The Production of Recombinant African Swine Fever Virus Lv17/WB/Rie1 Strains and Their In Vitro and In Vivo Characterizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Production of Lv17/WB/Rie1-Δ24 Virus
2.3. Production of Lv17/WB/Rie1-ΔCD-ΔGL Virus
2.4. Determination of Growth Characteristics
2.5. Immunfluorescent Staining
2.6. Sequencing
2.7. Animal Experiments
2.8. Collection of Blood Samples
2.9. ELISA Test
2.10. Real-Time PCR
2.11. Statistical Analysis
3. Results
3.1. Generation of Lv17/WB/Rie1-Δ24
3.2. Production of Lv17/ΔCD-ΔGL
3.3. Replication of Lv17/WB/Rie1-ΔCD-ΔGL and Lv17/WB/Rie1-Δ24 Viruses
3.4. Evaluation of a Lv17/WB/Rie1-Δ24 and Lv17/WB/Rie1-ΔCD-ΔGL in Pigs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Casal, J.; Tago, D.; Pineda, P.; Tabakovski, B.; Santos, I.; Benigno, C.; Huynh, T.; Ciaravino, G.; Beltran-Alcrudo, D. Evaluation of the Economic Impact of Classical and African Swine Fever Epidemics Using OutCosT, a New Spreadsheet-Based Tool. Transbound. Emerg. Dis. 2022, 69, e2474–e2484. [Google Scholar] [CrossRef] [PubMed]
- ASF Russia: Pig Farmers See a Hike in Losses. Available online: https://www.pigprogress.net/health-nutrition/health/asf-russia-pig-farmers-see-a-hike-in-losses/ (accessed on 10 February 2023).
- FAO ASF in Asia. 2023. Available online: https://www.fao.org/animal-health/situation-updates/asf-in-asia-pacific/en (accessed on 24 January 2023).
- Nguyen-Thi, T.; Pham-Thi-Ngoc, L.; Nguyen-Ngoc, Q.; Dang-Xuan, S.; Lee, H.S.; Nguyen-Viet, H.; Padungtod, P.; Nguyen-Thu, T.; Nguyen-Thi, T.; Tran-Cong, T.; et al. An Assessment of the Economic Impacts of the 2019 African Swine Fever Outbreaks in Vietnam. Front. Vet. Sci. 2021, 8, 686038. [Google Scholar] [CrossRef] [PubMed]
- Pig Progress. Available online: https://www.pigprogress.net/health-nutrition/health/asf-italy-country-suffering-from-export-restrictions/ (accessed on 1 March 2023).
- Gallardo, C.; Soler, A.; Rodze, I.; Nieto, R.; Cano-Gómez, C.; Fernandez-Pinero, J.; Arias, M. Attenuated and Non-haemadsorbing (Non-HAD) Genotype II African Swine Fever Virus (ASFV) Isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 2019, 66, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M.; Yáñez, R.J.; Almazán, F.; Viñuela, E.; Rodriguez, J.F. African Swine Fever Virus Encodes a CD2 Homolog Responsible for the Adhesion of Erythrocytes to Infected Cells. J. Virol. 1993, 67, 5312–5320. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; Cadenas-Fernández, E.; Kosowska, A.; Barroso-Arévalo, S.; Rivera, B.; Sánchez, R.; Porras, N.; Gallardo, C.; Sánchez-Vizcaíno, J.M. Safety of African Swine Fever Vaccine Candidate Lv17/WB/Rie1 in Wild Boar: Overdose and Repeated Doses. Front. Immunol. 2021, 12, 761753. [Google Scholar] [CrossRef] [PubMed]
- Tamás, V.; Righi, C.; Mészáros, I.; D’Errico, F.; Olasz, F.; Casciari, C.; Zádori, Z.; Magyar, T.; Petrini, S.; Feliziani, F. Involvement of the MGF 110-11L Gene in the African Swine Fever Replication and Virulence. Vaccines 2023, 11, 846. [Google Scholar] [CrossRef]
