Investigation of Neurological Complications after COVID-19 Vaccination: Report of the Clinical Scenarios and Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Diagnostic Workup for Neurological Complications
3. Results
3.1. Peripheral Nervous System
3.1.1. Bell’s Palsy
3.1.2. Peripheral Neuropathy
3.2. Central Nervous System
3.2.1. Transverse Myelitis (TM)
3.2.2. Postvaccinal Meningitis and Encephalitis
3.2.3. Vaccine-Associated Herpes Simplex Encephalitis (HSE)
3.2.4. Cerebral Venous Sinus Thrombosis (CVST) and Intracranial Hemorrhage (ICH)
4. Discussion
4.1. Peripheral Nervous System Disorder
4.1.1. Bell’s Palsy
4.1.2. Guillain—Barré Syndrome (GBS)
4.1.3. Trigeminal Neuralgia
4.2. Central Nervous System
4.2.1. Demyelinating Disease of the Central Nervous System
4.2.2. Postvaccinal Meningitis and Encephalitis
4.2.3. Vaccine-Associated Herpes Simplex Encephalitis
4.2.4. Stroke
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Selected Adverse Events Reported after COVID-19 Vaccination. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html (accessed on 28 November 2022).
- FDA. Available online: https://www.fda.gov.tw/TC/siteList.aspx?sid=1571 (accessed on 12 December 2022).
- Ramaswamy, A.T.; Lawrence, R.L. Disorders of the Facial Nerve. In Current Diagnosis & Amp; Treatment Otolaryngology—Head and Neck Surgery, 4th ed.; Anil, K.L., Ed.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Douglas, V.C.; Aminoff, M.J. Peripheral Neuropathies. In Current Medical Diagnosis & Treatment 2023; Maxine, A., Papadakis, M.A., McPhee, S.J., Rabow, M.W., McQuaid, R., Eds.; McGraw-Hill Education: New York, NY, USA, 2023. [Google Scholar]
- Transverse Myelitis Consortium Working Group. Proposed Diagnostic Criteria and Nosology of Acute Transverse Myelitis. Neurology 2002, 59, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.; Tunkel, A.R.; Bloch, K.C.; Lauring, A.S.; Sejvar, J.; Bitnun, A.; Stahl, J.P.; Mailles, A.; Drebot, M.; Rupprecht, C.E.; et al. Case Definitions, Diagnostic Algorithms, and Priorities in Encephalitis: Consensus Statement of the International Encephalitis Consortium. Clin. Infect. Dis. 2013, 57, 1114–1128. [Google Scholar] [CrossRef]
- Whitley, R.J. Herpes Simplex Encephalitis: Adolescents and Adults. Antivir. Res. 2006, 71, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ferro, J.M.; Bousser, M.G.; Canhao, P.; Coutinho, J.M.; Crassard, I.; Dentali, F.; di Minno, M.; Maino, A.; Martinelli, I.; Masuhr, R.; et al. European Stroke Organization Guideline for the Diagnosis and Treatment of Cerebral Venous Thrombosis–Endorsed by the European Academy of Neurology. Eur. J. Neurol. 2017, 24, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.T.; Lin, Y.Y.; Chiang, W.F.; Lin, C.Y.; Chen, M.H.; Wu, K.A.; Chan, J.S.; Kao, Y.H.; Shyu, H.Y.; Hsiao, P.J. COVID-19 Vaccine-Induced Encephalitis and Status Epilepticus. QJM 2022, 115, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.J.; Wu, K.L.; Chen, Y.C.; Chen, Y.L.; Wang, R.L.; Wu, K.A.; Chan, J.S.; Chiu, C.C.; Huang, L.Y.; Shyu, H.Y.; et al. The Role of Anti-Platelet Factor 4 Antibodies and Platelet Activation Tests in Patients with Vaccine-Induced Immune Thrombotic Thrombocytopenia: Brief Report on a Comparison of the Laboratory Diagnosis and Literature Review. Clin. Chim. Acta 2022, 529, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Yuyang, L.; Zhang, J.; Schiavon, C.R.; He, M.; Chen, L.; Shen, H.; Zhang, Y.; Yin, Q.; Cho, Y.; Andrade, L.; et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function Via Downregulation of Ace 2. Circ. Res. 2021, 128, 1323–1326. [Google Scholar]
