Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines
Abstract
:1. Introduction
2. FDA-Approved Therapeutic Vaccines
3. Neoantigens as Vaccine Targets
4. Challenges of Neoantigens
5. Sample Collection and Associated Problems
6. Production Cost and Time
7. Adjuvants
8. Comparison of mRNA vs. Peptide Vaccines
9. Summary of Clinical Trials of Neoantigen-Based Vaccines
9.1. mRNA-Based GRANITE Individualized Neoantigen Vaccines
9.2. mRNA-Based “Off the Shelf” Mutant KRAS-Neoantigen Vaccine
9.3. mRNA-Based Therapeutic Vaccine
9.4. Peptide-Based NeoVax
9.5. Peptide-Based GEN-009
10. Emerging Targets in Cancer Immunotherapy
11. Future Directions
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Lu, M.; Qin, Y.; Gao, W.; Tao, L.; Su, W.; Zhong, J. Neoantigen: A new breakthrough in tumor immunotherapy. Front. Immunol. 2021, 12, 672356. [Google Scholar] [CrossRef] [PubMed]
- Grimmett, E.; Al-Share, B.; Alkassab, M.B.; Zhou, R.W.; Desai, A.; Rahim, M.M.A.; Woldie, I. Cancer vaccines: Past, present and future; a review article. Discover. Oncol. 2022, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Niemi, J.V.L.; Sokolov, A.V.; Schiöth, H.B. Neoantigen Vaccines; Clinical Trials, Classes, Indications, Adjuvants and Combinatorial Treatments. Cancers 2022, 14, 5163. [Google Scholar] [CrossRef]
- Guo, J.; Tang, L.; Li, K.; Ma, Q.; Luo, S.; Cheng, R.; Liu, C. Application of Nanotechnology in Therapeutic Cancer Vaccines. Adv. NanoBiomed Res. 2023, 3, 2200122. [Google Scholar] [CrossRef]
- Gupta, I.; Hussein, O.; Sastry, K.S.; Bougarn, S.; Gopinath, N.; Chin-Smith, E.; Sinha, Y.; Korashy, H.M.; Maccalli, C. Deciphering the complexities of cancer cell immune evasion: Mechanisms and therapeutic implications. Adv. Cancer Biol.-Metastasis 2023, 8, 100107. [Google Scholar] [CrossRef]
- Biswas, N.; Chakrabarti, S.; Padul, V.; Jones, L.D.; Ashili, S. Designing neoantigen cancer vaccines, trials, and outcomes. Front. Immunol. 2023, 14, 1105420. [Google Scholar] [CrossRef]
- Cooper, A.J.; Heist, R.S. New Therapies on the Horizon. Hematol. Oncol. Clin. N. Am. 2023, 37, 623–658. [Google Scholar] [CrossRef]
- Palmer, C.D.; Rappaport, A.R.; Davis, M.J.; Hart, M.G.; Scallan, C.D.; Hong, S.J.; Gitlin, L.; Kraemer, L.D.; Kounlavouth, S.; Yang, A.; et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: Phase 1 trial interim results. Nat. Med. 2022, 28, 1619–1629. [Google Scholar] [CrossRef]
- Pao, S.C.; Chu, M.T.; Hung, S.I. Therapeutic Vaccines Targeting Neoantigens to Induce T-Cell Immunity against Cancers. Pharmaceutics 2022, 14, 867. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Schiller, J.T.; Lowy, D.R. Vaccines to prevent infections by oncoviruses. Annu. Rev. Microbiol. 2010, 64, 23–41. [Google Scholar] [CrossRef]
- DeMaria, P.J.; Bilusic, M. Cancer Vaccines. Hematol./Oncol. Clin. N. Am. 2001, 15, 741–773. [Google Scholar] [CrossRef] [PubMed]
- Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med. 2016, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, S.; Wang, X.Y.; Zhu, G. Nanovaccines for cancer immunotherapy. WIREs Nanomed. Nanobi. 2019, 11, e1559. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery Technologies for Cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196. [Google Scholar] [CrossRef] [PubMed]