- Lewis, T.; Zsak, L.; Burrage, T.G.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Rock, D.L. An African Swine Fever Virus ERV1-ALR Homologue, 9GL, Affects Virion Maturation and Viral Growth in Macrophages and Viral Virulence in Swine. J. Virol. 2000, 74, 1275–1285. [Google Scholar] [CrossRef]
- Rodríguez, I.; Redrejo-Rodríguez, M.; Rodríguez, J.M.; Alejo, A.; Salas, J.; Salas, M.L. African Swine Fever Virus pB119L Protein Is a Flavin Adenine Dinucleotide-Linked Sulfhydryl Oxidase. J. Virol. 2006, 80, 3157–3166. [Google Scholar] [CrossRef]
- O’Donnell, V.; Holinka, L.G.; Krug, P.W.; Gladue, D.P.; Carlson, J.; Sanford, B.; Alfano, M.; Kramer, E.; Lu, Z.; Arzt, J.; et al. African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), When Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge. J. Virol. 2015, 89, 8556–8566. [Google Scholar] [CrossRef]
- Carlson, J.; O’Donnell, V.; Alfano, M.; Velazquez Salinas, L.; Holinka, L.; Krug, P.; Gladue, D.; Higgs, S.; Borca, M. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model. Viruses 2016, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Borca, M.V.; Carrillo, C.; Zsak, L.; Laegreid, W.W.; Kutish, G.F.; Neilan, J.G.; Burrage, T.G.; Rock, D.L. Deletion of a CD2-Like Gene, 8-DR, from African Swine Fever Virus Affects Viral Infection in Domestic Swine. J. Virol. 1998, 72, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Galindo, I.; Almazán, F.; Bustos, M.J.; Viñuela, E.; Carrascosa, A.L. African Swine Fever Virus EP153R Open Reading Frame Encodes a Glycoprotein Involved in the Hemadsorption of Infected Cells. Virology 2000, 266, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Núñez, D.; García-Belmonte, R.; Riera, E.; Fernández-Sesma, M.H.; Vigara-Astillero, G.; Revilla, Y. Signal Peptide and N-Glycosylation of N-Terminal-CD2v Determine the Hemadsorption of African Swine Fever Virus. J. Virol. 2023, 97, e01030-23. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, C.; Bustos, M.J.; Granja, A.G.; de León, P.; Sabina, P.; López-Viñas, E.; Gómez-Puertas, P.; Revilla, Y.; Carrascosa, A.L. The African Swine Fever Virus Lectin EP153R Modulates the Surface Membrane Expression of MHC Class I Antigens. Arch. Virol. 2011, 156, 219–234. [Google Scholar] [CrossRef]
- Hurtado, C.; Granja, A.G.; Bustos, M.J.; Nogal, M.L.; González de Buitrago, G.; de Yébenes, V.G.; Salas, M.L.; Revilla, Y.; Carrascosa, A.L. The C-Type Lectin Homologue Gene (EP153R) of African Swine Fever Virus Inhibits Apoptosis Both in Virus Infection and in Heterologous Expression. Virology 2004, 326, 160–170. [Google Scholar] [CrossRef]
- Borca, M.V.; Holinka, L.G.; Berggren, K.A.; Gladue, D.P. CRISPR-Cas9, a Tool to Efficiently Increase the Development of Recombinant African Swine Fever Viruses. Sci. Rep. 2018, 8, 3154. [Google Scholar] [CrossRef]
- Zhu, Z.; Xiao, C.-T.; Fan, Y.; Cai, Z.; Lu, C.; Zhang, G.; Jiang, T.; Tan, Y.; Peng, Y. Homologous Recombination Shapes the Genetic Diversity of African Swine Fever Viruses. Vet. Microbiol. 2019, 236, 108380. [Google Scholar] [CrossRef]