- Nuovo, G.J.; Magro, C.; Shaffer, T.; Awad, H.; Suster, D.; Mikhail, S.; He, B.; Michaille, J.J.; Liechty, B.; Tili, E. Endothelial Cell Damage Is the Central Part of COVID-19 and a Mouse Model Induced by Injection of the S1 Subunit of the Spike Protein. Ann. Diagn. Pathol. 2021, 51, 151682. [Google Scholar] [CrossRef]
- Michel, G.; Hermans, C. Thrombotic Thrombocytopenia Associated with COVID-19 Infection or Vaccination: Possible Paths to Platelet Factor 4 Autoimmunity. PLOS Med. 2021, 18, e1003648. [Google Scholar]
- Sharifian-Dorche, M.; Bahmanyar, M.; Sharifian-Dorche, A.; Mohammadi, P.; Nomovi, M.; Mowla, A. Vaccine-Induced Immune Thrombotic Thrombocytopenia and Cerebral Venous Sinus Thrombosis Post COVID-19 Vaccination; a Systematic Review. J. Neurol. Sci. 2021, 428, 117607. [Google Scholar] [CrossRef]
- Kim, A.Y.; Woo, W.; Yon, D.K.; Lee, S.W.; Yang, J.W.; Kim, J.H.; Park, S.; Koyanagi, A.; Kim, M.S.; Lee, S.; et al. Thrombosis Patterns and Clinical Outcome of COVID-19 Vaccine-Induced Immune Thrombotic Thrombocytopenia: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2022, 119, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Saluja, P.; Gautam, N.; Yadala, S.; Venkata, A.N. Thrombotic Thrombocytopenic Purpura (Ttp) after COVID-19 Vaccination: A Systematic Review of Reported Cases. Thromb. Res. 2022, 214, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Cascio Rizzo, A.; Giussani, G.; Agostoni, E.C. Ischemic Stroke and Vaccine-Induced Immune Thrombotic Thrombocytopenia Following COVID-19 Vaccine: A Case Report with Systematic Review of the Literature. Cereb. Dis. 2022, 51, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Ostovan, V.R.; Sahraian, M.A.; Karazhian, N.; Rostamihosseinkhani, M.; Salimi, M.; Marbooti, H. Clinical Characteristics, Radiological Features and Prognostic Factors of Transverse Myelitis Following COVID-19 Vaccination: A Systematic Review. Mult. Scler. Relat. Disord. 2022, 66, 104032. [Google Scholar] [CrossRef] [PubMed]
- Takuva, S.; Takalani, A.; Seocharan, I.; Yende-Zuma, N.; Reddy, T.; Engelbrecht, I.; Faesen, M.; Khuto, K.; Whyte, C.; Bailey, V.; et al. Safety Evaluation of the Single-Dose Ad26.Cov2.S Vaccine among Healthcare Workers in the Sisonke Study in South Africa: A Phase 3b Implementation Trial. PLoS Med. 2022, 19, e1004024. [Google Scholar] [CrossRef]
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and Immunogenicity of Chadox1 Ncov-19 Vaccine Administered in a Prime-Boost Regimen in Young and Old Adults (Cov002): A Single-Blind, Randomised, Controlled, Phase 2/3 Trial. Lancet 2021, 396, 1979–1993. [Google Scholar] [CrossRef]
- Liston, S.L.; Kleid, M.S. Histopathology of Bell’s Palsy. Laryngoscope 1989, 99, 23–26. [Google Scholar] [CrossRef]
- Grewal, D.S. Bell’s Palsy-Tertiary Ischemia: An Etiological Factor in Residual Facial Palsy. Indian J. Otolaryngol. Head Neck Surg. 2018, 70, 374–379. [Google Scholar] [CrossRef]
- Murakami, S.; Mizobuchi, M.; Nakashiro, Y.; Doi, T.; Hato, N.; Yanagihara, N. Bell Palsy and Herpes Simplex Virus: Identification of Viral DNA in Endoneurial Fluid and Muscle. Ann. Intern. Med. 1996, 124, 27–30. [Google Scholar] [CrossRef]
- Yalcindag, F.N.; Alay, C. Bell’s Palsy During Interferon Alpha 2a Treatment in a Case with Behcet Uveitis. F1000 Res. 2013, 2, 245. [Google Scholar] [CrossRef]
- Gupta, S.; Jawanda, M.K. Surge of Bell’s Palsy in the Era of COVID-19: Systematic Review. Eur. J. Neurol. 2022, 29, 2526–2543. [Google Scholar] [CrossRef] [PubMed]