- Blass, E.; Ott, P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021, 18, 215–229. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, R.; Zhang, X.; Yang, L. Personalized neoantigen-pulsed DC vaccines: Advances in clinical applications. Front. Oncol. 2021, 11, 701777. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.; Busby, J.; Palmer, C.D.; Davis, M.J.; Murphy, T.; Clark, A.; Busby, M.; Duke, F.; Yang, A.; Young, L.; et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat. Biotechnol. 2018, 37, 55–63. [Google Scholar] [CrossRef]
- Liao, J.-Y.; Zhang, S. Safety and efficacy of personalized cancer vaccines in combination with immune checkpoint inhibitors in cancer treatment. Front. Oncol. 2021, 11, 663264. [Google Scholar] [CrossRef]
- Redelman-Sidi, G.; Glickman, M.S.; Bochner, B.H. The mechanism of action of BCG therapy for bladder cancer—A current perspective. Nat. Rev. Urol. 2014, 11, 153–162. [Google Scholar] [CrossRef]
- Guallar-Garrido, S.; Julián, E. Bacillus Calmette-Guérin (BCG) therapy for bladder cancer: An update. ImmunoTargets Ther. 2020, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gamat-Huber, M.; Jeon, D.; Johnson, L.E.; Moseman, J.E.; Muralidhar, A.; Potluri, H.K.; Rastogi, I.; Wargowski, E.; Zahm, C.D.; McNeel, D.G. Treatment combinations with DNA vaccines for the treatment of metastatic castration-resistant prostate cancer (mcrpc). Cancers 2020, 12, 2831. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef]
- Jiang, T.; Shi, T.; Zhang, H.; Hu, J.; Song, Y.; Wei, J.; Ren, S.; Zhou, C. Tumor neoantigens: From basic research to clinical applications. J. Hematol. Oncol. 2019, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- A Study of Personalized Neoantigen Cancer Vaccines—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT03794128 (accessed on 10 November 2021).
- Zhang, R.; Yuan, F.; Shu, Y.; Tian, Y.; Zhou, B.; Yi, L.; Zhang, X.; Ding, Z.; Xu, H.; Yang, L. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol. Immunother. 2020, 69, 135–145. [Google Scholar] [CrossRef]
- Sabado, R.L.; Bhardwaj, N. Cancer immunotherapy: Dendritic-cell vaccines on the move. Nature 2015, 519, 300–301. [Google Scholar] [CrossRef]
- Sydow, E.; Mustafa, A.S.; Hanif, A.; Tunio, J.; Hanif, S.N.M. Recent Updates on mRNA Vaccines. Vaccines 2022, 10, 1209. [Google Scholar] [CrossRef]
- Buonaguro, L.; Tagliamonte, M. Peptide-based vaccine for cancer therapies. Front. Immunol. 2023, 14, 1210044. [Google Scholar] [CrossRef]
- Ho, S.-Y.; Chang, C.-M.; Liao, H.-N.; Chou, W.-H.; Guo, C.-L.; Yen, Y.; Nakamura, Y.; Chang, W.-C. Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals 2023, 16, 392. [Google Scholar] [CrossRef]
- Tojjari, A.; Saeed, A.; Singh, M.; Cavalcante, L.; Sahin, I.H.; Saeed, A. A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines 2023, 11, 1357. [Google Scholar] [CrossRef]
- Nordin, M.L.; Azemi, A.K.; Nordin, A.H.; Nabgan, W.; Ng, P.Y.; Yusoff, K.; Abu, N.; Lim, K.P.; Zakaria, Z.A.; Ismail, N.; et al. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals 2023, 16, 923. [Google Scholar] [CrossRef] [PubMed]
- De Mey, W.; Esprit, A.; Thielemans, K.; Breckpot, K.; Franceschini, L. RNA in Cancer Immunotherapy: Unlocking the Potential of the Immune System. Clin. Cancer Res. 2022, 28, 3929–3939. [Google Scholar] [CrossRef] [PubMed]