- Portugal, R.; Coelho, J.; Höper, D.; Little, N.S.; Smithson, C.; Upton, C.; Martins, C.; Leitão, A.; Keil, G.M. Related Strains of African Swine Fever Virus with Different Virulence: Genome Comparison and Analysis. J. Gen. Virol. 2015, 96, 408–419. [Google Scholar] [CrossRef]
- Chapman, D.A.G.; Tcherepanov, V.; Upton, C.; Dixon, L.K. Comparison of the Genome Sequences of Non-Pathogenic and Pathogenic African Swine Fever Virus Isolates. J. Gen. Virol. 2008, 89, 397–408. [Google Scholar] [CrossRef]
- OIE—World Organisation for Animal Health (Ed.) Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 8th ed.; OIE: Paris, France, 2018; ISBN 978-92-95108-18-9. [Google Scholar]
- Olasz, F.; Mészáros, I.; Marton, S.; Kaján, G.L.; Tamás, V.; Locsmándi, G.; Magyar, T.; Bálint, Á.; Bányai, K.; Zádori, Z. A Simple Method for Sample Preparation to Facilitate Efficient Whole-Genome Sequencing of African Swine Fever Virus. Viruses 2019, 11, 1129. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Soler, A.; Nieto, R.; Cano, C.; Pelayo, V.; Sánchez, M.A.; Pridotkas, G.; Fernandez-Pinero, J.; Briones, V.; Arias, M. Experimental Infection of Domestic Pigs with African Swine Fever Virus Lithuania 2014 Genotype II Field Isolate. Transbound. Emerg. Dis. 2017, 64, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Tabarés, E.; Olivares, I.; Santurde, G.; Garcia, M.J.; Martin, E.; Carnero, M.E. African Swine Fever Virus DNA: Deletions and Additions during Adaptation to Growth in Monkey Kidney Cells. Arch. Virol. 1987, 97, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Krug, P.W.; Holinka, L.G.; O’Donnell, V.; Reese, B.; Sanford, B.; Fernandez-Sainz, I.; Gladue, D.P.; Arzt, J.; Rodriguez, L.; Risatti, G.R.; et al. The Progressive Adaptation of a Georgian Isolate of African Swine Fever Virus to Vero Cells Leads to a Gradual Attenuation of Virulence in Swine Corresponding to Major Modifications of the Viral Genome. J. Virol. 2015, 89, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M.; Moreno, L.T.; Alejo, A.; Lacasta, A.; Rodríguez, F.; Salas, M.L. Genome Sequence of African Swine Fever Virus BA71, the Virulent Parental Strain of the Nonpathogenic and Tissue-Culture Adapted BA71V. PLoS ONE 2015, 10, e0142889. [Google Scholar] [CrossRef]
- Zani, L.; Forth, J.H.; Forth, L.; Nurmoja, I.; Leidenberger, S.; Henke, J.; Carlson, J.; Breidenstein, C.; Viltrop, A.; Höper, D.; et al. Deletion at the 5’-End of Estonian ASFV Strains Associated with an Attenuated Phenotype. Sci. Rep. 2018, 8, 6510. [Google Scholar] [CrossRef]
- Luo, R.; Wang, T.; Sun, M.; Pan, L.; Huang, S.; Sun, Y.; Qiu, H.-J. The 24.5-Kb Left Variable Region Is Not a Determinant for African Swine Fever Virus to Replicate in Primary Porcine Alveolar Macrophages. Viruses 2022, 14, 2119. [Google Scholar] [CrossRef]
- Netherton, C.L.; Goatley, L.C.; Reis, A.L.; Portugal, R.; Nash, R.H.; Morgan, S.B.; Gault, L.; Nieto, R.; Norlin, V.; Gallardo, C.; et al. Identification and Immunogenicity of African Swine Fever Virus Antigens. Front. Immunol. 2019, 10, 1318. [Google Scholar] [CrossRef]