- Ozonoff, A.; Nanishi, E.; Levy, O. Bell’s Palsy and SARS-CoV-2 Vaccines. Lancet Infect. Dis. 2021, 21, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Xu, W.; Cong, X.; Fan, H.; Gilkeson, G.; Wu, X.; Hughes, H.; Jiang, W. COVID-19 Mrna Vaccine Bnt162b2 Induces Autoantibodies against Type I Interferons in a Healthy Woman. J. Autoimmun. 2022, 132, 102896. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, N.; Doan, R. Bell’s Palsy and SARS-CoV-2 Vaccines-an Unfolding Story. Lancet Infect. Dis. 2021, 21, 1210–1211. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.H.; Chen, H.Y.; Chiu, H.H.; Kang, Y.N.; Wong, S.B. Peripheral Nervous System Adverse Events after the Administration of Mrna Vaccines: A Systematic Review and Meta-Analysis of Large-Scale Studies. Vaccines 2022, 10, 2174. [Google Scholar] [CrossRef]
- Li, X.; Ostropolets, A.; Makadia, R.; Shoaibi, A.; Rao, G.; Sena, A.G.; Martinez-Hernandez, E.; Delmestri, A.; Verhamme, K.; Rijnbeek, P.R.; et al. Characterising the Background Incidence Rates of Adverse Events of Special Interest for COVID-19 Vaccines in Eight Countries: Multinational Network Cohort Study. BMJ 2021, 373, n1435. [Google Scholar] [CrossRef]
- Trimboli, M.; Zoleo, P.; Arabia, G.; Gambardella, A. Guillain-Barre Syndrome Following Bnt162b2 COVID-19 Vaccine. Neurol. Sci. 2021, 42, 4401–4402. [Google Scholar] [CrossRef]
- McKean, N.; Chircop, C. Guillain-Barre Syndrome after COVID-19 Vaccination. BMJ Case Rep. 2021, 14, e244125. [Google Scholar] [CrossRef]
- Hanson, K.E.; Goddard, K.; Lewis, N.; Fireman, B.; Myers, T.R.; Bakshi, N.; Weintraub, E.; Donahue, J.G.; Nelson, J.C.; Xu, S.; et al. Incidence of Guillain-Barre Syndrome after COVID-19 Vaccination in the Vaccine Safety Datalink. JAMA Netw. Open 2022, 5, e228879. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-Em Structure of the 2019-Ncov Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Kim, J.K.; Bae, J.S.; Kim, D.S.; Kusunoki, S.; Kim, J.E.; Kim, J.S.; Park, Y.E.; Park, K.J.; Song, H.S.; Kim, S.Y.; et al. Prevalence of Anti-Ganglioside Antibodies and Their Clinical Correlates with Guillain-Barré Syndrome in Korea: A Nationwide Multicenter Study. J. Clin. Neurol. 2014, 10, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Guilmot, A.; Maldonado Slootjes, S.; Bissay, V.; Dubuisson, N.; de Broglie, C.; Gille, M. SARS-CoV-2-Associated Guillain–Barré Syndrome in Four Patients: What Do We Know About Pathophysiology? Acta Neurol. Belg. 2022, 122, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.S.; Eldeeb, M.A.; Blackmore, D.; Siddiqi, Z.A. Guillain Barré syndrome and COVID-19: Possible role of the cytokine storm. Autoimmun. Rev. 2020, 19, 102681. [Google Scholar] [CrossRef]
- Germano, F.; Bellucci, M.; Grisanti, S.; Beronio, A.; Grazzini, M.; Coco, E.; Tassinari, T.; Della Cava, F.; De Michelis, C.; Baldi, O.; et al. COVID-19 Vaccine-Related Guillain-Barré Syndrome in the Liguria Region of Italy: A Multicenter Case Series. J. Neurol. Sci. 2022, 440, 120330. [Google Scholar] [CrossRef]
- Kaya, A.; Kaya, S.Y. A Case of Trigeminal Neuralgia Developing after a COVID-19 Vaccination. J. Neurovirol. 2022, 28, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Narasimhalu, K.; Lee, W.C.; Salkade, P.R.; De Silva, D.A. Trigeminal and Cervical Radiculitis after Tozinameran Vaccination against COVID-19. BMJ Case Rep. 2021, 14, e242344. [Google Scholar] [CrossRef]
- Onoda, K.; Sashida, R.; Fujiwara, R.; Wakamiya, T.; Michiwaki, Y.; Tanaka, T.; Shimoji, K.; Suehiro, E.; Yamane, F.; Kawashima, M.; et al. Trigeminal Neuropathy after Tozinameran Vaccination against COVID-19 in Postmicrovascular Decompression for Trigeminal Neuralgia: Illustrative Case. J. Neurosurg. Case Lessons 2022, 3, CASE22101. [Google Scholar] [CrossRef]
- Borchers, A.T.; Eric Gershwin, M. Transverse Myelitis. Autoimmun. Rev. 2012, 11, 231–248. [Google Scholar] [CrossRef]