- Vonderheide, R.H. Cancer vaccines are back, revitalized. Med 2023, 4, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, B.; Franks, S.E.; Hodge, J.W. Stay on target: Reengaging cancer vaccines in combination immunotherapy. Vaccines 2021, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.G.; Johnson, M.L.; Spira, A.I.; Manji, G.A.; Carbone, D.P.; Henick, B.S.; Ingham, M.; Liao, C.-Y.; Roychowdhury, S.; Kyi, C.; et al. Personalized viral-based prime/boost immunotherapy targeting patient-specific or shared neoantigens: Immunogenicity, safety, and efficacy results from two ongoing phase I studies. J. Clin. Oncol. 2020, 38, 137. [Google Scholar] [CrossRef]
- Overman, M.J.; Leoni, G.; D’Alise, A.M.; Cotugno, G.; Langone, F.; Capone, S.; Del Sorbo, M.; Fakih, M.; Le, D.T.; Shields, A.F.; et al. 1004p initial results from a phase I study of nous-209, an off-the-shelf viral vectored immunotherapy encoding 209 shared frame shift peptide neoantigens, with pembrolizumab, for the treatment of tumors with a deficiency in mismatch repair/microsatellite instability. Ann. Oncol. 2021, 32, S850. [Google Scholar] [CrossRef]
- Neoantigen-Based Personalized Vaccine Combined with Immune Checkpoint Blockade Therapy in Patients with Newly Diagnosed, Unmethylated Glioblastoma—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT03422094 (accessed on 16 December 2022).
- Hu, Z.; Leet, D.E.; Allesøe, R.L.; Oliveira, G.; Li, S.; Luoma, A.M.; Liu, J.; Forman, J.; Huang, T.; Iorgulescu, J.B.; et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 2021, 27, 515–525. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Margolin, K.; Awad, M.M.; Hellmann, M.D.; Lin, J.J.; et al. A phase IB trial of personalized Neoantigen therapy plus Anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 2020, 183, 347–362.e24. [Google Scholar] [CrossRef]
- Awad, M.M.; Govindan, R.; Spigel, D.R.; Garon, E.B.; Kohler, V.; Vyasamneni, R.; Ramesh, S.; Sciuto, T.E.; Moles, M.A.; Tepper, J.; et al. Abstract 73, A personal neoantigen vaccine NEO-PV-01 in combination with chemotherapy and pembrolizumab induces broad de novo immune responses in first-line non-squamous NSCLC: Associations with Clinical Outcomes. Immunology 2021, 81, 73. [Google Scholar] [CrossRef]
- Cafri, G.; Gartner, J.J.; Zaks, T.; Hopson, K.; Levin, N.; Paria, B.C.; Parkhurst, M.R.; Yossef, R.; Lowery, F.J.; Jafferji, M.S.; et al. MRNA vaccine—Induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Investig. 2020, 130, 5976–5988. [Google Scholar] [CrossRef]
- Gillison, M.L.; Awad, M.M.; Twardowski, P.; Sukari, A.; Johnson, M.L.; Stein, M.N.; Hernandez, R.; Price, J.; Mancini, K.J.; Shainheit, M.; et al. Long term results from a phase 1 trial of Gen-009, a personalized neoantigen vaccine, combined with PD-1 inhibition in advanced solid tumors. J. Clin. Oncol. 2021, 39, 2613. [Google Scholar] [CrossRef]
- Shainheit, M.; Bicak, E.; Golshadi, M.; Santone, G.; Shukor, S.; Tjon, E.; Xue, L.; Davis, T.; Jessica. 521 GEN-009, a personalized neoantigen vaccine candidate, elicits diverse and durable immune responses associated with clinical efficacy outcomes. J. Immuno. Therapy Cancer 2021, 9 (Suppl. S2), A551. [Google Scholar] [CrossRef]
- Lopez, J.S.; Camidge, R.; Iafolla, M.; Rottey, S.; Schuler, M.; Hellmann, M.; Derhovanessian, E.; Sahin, U.; Türeci, Ö.; Powles, T.; et al. Abstract CT301, A phase IB study to evaluate RO7198457, an individualized Neoantigen specific immunotherapy (inest), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors. Bioinform. Converg. Sci. Syst. Biol. 2020, 80, CT301. [Google Scholar] [CrossRef]
- A Study of a Personalized Neoantigen Cancer Vaccine—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT03639714 (accessed on 28 August 2023).