- Song, J.; Wang, M.; Du, Y.; Wan, B.; Zhang, A.; Zhang, Y.; Zhuang, G.; Ji, P.; Wu, Y.; Zhang, G. Identification of a Linear B-Cell Epitope on the African Swine Fever Virus CD2v Protein. Int. J. Biol. Macromol. 2023, 232, 123264. [Google Scholar] [CrossRef]
- Escribano, J.M.; Galindo, I.; Alonso, C. Antibody-Mediated Neutralization of African Swine Fever Virus: Myths and Facts. Virus Res. 2013, 173, 101–109. [Google Scholar] [CrossRef]
- Hübner, A.; Petersen, B.; Keil, G.M.; Niemann, H.; Mettenleiter, T.C.; Fuchs, W. Efficient Inhibition of African Swine Fever Virus Replication by CRISPR/Cas9 Targeting of the Viral P30 Gene (CP204L). Sci. Rep. 2018, 8, 1449. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.A.; Liu, X.S. Identifying and Mitigating Bias in Next-Generation Sequencing Methods for Chromatin Biology. Nat. Rev. Genet. 2014, 15, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Chiang, D.Y.; Getz, G.; Jaffe, D.B.; O’Kelly, M.J.T.; Zhao, X.; Carter, S.L.; Russ, C.; Nusbaum, C.; Meyerson, M.; Lander, E.S. High-Resolution Mapping of Copy-Number Alterations with Massively Parallel Sequencing. Nat. Methods 2009, 6, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Sabina, J.; Leamon, J.H. Bias in Whole Genome Amplification: Causes and Considerations. In Whole Genome Amplification; Kroneis, T., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1347, pp. 15–41. ISBN 978-1-4939-2989-4. [Google Scholar]
- Pinard, R.; De Winter, A.; Sarkis, G.J.; Gerstein, M.B.; Tartaro, K.R.; Plant, R.N.; Egholm, M.; Rothberg, J.M.; Leamon, J.H. Assessment of Whole Genome Amplification-Induced Bias through High-Throughput, Massively Parallel Whole Genome Sequencing. BMC Genom. 2006, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Alexandrov, L.B. Significance and Limitations of the Use of Next-Generation Sequencing Technologies for Detecting Mutational Signatures. DNA Repair. 2021, 107, 103200. [Google Scholar] [CrossRef] [PubMed]
- Barbitoff, Y.A.; Polev, D.E.; Glotov, A.S.; Serebryakova, E.A.; Shcherbakova, I.V.; Kiselev, A.M.; Kostareva, A.A.; Glotov, O.S.; Predeus, A.V. Systematic Dissection of Biases in Whole-Exome and Whole-Genome Sequencing Reveals Major Determinants of Coding Sequence Coverage. Sci. Rep. 2020, 10, 2057. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, K.; Zhang, Z.; Yang, J.; Wang, R.; Shen, X.; Pan, J.; Irwin, D.M.; Chen, R.-A.; Shen, Y. The Recombination Hot Spots and Genetic Diversity of the Genomes of African Swine Fever Viruses. J. Infect. 2020, 80, 121–142. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, E.; Huang, L.; Ding, L.; Zhu, Y.; Zhang, J.; Shen, D.; Zhang, X.; Zhang, Z.; Ren, T.; et al. Highly Lethal Genotype I and II Recombinant African Swine Fever Viruses Detected in Pigs. Nat. Commun. 2023, 14, 3096. [Google Scholar] [CrossRef]
- Bastos, A.D.S.; Penrith, M.-L.; Macome, F.; Pinto, F.; Thomson, G.R. Co-Circulation of Two Genetically Distinct Viruses in an Outbreak of African Swine Fever in Mozambique: No Evidence for Individual Co-Infection. Vet. Microbiol. 2004, 103, 169–182. [Google Scholar] [CrossRef]