- Mariano, R.; Messina, S.; Kumar, K.; Kuker, W.; Leite, M.I.; Palace., J. Comparison of Clinical Outcomes of Transverse Myelitis among Adults with Myelin Oligodendrocyte Glycoprotein Antibody vs. Aquaporin-4 Antibody Disease. JAMA Netw Open 2019, 2, e1912732. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Weinshenker, B.G. Acute Disseminated Encephalomyelitis, Transverse Myelitis, and Neuromyelitis Optica. Continuum 2013, 19, 944–967. [Google Scholar] [CrossRef]
- Paybast, S.; Emami, A.; Baghalha, F.; Moghadasi, A.N. Watch out for neuromyelitis optica spectrum disorder onset or clinical relapse after COVID-19 vaccination: What neurologists need to know? Mult. Scler. Relat. Disord. 2022, 65, 103960. [Google Scholar] [CrossRef] [PubMed]
- Dams, L.; Kraemer, M.; Becker, J. Mog-Antibody-Associated Longitudinal Extensive Myelitis after Chadox1 Ncov-19 Vaccination. Mult. Scler. 2022, 28, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Kivity, S.; Szyper-Kravitz, M.; Shoenfeld, Y. Transverse Myelitis and Vaccines: A Multi-Analysis. Lupus 2009, 18, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Pagenkopf, C.; Sudmeyer, M. A Case of Longitudinally Extensive Transverse Myelitis Following Vaccination against COVID-19. J. Neuroimmunol. 2021, 358, 577606. [Google Scholar] [CrossRef]
- Chakraborty, U.; Chandra, A.; Ray, A.K.; Biswas, P. COVID-19-Associated Acute Transverse Myelitis: A Rare Entity. BMJ Case Rep. 2020, 13, e238668. [Google Scholar] [CrossRef]
- Baldelli, L.; Amore, G.; Montini, A.; Panzera, I.; Rossi, S.; Cortelli, P.; Guarino, M.; Rinaldi, R.; D’Angelo, R. Hyperacute Reversible Encephalopathy Related to Cytokine Storm Following COVID-19 Vaccine. J. Neuroimmunol. 2021, 358, 577661. [Google Scholar] [CrossRef]
- Zuhorn, F.; Graf, T.; Klingebiel, R.; Schabitz, W.R.; Rogalewski, A. Postvaccinal Encephalitis after Chadox1 Ncov-19. Ann. Neurol. 2021, 90, 506–511. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Karasawa, S.; Ohashi, N.; Yamamoto, K. A Case of Encephalitis Following COVID-19 Vaccine. J. Infect. Chemother. 2022, 28, 975–977. [Google Scholar] [CrossRef]
- Saito, K.; Shimizu, T.; Suzuki-Inoue, K.; Ishida, T.; Wada, Y. Aseptic Meningitis after Vaccination of the Bnt162b2 Mrna COVID-19 Vaccine. Neurol. Sci. 2021, 42, 4433–4435. [Google Scholar] [CrossRef]
- Vojdani, A.; Kharrazian, D. Potential Antigenic Cross-Reactivity between SARS-CoV-2 and Human Tissue with a Possible Link to an Increase in Autoimmune Diseases. Clin. Immunol. 2020, 217, 108480. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Kharrazian, D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins with Tissue Antigens: Implications for Autoimmune Diseases. Front. Immunol. 2020, 11, 617089. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Fang, C.; Huang, X.; Feng, Z.; Yao, Y.; Wang, Y.; Chang, J. Endothelial Beta-Catenin Deficiency Causes Blood-Brain Barrier Breakdown Via Enhancing the Paracellular and Transcellular Permeability. Front. Mol. Neurosci. 2022, 15, 895429. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.A.; Zhang, X.; Predescu, D.; Huang, X.; Machado, R.F.; Gothert, J.R.; Malik, A.B.; Valyi-Nagy, T.; Zhao, Y.Y. Endothelial Beta-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and Central Nervous System Homeostasis. Circulation 2016, 133, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Siow, I.; Lee, K.S.; Zhang, J.J.Y.; Saffari, S.E.; Ng, A. Encephalitis as a Neurological Complication of COVID-19: A Systematic Review and Meta-Analysis of Incidence, Outcomes, and Predictors. Eur. J. Neurol. 2021, 28, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; et al. The Emerging Spectrum of COVID-19 Neurology: Clinical, Radiological and Laboratory Findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef] [PubMed]