- A Study of a Patient-Specific Neoantigen Vaccine in Combination with Immune Checkpoint Blockade for Patients with Metastatic Colorectal Cancer—Full Text View. ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05141721 (accessed on 6 September 2021).
- Hecht, J.R.; Shergill, A.; Goldstein, M.G.; Fang, B.; Cho, M.T.; Lenz, H.-J.; Berim, L.D.; Oberstein, P.E.; Safyan, R.A.; Sawhney, V.; et al. Phase 2/3, randomized, open-label study of an individualized neoantigen vaccine (self-amplifying mRNA and adenoviral vectors) plus immune checkpoint blockade as maintenance for patients with newly diagnosed metastatic colorectal cancer (GRANITE). J. Clin. Oncol. 2022, 40, TPS3635. [Google Scholar] [CrossRef]
- A Study of a Personalized Cancer Vaccine Targeting Shared Neoantigens—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03953235 (accessed on 16 December 2022).
- NeoVax Plus Ipilimumab in Renal Cell Carcinoma—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT02950766 (accessed on 18 December 2021).
- NeoVax with Nivolumab in Patients with Ovarian Cancer—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT04024878 (accessed on 18 December 2021).
- A Personalized Neoantigen Cancer Vaccine in Treatment Naïve, Asymptomatic Patients with IGHV Unmutated CLL—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT03219450 (accessed on 18 December 2021).
- Neoantigen Vaccine Plus Locally Administered Ipilimumab and Systemic Nivolumab in Advanced Melanoma—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT03929029 (accessed on 16 December 2022).
- Personalized Neoantigen Cancer Vaccine W RT Plus Pembrolizumab for Patients with Newly Diagnosed GBM—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT02287428 (accessed on 16 December 2022).
- NCI Dictionary of Cancer Terms. National Cancer Institute. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/montanide-isa-51 (accessed on 16 December 2022).
- Safety, Tolerability, Immunogenicity, and Antitumor Activity of Gen-009 Adjuvanted Vaccine—Full Text View. Full Text View—ClinicalTrialsgov. Available online: https://clinicaltrials.gov/ct2/show/NCT03633110 (accessed on 18 December 2021).
- Gide, T.N.; Pires da Silva, I.; Quek, C.; Ferguson, P.M.; Batten, M.; Shang, P.; Ahmed, T.; Menzies, A.M.; Carlino, M.S.; Saw, R.P.M.; et al. Clinical and Molecular Heterogeneity in Patients with Innate Resistance to Anti-PD-1 +/− Anti-CTLA-4 Immunotherapy in Metastatic Melanoma Reveals Distinct Therapeutic Targets. Cancers 2021, 13, 3186. [Google Scholar] [CrossRef]
- Böldicke, T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies 2022, 11, 49. [Google Scholar] [CrossRef]
- Klepsch, V.; Siegmund, K.; Baier, G. Emerging Next-Generation Target for Cancer Immunotherapy Research: The Orphan Nuclear Receptor NR2F6. Cancers 2021, 13, 2600. [Google Scholar] [CrossRef]
- Burugu, S.; Dancsok, A.R.; Nielsen, T.O. Emerging targets in cancer immunotherapy. Semin. Cancer Biol. 2018, 52 Pt 2, 39–52. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ali, A.; Dutta, S.; Banday, S.; Malonia, S.K. Emerging Trends in Immunotherapy for Cancer. Diseases 2022, 10, 60. [Google Scholar] [CrossRef]
- Bidram, M.; Zhao, Y.; Shebardina, N.G.; Baldin, A.V.; Bazhin, A.V.; Ganjalikhany, M.R.; Zamyatnin, A.A., Jr.; Ganjalikhani-Hakemi, M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines 2021, 9, 1060. [Google Scholar] [CrossRef]
