Three Different Homo- and Heterologous Vaccination Regimens against SARS-CoV-2. Vaccines 2022, 10, 649. [Google Scholar] [CrossRef]
- Steensels, D.; Pierlet, N.; Penders, J.; Mesotten, D.; Heylen, L. Comparison of SARS-CoV-2 Antibody Response Following Vaccination with BNT162b2 and mRNA-1273. JAMA 2021, 326, 1533–1535. [Google Scholar] [CrossRef]
- Rose, R.; Neumann, F.; Grobe, O.; Lorentz, T.; Fickenscher, H.; Krumbholz, A. Humoral immune response after different SARS-CoV-2 vaccination regimens. BMC Med. 2022, 20, 31. [Google Scholar] [CrossRef]
- Bates, T.A.; McBride, S.K.; Leier, H.C.; Guzman, G.; Lyski, Z.L.; Schoen, D.; Winders, B.; Lee, J.-Y.; Lee, D.X.; Messer, W.B.; et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci. Immunol. 2022, 7, eabn8014. [Google Scholar] [CrossRef]
- Callegaro, A.; Borleri, D.; Farina, C.; Napolitano, G.; Valenti, D.; Rizzi, M.; Maggiolo, F. Antibody response to SARS-CoV-2 vaccination is extremely vivacious in subjects with previous SARS-CoV-2 infection. J. Med. Virol. 2021, 93, 4612–4615. [Google Scholar] [CrossRef] [PubMed]
- Tafelski, S.; Kerper, L.F.; Salz, A.L.; Spies, C.; Reuter, E.; Nachtigall, I.; Schäfer, M.; Krannich, A.; Krampe, H. Prospective clinical observational study evaluating gender-associated differences of preoperative pain intensity. Medicine 2016, 95, e4077. [Google Scholar] [CrossRef] [PubMed]
- Koerber, M.K.; Agaoglu, S.; Bichmann, A.; Tafelski, S.; Nachtigall, I. Female Patients with Pneumonia on Intensive Care Unit Are under Risk of Fatal Outcome. Medicina 2022, 58, 827. [Google Scholar] [CrossRef] [PubMed]
- Mormile, R. Thrombosis with thrombocytopenia after vaccination with the ChAdOx1 nCoV-19 vaccine (Oxford–AstraZeneca): Implications of gender-specific tissue-factor gene polymorphisms? Expert Rev. Clin. Pharmacol. 2023, 16, 1–3. [Google Scholar] [CrossRef]
Gender | ☐ Woman |
☐ Man | |
☐ Diverse | |
Immunosuppressive medication | ☐ yes (name of drug) |
☐ no | |
Vaccination | ☐ first |
☐ second | |
☐ third | |
Vaccine | ☐ BNT162b |
☐ ChAdOx 2 | |
☐ mRNA-1273 | |
Reactions (multiple answers possible range from low, medium, strong to very strong) | ☐ none |
☐ pain at the injection site | |
☐ pain/swelling at injection arm | |
☐ fever | |
☐ tiredness | |
☐ headache | |
☐ chills | |
☐ muscle pain | |
☐ joint pain | |
☐ nausea/vomiting | |
☐ diarrhoea | |
☐ anaphylactic reaction | |
☐ myocarditis/pericarditis | |
☐ facial nerve paralysis | |
☐ cardiac arrhythmia | |
☐ Guillan-Barré-Syndrome | |
☐ thrombosis with thrombocytopenia | |
☐ sinus venous thrombosis, arterial thrombosis | |
☐ capillary leak syndrome | |
Recovered from COVID-19 | ☐ yes |
☐ no |
Parameters | Female | Male | p-Value | Odds Ratio (95% Confidence Interval) |
---|---|---|---|---|
Participants (total =) | 481 | 142 | ||
Age median (IQR) | 44.38 22 (33–55) | 43.6 22 (33–55) | ||
Recovered after COVID-19 N (%) | 62 (12.9) | 15 (10.6) | 1.148 0.650–2.027 | |
1st vaccine (total = 623 patients) | ||||
BNT162b2 N (%) | 305 (63.4) | 79 (55.6) | 0.253 | |
ChAdOx 2 N (%) | 161 (33.5) | 56 (39.4) | ||
mRNA-1273 N (%) | 12 (2.5) | 7 (4.9) | not available | |
Jcovden | 2 (0.4%) | 0 | ||
without 1. vaccination N (%) | 1 (0.2%) | 0 | ||
2nd vaccine (total = 621 patients) | ||||