- Oosthuizen, K.; Steyn, E.C.; Tucker, L.; Ncube, I.V.; Hardie, D.; Marais, S. SARS-CoV-2 Encephalitis Presenting as a Clinical Cerebellar Syndrome: A Case Report. Neurology 2021, 97, 27–29. [Google Scholar] [CrossRef]
- Herbort, C.P.; Papasavvas, I. Effect of SARS-CoV-2 Mrna Vaccination on Ocular Herpes Simplex and Varicella-Zoster Virus Reactivation: Should Preventive Antiviral Treatment Be Given in Known Herpes Patients. J. Ophthalmic Inflamm. Infect. 2021, 11, 33. [Google Scholar] [CrossRef]
- Kluger, N.; Klimenko, T.; Bosonnet, S. Herpes Simplex, Herpes Zoster and Periorbital Erythema Flares after SARS-CoV-2 Vaccination: 4 Cases. Ann. Dermatol. Venereol. 2022, 149, 58–60. [Google Scholar] [CrossRef]
- Van Dam, C.S.; Lede, I.; Schaar, J.; Al-Dulaimy, M.; Rosken, R.; Smits, M. Herpes Zoster after COVID Vaccination. Int. J. Infect. Dis. 2021, 111, 169–171. [Google Scholar] [CrossRef]
- Bostan, E.; Yalici-Armagan, B. Herpes Zoster Following Inactivated COVID-19 Vaccine: A Coexistence or Coincidence? J. Cosmet. Dermatol. 2021, 20, 1566–1567. [Google Scholar] [CrossRef]
- Furer, V.; Zisman, D.; Kibari, A.; Rimar, D.; Paran, Y.; Elkayam, O. Herpes Zoster Following Bnt162b2 Mrna COVID-19 Vaccination in Patients with Autoimmune Inflammatory Rheumatic Diseases: A Case Series. Rheumatology 2021, 60, SI90–SI95. [Google Scholar] [CrossRef] [PubMed]
- Tessas, I.; Kluger, N. Ipsilateral Herpes Zoster after the First Dose of Bnt162b2 Mrna COVID-19 Vaccine. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e620–e622. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.; Abdullah, L.; Kurban, M.; Abbas, O. Herpes Zoster Emergence Following Mrna COVID-19 Vaccine. J. Med. Virol. 2021, 93, 5231–5232. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Egea, J.M.; Sanchez, C.G.; Lopez-Jimenez, A.; Navarro, O.D. Herpetic Anterior Uveitis Following Pfizer-Biontech Coronavirus Disease 2019 Vaccine: Two Case Reports. J. Med. Case Rep. 2022, 16, 127. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Sardana, K.; Mathachan, S.R.; Malhotra, P. Herpes Zoster after Inactivated COVID-19 Vaccine: A Cutaneous Adverse Effect of the Vaccine. J. Cosmet. Dermatol. 2021, 20, 3389–3390. [Google Scholar] [CrossRef]
- Moslemi, M.; Ardalan, M.; Haramshahi, M.; Mirzaei, H.; Sani, S.K.; Dastgir, R.; Dastgir, N. Herpes Simplex Encephalitis Following Chadox1 Ncov-19 Vaccination: A Case Report and Review of the Literature. BMC Infect. Dis. 2022, 22, 217. [Google Scholar] [CrossRef]
- Ebadi, Z.; Ghadiri, F.; Asadollahzade, E.; Moghadasi, A.N. Herpes Simplex Encephalitis after Receiving COVID-19 Vaccine; a Case Report. Front. Emerg. Med. 2022, 6, e56. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase I/Ii Study of COVID-19 Rna Vaccine Bnt162b1 in Adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef]
- Kodukula, P.; Liu, T.; Rooijen, N.V.; Jager, M.J.; Hendricks, R.L. Macrophage Control of Herpes Simplex Virus Type 1 Replication in the Peripheral Nervous System. J. Immunol. 1999, 162, 2895–2905. [Google Scholar] [CrossRef]
- Liu, T.; Tang, Q.; Hendricks, R.L. Inflammatory Infiltration of the Trigeminal Ganglion after Herpes Simplex Virus Type 1 Corneal Infection. J. Virol. 1996, 70, 264–271. [Google Scholar] [CrossRef]
- Verzosa, A.L.; McGeever, L.A.; Bhark, S.J.; Delgado, T.; Salazar, N.; Sanchez, E.L. Herpes Simplex Virus 1 Infection of Neuronal and Non-Neuronal Cells Elicits Specific Innate Immune Responses and Immune Evasion Mechanisms. Front. Immunol. 2021, 12, 644664. [Google Scholar] [CrossRef] [PubMed]