- Lorentzen, C.L.; Haanen, J.B.; Met, Ö.; Svane, I.M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022, 23, e450–e458. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B.; Al Hoque, A.; Chakraborty, A.; Chakraborty, S.; Dutta, L.; Dutta, D.; Banerjee, S.; Dhara, M.; Deepa, R.M. Recent developments in cancer vaccines: Where are we? Nanother. Cancer Vaccin. Chall. 2022, 29–75. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Li, X.; Chen, J.; Wang, C. Biomaterial-enhanced cancer vaccines. Mater. Des. 2022, 218, 110720. [Google Scholar] [CrossRef]
Vaccine Type | Summary of Vaccine Formulation | Participants Also Treated with | Type of Cancer Treated | Clinical Trial Phase | NCT Number | Results Summary, If Available |
---|---|---|---|---|---|---|
GRANITE individualized neoantigen vaccines | GRT-C901 (vaccine prime) and GRT-C902 (vaccine boost) are chimpanzee adenovirus with self-amplifying mRNA | Nivolumab (anti-PD-1 monoclonal antibody), ipilimumab (anti-CTLA-4 monoclonal antibody) | Non-small-cell lung cancer, colorectal cancer, gastroesophageal adenocarcinoma, urothelial carcinoma | 1/2, 2 completed | NCT03639714 | Safe, tolerable, and potent immunogenicity. Few serious treatment-related adverse events. Decrease in ctDNA and extended participants’ lives [8] |
GRANITE individualized neoantigen vaccines | GRT-C901/GRT-R902 | Chemotherapy per standard of care, Ipilimumab (anti-CTLA-4 monoclonal antibody), Atezolizumab (anti-PD-ligand 1) | Metastatic colorectal cancer | 2/3, active not recruiting | NCT05141721 | NA |
“Off the shelf” mutant KRAS neoantigen vaccine prime and vaccine boost | GRT-C903 (vaccine prime) and GRT-C904 (vaccine boost) | Nivolumab (anti-PD-1 monoclonal antibody), ipilimumab (anti-CTLA-4 monoclonal antibody) | Non-small-cell lung cancer, colorectal cancer, pancreatic cancer, solid tumor, shared neoantigen-positive solid tumors | 1/2, 2, active not recruiting | NCT03953235 | Preliminary results indicate safe and tolerable. One of three patients had neoantigen-CD8 T cell response. [35,36] |
“Off the Shelf” Nous-209 | GAd20-209-FSP (vaccine prime) and MVA-209-FSP (vaccine boost) | Pembrolizumab (anti-PD-1 antibody) | Microsatellite unstable solid tumors | 1/2, 2, currently ongoing | NCT04041310 | Preliminary results for phase 1 indicate safe and tolerable. Overall response rate on RECIST1.1 was 67% [37] |
Nous-PEV | Personalized vaccine (PEV) based on Gad-PEV (vaccine prime) and MVA-PEV (vaccine boost) | Pembrolizumab (anti-PD-1 antibody) | Non-small-cell lung carcinoma, melanoma | 1b, currently ongoing | NCT04990479 | NA |
NeoVax | Combination of neoantigen peptides and poly-ICLC (Hiltonol) | Ipilimumab | Renal Cell Carcinoma | 1, recruiting | NCT02950766 | NA |
NeoVax | Combination of up to 20 neoantigen peptides and poly-ICLC (Hiltonol) | Nivolumab | Ovarian cancer | 1, currently ongoing | NCT04024878 | NA |
NeoVax plus Montanide | Combination of neoantigen peptides and poly-ICLC (Hiltonol) | Ipilimumab (locally administered) and Nivolumab (systemic) | Advanced melanoma | 1b, currently ongoing | NCT03929029 | NA |
NeoVax | Combination of up to 20 neoantigen peptides and poly-ICLC (Hiltonol) | Cyclophosphamide (chemotherapy drug) and Pembrolizumab | Chronic lymphocytic leukemia | 1, currently ongoing | NCT03219450 | NA |
NeoVax | Combination of neoantigen peptides and poly-ICLC (Hiltonol) | Radiation, Temozolomide (depending on methylation of DNA repair protein), and Pembrolizumab | Glioblastoma | 1, currently ongoing | NCT02287428 | NA |