- Neilan, J.G.; Zsak, L.; Lu, Z.; Kutish, G.F.; Afonso, C.L.; Rock, D.L. Novel Swine Virulence Determinant in the Left Variable Region of the African Swine Fever Virus Genome. J. Virol. 2002, 76, 3095–3104. [Google Scholar] [CrossRef]
- Wright, W.D.; Shah, S.S.; Heyer, W.-D. Homologous Recombination and the Repair of DNA Double-Strand Breaks. J. Biol. Chem. 2018, 293, 10524–10535. [Google Scholar] [CrossRef] [PubMed]
- Costes, A.; Lambert, S. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery. Biomolecules 2012, 3, 39–71. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.; Martins, C.; Ferreira, F. Early Intranuclear Replication of African Swine Fever Virus Genome Modifies the Landscape of the Host Cell Nucleus. Virus Res. 2015, 210, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, L.; Chen, H.; Zhang, H.; Dong, P.; Sun, L.; Huang, X.; Lin, P.; Wu, L.; Jing, D.; et al. Structural Insights into the CP312R Protein of the African Swine Fever Virus. Biochem. Biophys. Res. Commun. 2022, 624, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Redrejo-Rodríguez, M.; Rodríguez, J.M.; Salas, J.; Salas, M.L. Repair of Viral Genomes by Base Excision Pathways: African Swine Fever Virus as a Paradigm. In DNA Repair—On the Pathways to Fixing DNA Damage and Errors; Storici, F., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-649-2. [Google Scholar]
- Coelho, J.; Martins, C.; Ferreira, F.; Leitão, A. African Swine Fever Virus ORF P1192R Codes for a Functional Type II DNA Topoisomerase. Virology 2015, 474, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Su, S.; Yang, J.; Zhang, W.; Gao, Y.; Zhao, X.; Zhang, Y.; Shao, Q.; Cao, C.; Li, H.; et al. Structures and Implications of the C962R Protein of African Swine Fever Virus. Nucleic Acids Res. 2023, 51, 9475–9490. [Google Scholar] [CrossRef] [PubMed]
- Redrejo-Rodríguez, M.; Rodríguez, J.M.; Suárez, C.; Salas, J.; Salas, M.L. Involvement of the Reparative DNA Polymerase Pol X of African Swine Fever Virus in the Maintenance of Viral Genome Stability In Vivo. J Virol. 2013, 87, 9780–9787. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, W.; Yang, W.; Zhang, J.; Li, D.; Zheng, H. Structure of African Swine Fever Virus and Associated Molecular Mechanisms Underlying Infection and Immunosuppression: A Review. Front. Immunol. 2021, 12, 715582. [Google Scholar] [CrossRef]
- Gallardo, C.; Sánchez, E.G.; Pérez-Núñez, D.; Nogal, M.; de León, P.; Carrascosa, Á.L.; Nieto, R.; Soler, A.; Arias, M.L.; Revilla, Y. African Swine Fever Virus (ASFV) Protection Mediated by NH/P68 and NH/P68 Recombinant Live-Attenuated Viruses. Vaccine 2018, 36, 2694–2704. [Google Scholar] [CrossRef]
- Monteagudo, P.L.; Lacasta, A.; López, E.; Bosch, L.; Collado, J.; Pina-Pedrero, S.; Correa-Fiz, F.; Accensi, F.; Navas, M.J.; Vidal, E.; et al. BA71ΔCD2: A New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J. Virol. 2017, 91, e01058-17. [Google Scholar] [CrossRef]