- Perini, P.; Rinaldi, F.; Puthenparampil, M.; Marcon, M.; Perini, F.; Gallo, P. Herpes Simplex Virus Encephalitis Temporally Associated with Dimethyl Fumarate-Induced Lymphopenia in a Multiple Sclerosis Patient. Mult. Scler. Relat. Disord. 2018, 26, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.B.; Basida, B.; Bapatla, A.; Ismail, R.; Hafeez, W. Herpes Simplex Virus Esophagitis in the Setting of Acute Use of Corticosteroids for Copd Exacerbation in an Immunocompetent Middle-Aged Woman. Case Rep. Gastroenterol. 2021, 15, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.; Hartmann, K.; Fleisch, F.; Reinhart, W.H.; Kuhn, M. Reactivation of Herpesvirus Infections after Vaccinations? Lancet 1999, 353, 810. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020, 27, 992–1000. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after Chadox1 Ncov-19 Vaccination. New Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Kowarz, E.; Krutzke, L.; Külp, M.; Streb, P.; Larghero, P.; Reis, J.; Bracharz, S.; Engler, T.; Kochanek, S.; Marschalek, R. Vaccine-Induced COVID-19 Mimicry Syndrome. Elife 2022, 11. [Google Scholar] [CrossRef]
- Kircheis, R.; Haasbach, E.; Lueftenegger, D.; Heyken, W.T.; Ocker, M.; Planz, O. Nf-Κb Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Front. Immunol. 2020, 11, 598444. [Google Scholar] [CrossRef]
- Kircheis, R. Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined Effect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways. Int. J. Mol. Sci. 2021, 22, 10791. [Google Scholar] [CrossRef]
- Khan, S.; Shafiei, M.S.; Longoria, C.; Schoggins, J.W.; Savani, R.C.; Zaki, H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife 2021, 10, e68563. [Google Scholar] [CrossRef]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of Ace2. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tao, T.; Wang, H.; Zhao, H.; Lu, L.; Wu, F. Arterial Thrombosis Is Accompanied by Elevated Mitogen-Activated Protein Kinase (Mapk) and Cyclooxygenase-2 (Cox-2) Expression Via Toll-Like Receptor 4 (Tlr-4) Activation by S100a8/A9. Med. Sci. Monit. 2018, 24, 7673–7681. [Google Scholar] [CrossRef] [PubMed]
- Battagello, D.S.; Dragunas, G.; Klein, M.O.; Ayub, A.L.P.; Velloso, F.J.; Correa, R.G. Unpuzzling COVID-19: Tissue-Related Signaling Pathways Associated with SARS-CoV-2 Infection and Transmission. Clin. Sci. 2020, 134, 2137–2160. [Google Scholar] [CrossRef] [PubMed]
- Mussbacher, M.; Salzmann, M.; Brostjan, C.; Hoesel, B.; Schoergenhofer, C.; Datler, H.; Hohensinner, P.; Basílio, J.; Petzelbauer, P.; Assinger, A.; et al. Cell Type-Specific Roles of Nf-Κb Linking Inflammation and Thrombosis. Front. Immunol. 2019, 10, 85. [Google Scholar] [CrossRef]
- Kakovan, M.; Shirkouhi, S.G.; Zarei, M.; Andalib, S. Stroke Associated with COVID-19 Vaccines. J. Stroke Cereb. Dis. 2022, 31, 106440. [Google Scholar] [CrossRef]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after Chadox1 Ncov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef]
- De Mélo Silva, M.L., Jr.; Lopes, D.P. Large Hemorrhagic Stroke after Chadox1 Ncov-19 Vaccination: A Case Report. Acta Neurol. Scand. 2021, 144, 717–718. [Google Scholar] [CrossRef]
- Coutinho, J.M.; Ferro, J.M.; Canhao, P.; Barinagarrementeria, F.; Cantú, C.; Bousser, M.G.; Stam, J. Cerebral Venous and Sinus Thrombosis in Women. Stroke 2009, 40, 2356–2361. [Google Scholar] [CrossRef]
- Krzywicka, K.; Heldner, M.R.; Sanchez van Kammen, M.; van Haaps, T.; Hiltunen, S.; Silvis, S.M.; Levi, J.A.; Hovinga, J.A.K.; Jood, K.; Lindgren, E.; et al. Post-SARS-CoV-2-Vaccination Cerebral Venous Sinus Thrombosis: An Analysis of Cases Notified to the European Medicines Agency. Eur. J. Neurol. 2021, 28, 3656–3662. [Google Scholar] [CrossRef]