NeoVax | Combination of neoantigen peptides and poly-ICLC (Hiltonol) | Nivolumab, Ipililumumab | Unmethylated glioblastoma | 1, terminated | NCT03422094 | Terminated due to the manufacturer switching to cell therapy [38] |
NeoVax | Combination of up to 20 neoantigen peptides and poly-ICLC (Hiltonol) | NA | Melanoma (surgically resected stage IIIB/C or Iva/b) | 1, completed | NCT01970358 | 6 of 8 patients had no evidence of active disease. Neoantigen-specific T cell response persisted with evidence [39] |
NEO-PV-01 | Personalized cancer vaccine NEO-PV-01 with Poly-ICLC (Hiltonol), an investigational adjuvant | Nivolumab (Opdivo trade mark name) | Metastatic or advanced melanoma, lung, or bladder cancer | 1b, completed | NCT02897765 | Safe, immunogenic response [40] |
NEO-PV-01 | Personalized cancer vaccine NEO-PV-01 with Poly-ICLC (Hiltonol), an investigational adjuvant | Pembrolizumab, Chemotherapy | Non-small-cell lung cancer, lung cancer, nonsquamous non-small-cell neoplasm of lung | 1, completed | NCT03380871 | Safe, tolerable, induced immune response, as presented at American Cancer Association Research but further detail needed [41] |
mRNA-based personalized cancer vaccine targeting neoantigens | Validated defined neoantigens, predicted neoepitopes and mutations in driver genes into a single mRNA concatemer (mRNA-4650) | NA | Melanoma, colon cancer, gastrointestinal cancer, genitourinary cancer, hepatocellular cancer | 1/2, terminated (slow accrual) | NCT03480152 | Safe, induced mutation-specific T cell responses against predicted neoantigens, but no tumor shrinkage noted with this trial–likely needs to be utilized with additional therapeutic agent [42] |
GEN-009 | Synthetic long peptides identified as personalized neoantigens, Poly-ICLC adjuvant | Nivolumab, Pembrolizumab | Cutaneous melanoma, non-small-cell lung cancer, squamous cell carcinoma of the head and neck, urothelial carcinoma, renal cell carcinoma | 1/2, 2, completed | NCT03633110 | GEN-009 safe, tolerable and found to produce vaccine-stimulated T cell response for more than 12 months. More data for dual therapy are expected [43,44] |
RO7198457 | Neoantigens in RNA-Lipoplex Neoantigen Specific immunotherapy (iNeST) | Atezolizumab | Melanoma, non-small-cell lung cancer, bladder cancer, colorectal cancer, triple-negative breast cancer, renal cancer, head and neck cancer | 1, active not recruiting | NCT03289962 | Safe, tolerable. Preliminary data indicate infiltration of RO7198457 stimulated T cells [45] |
RO7198457 | Neoantigens in RNA-Lipoplex Neoantigen Specific immunotherapy (iNeST) | Pembrolizumab | Advanced melanoma (no prior treatment) | 2, active not recruiting | NCT03815058 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hargrave, A.; Mustafa, A.S.; Hanif, A.; Tunio, J.H.; Hanif, S.N.M. Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines. Vaccines 2023, 11, 1633. https://doi.org/10.3390/vaccines11111633
Hargrave A, Mustafa AS, Hanif A, Tunio JH, Hanif SNM. Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines. Vaccines. 2023; 11(11):1633. https://doi.org/10.3390/vaccines11111633
Chicago/Turabian StyleHargrave, Anna, Abu Salim Mustafa, Asma Hanif, Javed H. Tunio, and Shumaila Nida M. Hanif. 2023. "Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines" Vaccines 11, no. 11: 1633. https://doi.org/10.3390/vaccines11111633
APA StyleHargrave, A., Mustafa, A. S., Hanif, A., Tunio, J. H., & Hanif, S. N. M. (2023). Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines. Vaccines, 11(11), 1633. https://doi.org/10.3390/vaccines11111633