- Gladue, D.P.; O’Donnell, V.; Ramirez-Medina, E.; Rai, A.; Pruitt, S.; Vuono, E.A.; Silva, E.; Velazquez-Salinas, L.; Borca, M.V. Deletion of CD2-Like (CD2v) and C-Type Lectin-Like (EP153R) Genes from African Swine Fever Virus Georgia-∆9GL Abrogates Its Effectiveness as an Experimental Vaccine. Viruses 2020, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Petrovan, V.; Rathakrishnan, A.; Islam, M.; Goatley, L.C.; Moffat, K.; Sanchez-Cordon, P.J.; Reis, A.L.; Dixon, L.K. Role of African Swine Fever Virus Proteins EP153R and EP402R in Reducing Viral Persistence in Blood and Virulence in Pigs Infected with BeninΔDP148R. J. Virol. 2022, 96, e01340-21. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liu, Y.; Di, D.; Liu, J.; Gong, L.; Chen, Z.; Li, Y.; Yu, W.; Lv, L.; Zhong, Q.; et al. Protection Evaluation of a Five-Gene-Deleted African Swine Fever Virus Vaccine Candidate Against Homologous Challenge. Front. Microbiol. 2022, 13, 902932. [Google Scholar] [CrossRef] [PubMed]
No. of Pigs | Vaccine Candidate | Virus Concentration in FFU * in One Dose (2 mL) of Vaccination | Inoculation Route | |
---|---|---|---|---|
First Administration | Second Administration | |||
5 | Lv17/WB/Rie1-Δ24 | 102 | 104 | Intramuscular ** |
5 | Lv17/WB/Rie1-ΔCD-ΔGL | 102 | 104 | Intramuscular |
3 | Unvaccinated controls |
1-40569. |
Deleted genes (52) from Lv17_cos5 and Lv17_cos8: |
DP60L, KP93L, MGF_360-1L, MGF_360-2L, KP177R, L83L, L60L, MGF_360-3L, MGF_110-1L, MGF_110-2L, MGF_110-3L, MGF_110-4L, MGF_110-5L/6L, MGF_110-7L, MGF_110-8L, MGF_100-1R, MGF_110-9L, MGF_110-11L, MGF_110-12L, MGF_110-13L, MGF_110-14L, MGF_360-4L, MGF_360-6L, X69R, MGF_300-1L, MGF_300-4L, MGF_360-8L, MGF_360-9L, MGF_360-10L, MGF_360-11L, MGF_505-1R, MGF_360-12L, MGF_360-13L, MGF_360-14L, MGF_505-2R, MGF_505-3R, MGF_505-4R, MGF_505-5R, MGF_505-6R, ASFV_G_ACD_01990R, ASFV_G_ACD_00090, ASFV_G_ACD_00120, ASFV_G_ACD_00160, ASFV_G_ACD_00190, ASFV_G_ACD_00210, ASFV_G_ACD_00240, ASFV_G_ACD_00270, ASFV_G_ACD_00300, ASFV_G_ACD_00320, ASFV_G_ACD_00330, ASFV_G_ACD_00360, ASFV_G_ACD_00520 |
150433-190880. |
Duplicated genes (51) in Lv17_cos5 and Lv17_cos8: |
P1192R, H359L, H171R, H124R, H339R, H108R, H233R, H240R, R298L, Q706L, QP509L, QP383R, E184L, E183L, E423R, E301R, E146L, E199L, E165R, E248R, E120R, EP296R, E111R, E66L, I267L, I226R, I243L, I73R, I329L, I78L, I215L, I177L, I196L, DP238L, MGF_360-16R, DP63R, MGF_505-11L, MGF_100-1L, L7L, L8L, L9R, L10L, L11L, MGF_360-18R, DP71L, DP96R, MGF_360-19R, MGF 360-21R, DP93R, DP60R |
188-26555. |
Deleted genes (41) from Lv17_cos8_pam3: |
DP60L, KP93L, MGF_360-1L, MGF_360-2L, KP177R, L83L, L60L, MGF_360-3L, MGF_110-1L, MGF_110-2L, MGF_110-3L, MGF_110-4L, MGF_110-5L/6L, MGF_110-7L, MGF_110-8L, MGF_100-1R, MGF_110-9L, MGF_110-11L, MGF_110-12L, MGF_110-13L, MGF_110-14L, MGF_360-4L, MGF_360-6L, X69R, MGF_300-1L, MGF_300-4L, MGF_360-8L, MGF_360-9L, MGF_360-10L, ASFV_G_ACD_01990R, ASFV_G_ACD_00090, ASFV_G_ACD_00120, ASFV_G_ACD_00160, ASFV_G_ACD_00190, ASFV_G_ACD_00210, ASFV_G_ACD_00240, ASFV_G_ACD_00270, ASFV_G_ACD_00300, ASFV_G_ACD_00320, ASFV_G_ACD_00330, ASFV_G_ACD_00360 |
Group | Pig | Lymph Nodes † | Tonsils | Lungs | Spleen | Kidney | Heart | Skin †† | Intestine |