BNT162b2 N (%) | 385 (80.4%) | 100 (70.4%) | 0.002 | |
ChAdOx 2 N (%) | 53 (11.1) | 32 (22.5) | ||
mRNA-1273 N (%) | 11 (2.3) | 6 (4.2) | not available | |
without 2. vaccination N (%) | 30 (6.3%) | 4 (2.8%) | ||
3rd vaccine (total = 527 patients) | ||||
BNT162b2 N (%) | 11 (2.7) | 6 (4.8) | 0.088 | |
ChAdOx 2 N (%) | 0 | 1 (0.8) | ||
mRNA-1273 N (%) | 0 | 0 | not available | |
without 3. Vaccination N (%) | 391 (97.3%) | 118 (94.4) | ||
Vaccine combination. if >1 vaccination | ||||
BNT162b2 + BNT162b2 N (%) | 285 (59.3) | 76 (53.5) | 0.246 | 1.263 0.866–1.840 |
mRNA-1273 + mRNA-1273 N (%) | 10 (2.1) | 6 (4.2) | 0.221 | 0.481 0.172–1.348 |
ChAdOx + ChAdOx N (%) | 50 (10.4) | 31 (21.8) | 0.001 | 0.415 0.253–0.681 |
ChAdOx + BNT162b2 N (%) | 102 (21.2) | 24 (16.9) | 0.286 | 1.323 0.810–2.161 |
ChAdOx + mRNA-1273 N (%) | 1 (0.2) | 0 | ||
Reactions and complications after any vaccination (Multiple answers were possible) Based on 1227 vaccinations with information on reactions and gender | ||||
None N (%) | 46 (9.6) | 22 (15.5) | 0.065 | 0.577 0.334–0.997 |
Headache N (%) | 285 (58) | 63 (44.4) | 0.002 | 1.823 1.250–2.660 |
Pain at injection site N (%) | 417 (86.7) | 111 (78.2) | 0.017 | 1.820 1.129–2.933 |
Rush at injection site N (%) | 116 (23.3) | 39 (26.5) | 0.442 | 0.841 0.552–1.281 |
Tiredness N (%) | 362 (75.3) | 96 (67.6) | 0.083 | 1.458 0.969–2.192 |
Fever/Chills N (%) | 236 (489.1) | 66 (46.5) | 0.633 | 1.109 0.762–1.614 |
Gastrointestinal complaints (diarrhea, Nausea, vomiting) N (%) | 59 (12.3) | 13 (9.2) | 0.371 | 1.387 0.737–2.610 |
Neurological complications (Facialis+ Guillan) N (%) | 0 | 1 (0.7) | 0.228 | not available |
Thrombotic complications N (%) | 0 | 0 | - | |
Cardiac complications N (%) | 6 (1.2) | 2 (1.4) | 1 | 0.884 0.177–4.430 |
Muscle or joint pain N (%) | 309 (62) | 82 (55.8) | 0.180 | 1.296 0.893–1.881 |
Allergic reaction N (%) | 11 (2.3) | 3 (2.1) | 1 | 1.084 0.298–3.942 |
Antibody titer Mean | 155 AU/mL | 184 AU/mL | 0.944 | 160.02 140.23–179.80 |
p-Value | Odds Ratio (95% Confidence Interval) | |
---|---|---|
Age | <0.001 | 1.047 1.031–1.063 |
gender (female versus male) | 0.509 | 1.166 0.740–1.837 |
If BNT162b2 + BNT162b2 | 0.100 | 4.835 0.740–31.603 |
If mRNA-1273 + mRNA-1273 | 0.858 | 1.232 0.126–12.063 |
If ChAdOx + ChAdOx | 0.004 | 15.159 2.340–98.222 |
If ChAdOx + BNT162b2 | 0.316 | 2.404 0.434–13.326 |
days since antigen contact (infection or vaccination) | 0.007 | 1.005 1.001–1.009 |
any infection | <0.001 | 0.111 0.044–0.279 |
Number of vaccines | 0.016 | 0.150 0.032–0.700 |
Physical complaint | 0.010 | 0.842 0.739–0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodde, C.; Tafelski, S.; Balamitsa, E.; Nachtigall, I.; Bonsignore, M. Factors Influencing Antibody Response to SARS-CoV-2 Vaccination. Vaccines 2023, 11, 451. https://doi.org/10.3390/vaccines11020451
Kodde C, Tafelski S, Balamitsa E, Nachtigall I, Bonsignore M. Factors Influencing Antibody Response to SARS-CoV-2 Vaccination. Vaccines. 2023; 11(2):451. https://doi.org/10.3390/vaccines11020451
Chicago/Turabian StyleKodde, Cathrin, Sascha Tafelski, Efthimia Balamitsa, Irit Nachtigall, and Marzia Bonsignore. 2023. "Factors Influencing Antibody Response to SARS-CoV-2 Vaccination" Vaccines 11, no. 2: 451. https://doi.org/10.3390/vaccines11020451