- Ashrani, A.A.; Crusan, D.J.; Petterson, T.; Bailey, K.; Heit, J.A. Age- and Sex-Specific Incidence of Cerebral Venous Sinus Thrombosis Associated with Ad26.Cov2.S COVID-19 Vaccination. JAMA Intern. Med. 2022, 182, 80–83. [Google Scholar] [CrossRef]
- Schulz, J.B.; Berlit, P.; Diener, H.C.; Gerloff, C.; Greinacher, A.; Klein, C.; Petzold, G.C.; Piccininni, M.; Poli, S.; Röhrig, R.; et al. COVID-19 Vaccine-Associated Cerebral Venous Thrombosis in Germany. Ann. Neurol. 2021, 90, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Van Kammen, M.S.; De Sousa, D.A.; Poli, S.; Cordonnier, C.; Heldner, M.R.; Van De Munckhof, A.; Arslan, Y. Characteristics and Outcomes of Patients with Cerebral Venous Sinus Thrombosis in SARS-CoV-2 Vaccine–Induced Immune Thrombotic Thrombocytopenia. JAMA Neurol. 2021, 78, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Gabarin, N.; Arnold, D.M.; Nazy, I.; Warkentin, T.E. Treatment of Vaccine-Induced Immune Thrombotic Thrombocytopenia (Vitt). Semin. Hematol. 2022, 59, 89–96. [Google Scholar] [CrossRef] [PubMed]
Case No. | Age Sex | Symptoms | Vaccine | Underlying Disease | Onset Time | Diagnosis | Outcome |
---|---|---|---|---|---|---|---|
1 | 68 F | Right facial weakness and tingling pain, numbness over left face | 1st, 2nd: mRNA-1273 | Coronary artery disease | 5 days | Bell’s palsy | Resolution of facial weakness and tingling pain |
2 | 63 M | Left facial weakness, pain, drooling | 1st: ChadOx1nCoV-19 | Diabetes mellitus Hypertensive cardiovascular disease Dyslipidemia | 10 days | Bell’s palsy | Failed to follow up |
3 | 80 F | Left facial weakness | 1st: BNT 162b2 | Type 2 diabetes mellitus Hypertension | 14 days | Bell’s palsy | Failed to follow up |
4 | 57 M | Right facial weakness | 1st, 2nd, 3rd: mRNA-1273 | None | 2 days | Bell’s palsy | Failed to follow up |
5 | 71 F | Left face weakness | 4th mRNA-1273 | None | 2 days | Bell’s palsy | Partial improvement. Mild weakness of left lower face |
6 | 79 F | Right face weakness | 1st, 2nd: mRNA-1273 | Type 2 diabetes mellitus | 15 days | Bell’s palsy | Resolution of right face weakness |
7 | 80 M | Weakness of right face 3 days after 2nd mRNA-1273 | 1st, 2nd: mRNA-1273 | Type 2 diabetes mellitus Hypertension Abducens palsy of right due to diabetic neuropathy Prostate cancer | 3 days | Bell’s palsy | Failed to follow up |
8 | 42 F | Electrical and burning painful sensation of left sole to ankle region with radiation to hip region Left foot numbness | 1st: ChadOx1nCoV-19 | None | 5 days | Left peroneal and tibial neuropathy | Resolution of left sole pain Residual numbness of left toes |
9 | 37 F | Hypoesthesia over left hand and foot, intermittent clonus over bilateral feet, and right face for days after mRNA-1273 vaccination | 1st: ChadOx1nCoV-19 2nd: mRNA-1273 | Ankylosing spondylitis | 6 days | Myoclonus | Partial improvement |
10 | 58 F | Numbness and tingling pain over right anterior tongue | 3rd mRNA-1273 | Hypertension | 6 days | Trigeminal neuralgia | Partial improvement |
11 | 72 M | Left foot dropped after 2nd mRNA-1273 | 1st, 2nd: mRNA-1273 | Hypertension | 13 days | Left deep peroneal neuropathy | Failed to follow up |
12 | 67 M | Progressive numbness and shooting pain over bilateral lower limbs | 1st: mRNA-1273 | Type 2 diabetes mellitus Hypertension | 3 days | Motor polyneuropathy of bilateral lower limbs, demyelination type | Resolution of numbness |
13 | 60 M | Numbness, soreness over right lower leg below right T10 dermatome | 3rd mRNA-1273 | Stroke Hypertension | 18 days | Possible acute myelitis | Residual numbness of right lower leg |