---|---|---|---|---|---|---|---|---|---|
Lv17/WB/Rie1-Δ24 | 1 | +/a | - | - | +/b | +/e | +/e | +/g | +/h |
2 | +/a | - | - | +/b | +/e | +/c, e | +/g | +/h | |
3 | +/a | - | - | +/b | +/f | +/f | +/g | - | |
4 | +/a | - | +/d | +/b | +/e | +/e | +/g | - | |
5 | +/a | +/e | +/d | +/b | - | +/c | - | - | |
Lv17/WB/Rie1-ΔCD-ΔGL | 6 | +/a | +/e | - | +/b | +/f | - | - | - |
7 | +/a | - | +/d | +/b | - | - | +/g | +/h | |
8 | +/a | +/e | +/d | +/b | +/a | - | - | ||
9 | +/a | - | - | +/b | - | - | +/g | - | |
10 | +/a | +/e | - | +/b | - | +/e | +/g | +/h | |
Control | 11 | +/a | - | - | - | +/e | +/c | - | - |
12 | +/a | - | +/d | +/b | +/e | +/e | - | - | |
13 | +/a | - | +/d | +/b | +/e | +/e | - | - |
Strain/ Controls | Days Post-Vaccination (DPV) | Days Post-Challenge (DPC) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 6 | 10 | 17 | 21 | 31 | 35 | 0 * | 4 ** | 7 *** | |
Lv17/WB/Rie1-Δ24 | - | - | - | b 1 a (31.2%) | 1 (23.5%) | 4 (27.2%) | 4 (26.2%) | 4 (9.4%) | 5 (1.5%) | 5 (1.5%) |
Lv17/WB/Rie1-ΔCD-ΔGL | - | - | - | - | - | 1 (39.7%) | 1 (39.5%) | 1 (39.5%) | 1 (17.4%) | 4 (9.4%) |
Control | - | - | - | - | - | - | - | - | - | - |
Strain/ Controls | Days Post-Vaccination (DPV) | Days Post-Challenge (DPC) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 6 | 10 | 17 | 21 | 31 | 35 | 0 * | 4 ** | 7 *** | |
Lv17/WB/Rie1-Δ24 | - | - | - | - | - | - | - | - | b,a 1 (37.8) | 5 (28.5) |
Lv17/WB/Rie1-ΔCD-ΔGL | - | - | - | - | - | - | - | - | 3 (35.9) | 5 (27.1) |
Controls | - | - | - | - | - | - | - | - | 2 (27.1) | 2 (18.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrini, S.; Righi, C.; Mészáros, I.; D’Errico, F.; Tamás, V.; Pela, M.; Olasz, F.; Gallardo, C.; Fernandez-Pinero, J.; Göltl, E.; et al. The Production of Recombinant African Swine Fever Virus Lv17/WB/Rie1 Strains and Their In Vitro and In Vivo Characterizations. Vaccines 2023, 11, 1860. https://doi.org/10.3390/vaccines11121860
Petrini S, Righi C, Mészáros I, D’Errico F, Tamás V, Pela M, Olasz F, Gallardo C, Fernandez-Pinero J, Göltl E, et al. The Production of Recombinant African Swine Fever Virus Lv17/WB/Rie1 Strains and Their In Vitro and In Vivo Characterizations. Vaccines. 2023; 11(12):1860. https://doi.org/10.3390/vaccines11121860
Chicago/Turabian StylePetrini, Stefano, Cecilia Righi, István Mészáros, Federica D’Errico, Vivien Tamás, Michela Pela, Ferenc Olasz, Carmina Gallardo, Jovita Fernandez-Pinero, Eszter Göltl, and et al. 2023. "The Production of Recombinant African Swine Fever Virus Lv17/WB/Rie1 Strains and Their In Vitro and In Vivo Characterizations" Vaccines 11, no. 12: 1860. https://doi.org/10.3390/vaccines11121860
APA StylePetrini, S., Righi, C., Mészáros, I., D’Errico, F., Tamás, V., Pela, M., Olasz, F., Gallardo, C., Fernandez-Pinero, J., Göltl, E., Magyar, T., Feliziani, F., & Zádori, Z. (2023). The Production of Recombinant African Swine Fever Virus Lv17/WB/Rie1 Strains and Their In Vitro and In Vivo Characterizations. Vaccines, 11(12), 1860. https://doi.org/10.3390/vaccines11121860