14 | 56 F | Numbness with burning sensation in right lower limb below inguinal region | 1st: ChadOx1nCoV-19 | Type 2 diabetes mellitus Hypertension Hyperlipidemia | 5 days | Acute myelitis involving left spinothalamic tract at T7 level with right paraesthesia below T10 dermatome, suspected vaccine-associated | Partial improvement Residual burning sensation in right lower limb |
15 | 22 M | Fever, seizure | 2nd: mRNA-1273 | None | 8 days | Vaccine-induced encephalitis and status epilepticus | Partial improvement. Recurrent seizures |
16 | 57 M | First acute seizure | 1st: mRNA-1273 | Schizophrenia | 19 days | Aseptic meningitis with seizure | Complete remission |
17 | 58 F | Fever, altered mental status | 1st, 2nd: ChadOx1nCoV-19 3rd: mRNA-1273 | None | 6 days | Aseptic encephalitis secondary to mRNA-1273 | Complete remission |
18 | 64 M | Fever, altered mental status, nausea, and vomiting | 1st: BNT 162b2 | Major depressive disorder | 9 days | Vaccine-associated Herpes simplex encephalitis | Complete remission |
19 | 43 F | Fever, headache, petechiae, mild shortness of breath | ChadOx1nCoV-19 | None | 9 days (cerebral venous sinus thrombosis, pulmonary embolism) 26 days (Intracranial hemorrhage) 32 days (Right hepatic thrombosis) | 1. Vaccine induced thrombosis and thrombocytopenia 2. Cerebral venous thrombosis 3. Acute cerebral hemorrhage, right thalamus and left temporal lobe | Complete remission |
Demographic Data | Bell’s Palsy | Peripheral Neuropathy | ATM | Post Vaccinal Meningitis and Encephalitis | Vaccine-Associated HSE | CVST | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vaccine types | AZ N = 1 | Moderna N = 5 | BNT N = 1 | AZ N = 1 | Moderna N = 4 | AZ N = 1 | Moderna N = 1 | Moderna N = 2 | AZ and Moderna N = 1 | BNT N = 1 | AZ N= 1 |
Male | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 0 |
Female | 0 | 3 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 1 |
Mean onset after vaccination | 10 | 5.4(2–15) | 14 | 5 | 7 (3–13) | 5 | 18 | 13.5(8–19) | 6 | 9 | 9 |
Mean age | 63 | 71 | 80 | 42 | 58.5 (37–72) | 56 | 60 | 39.5(22–57) | 58 | 64 | 43 |
Age categories | |||||||||||
<50 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
≥50 | 1 | 5 | 1 | 0 | 3 | 1 | 1 | 1 | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-P.; Chen, M.-H.; Shang, S.-T.; Kao, Y.-H.; Wu, K.-A.; Chiang, W.-F.; Chan, J.-S.; Shyu, H.-Y.; Hsiao, P.-J. Investigation of Neurological Complications after COVID-19 Vaccination: Report of the Clinical Scenarios and Review of the Literature. Vaccines 2023, 11, 425. https://doi.org/10.3390/vaccines11020425
Chen W-P, Chen M-H, Shang S-T, Kao Y-H, Wu K-A, Chiang W-F, Chan J-S, Shyu H-Y, Hsiao P-J. Investigation of Neurological Complications after COVID-19 Vaccination: Report of the Clinical Scenarios and Review of the Literature. Vaccines. 2023; 11(2):425. https://doi.org/10.3390/vaccines11020425
Chicago/Turabian StyleChen, Wei-Ping, Ming-Hua Chen, Shih-Ta Shang, Yung-Hsi Kao, Kuo-An Wu, Wen-Fang Chiang, Jenq-Shyong Chan, Hann-Yeh Shyu, and Po-Jen Hsiao. 2023. "Investigation of Neurological Complications after COVID-19 Vaccination: Report of the Clinical Scenarios and Review of the Literature" Vaccines 11, no. 2: 425. https://doi.org/10.3390/vaccines11020425
APA StyleChen, W.-P., Chen, M.-H., Shang, S.-T., Kao, Y.-H., Wu, K.-A., Chiang, W.-F., Chan, J.-S., Shyu, H.-Y., & Hsiao, P.-J. (2023). Investigation of Neurological Complications after COVID-19 Vaccination: Report of the Clinical Scenarios and Review of the Literature. Vaccines, 11(2), 425. https://doi.org/10.3390/vaccines11020425