Surveillance of Severe Acute Respiratory Infection and Influenza Vaccine Effectiveness among Hospitalized Italian Adults, 2021/22 Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Study Design
2.2. Study Population and Procedures
2.3. Virus Characterization and Phylogenetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bresee, J.; Fitzner, J.; Campbell, H.; Cohen, C.; Cozza, V.; Jara, J.; Krishnan, A.; Lee, V.; WHO Working Group on the Burden of Influenza Disease. Progress and remaining gaps in estimating the global disease burden of influenza. Emerg. Infect. Dis. 2018, 24, 1173–1177. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Past Seasons Vaccine Effectiveness Estimates. Available online: https://www.cdc.gov/flu/vaccines-work/past-seasons-estimates.html (accessed on 6 August 2022).
- World Health Organization (WHO). Vaccines against influenza WHO position paper–November 2012. Wkly. Epidemiol. Rec. 2012, 87, 461–476. [Google Scholar]
- Adlhoch, C.; Mook, P.; Lamb, F.; Ferland, L.; Melidou, A.; Amato-Gauci, A.J.; Pebody, R.; European Influenza Surveillance Network. Very little influenza in the WHO European Region during the 2020/21 season, weeks 40 2020 to 8 2021. Euro Surveill. 2021, 26, 2100221. [Google Scholar] [CrossRef] [PubMed]
- Melidou, A.; Ködmön, C.; Nahapetyan, K.; Kraus, A.; Alm, E.; Adlhoch, C.; Mooks, P.; Dave, N.; Carvalho, C.; Meslé, M.M.; et al. Influenza returns with a season dominated by clade 3C.2a1b.2a.2 A(H3N2) viruses, WHO European Region, 2021/22. Euro Surveill. 2022, 27, 2200255. [Google Scholar] [CrossRef]
- Australian Government. Department of Health and Aged Care. Australian Influenza Surveillance Report-2022 Influenza Season in Australia. Available online: https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-ozflu-flucurr.htm/$File/flu-10-2022.pdf (accessed on 6 August 2022).
- Pebody, R.G.; Mølbak, K. Importance of timely monitoring of seasonal influenza vaccine effectiveness. Euro Surveill. 2016, 21, 30209. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Evaluation of Influenza Vaccine Effectiveness. A Guide to the Design and Interpretation of Observational Studies. Available online: https://apps.who.int/iris/bitstream/handle/10665/255203/9789241512121-eng.pdf (accessed on 25 November 2022).
- Ali, S.T.; Lau, Y.C.; Shan, S.; Ryu, S.; Du, Z.; Wang, L.; Xu, X.K.; Chen, D.; Xiong, J.; Tae, J.; et al. Prediction of upcoming global infection burden of influenza seasons after relaxation of public health and social measures during the COVID-19 pandemic: A modelling study. Lancet Glob. Health 2022, 10, e1612–e1622. [Google Scholar] [CrossRef]
- Chung, J.R.; Kim, S.S.; Kondor, R.J.; Smith, C.; Budd, A.P.; Tartof, S.Y.; Florea, A.; Talbot, H.K.; Grijalva, C.G.; Wernli, K.J.; et al. Interim estimates of 2021-22 seasonal influenza vaccine effectiveness-United States, February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 365–370. [Google Scholar] [CrossRef]
- Martínez-Baz, I.; Casado, I.; Miqueleiz, A.; Navascués, A.; Pozo, F.; Trobajo-Sanmartín, C.; Albéniz, E.; Elía, F.; Burgui, C.; Fernández-Huerta, M.; et al. Effectiveness of influenza vaccination in preventing influenza in primary care, Navarre, Spain, 2021/22. Euro Surveill. 2022, 27, 2200488. [Google Scholar] [CrossRef]
- Italian National Institute of Health. Virological Surveillance of Influenza. Available online: https://w3.iss.it/site/rmi/influnet/pagine/rapportoinflunet.aspx (accessed on 6 August 2022).
- Tenforde, M.W.; Chung, J.; Smith, E.R.; Talbot, H.K.; Trabue, C.H.; Zimmerman, R.K.; Silveira, F.P.; Gaglani, M.; Murthy, K.; Monto, A.S.; et al. Influenza vaccine effectiveness in inpatient and outpatient settings in the United States, 2015–2018. Clin. Infect. Dis. 2021, 73, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Carmona, A.; Muñoz-Quiles, C.; Stuurman, A.; Descamps, A.; Mira-Iglesias, A.; Torcel-Pagnon, L.; Díez-Domingo, J. Challenges and adaptation of a European influenza vaccine effectiveness study platform in response to the COVID-19 emergence: Experience from the DRIVE project. Int. J. Environ. Res. Public Health 2021, 18, 1058. [Google Scholar] [CrossRef]
- Italian Ministry of Health. Prevention and Control of Influenza: Recommendations for the 2021–2022 Season. Available online: https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2021&codLeg=79647&parte=1%20&serie=null (accessed on 25 November 2022).
- Pariani, E.; Amendola, A.; Zappa, A.; Bianchi, S.; Colzani, D.; Anselmi, G.; Zanetti, A.; Tanzi, E. Molecular characterization of influenza viruses circulating in Northern Italy during two seasons (2005/2006 and 2006/2007) of low influenza activity. J. Med. Virol. 2008, 80, 1984–1991. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S.; Gascuel, O. NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019, 47, W260–W265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, S.G.; Cowling, B.J. “Crude vaccine effectiveness” is a misleading term in test-negative studies of influenza vaccine effectiveness. Epidemiology 2015, 26, e60. [Google Scholar] [CrossRef] [Green Version]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Skowronski, D.M.; Leir, S.; Sabaiduc, S.; Chambers, C.; Zou, M.; Rose, C.; Olsha, R.; Dickinson, J.A.; Winter, A.L.; Jassem, A.; et al. Influenza vaccine effectiveness by A(H3N2) phylogenetic sub-cluster and prior vaccination history: 2016-17 and 2017-18 epidemics in Canada. J. Infect. Dis. 2020, 225, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Calcagno, V.; de Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J. Stat. Soft. 2010, 34, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Doll, M.K.; Pettigrew, S.M.; Ma, J.; Verma, A. Effects of confounding bias in coronavirus disease 2019 (COVID-19) and influenza vaccine effectiveness test-negative designs due to correlated influenza and COVID-19 vaccination behaviors. Clin. Infect. Dis. 2022, 75, e564–e571. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Ding, P. Sensitivity analysis in observational research: Introducing the E-value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Bolton, M.J.; Ort, J.T.; McBride, R.; Swanson, N.J.; Wilson, J.; Awofolaju, M.; Furey, C.; Greenplate, A.R.; Drapeau, E.M.; Pekosz, A.; et al. Antigenic and virological properties of an H3N2 variant that continues to dominate the 2021-22 Northern Hemisphere influenza season. Cell Rep. 2022, 39, 110897. [Google Scholar] [CrossRef]
- Tricco, A.C.; Chit, A.; Soobiah, C.; Hallett, D.; Meier, G.; Chen, M.H.; Tashkandi, M.; Bauch, C.T.; Loeb, M. Comparing influenza vaccine efficacy against mismatched and matched strains: A systematic review and meta-analysis. BMC Med. 2013, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- DRIVE (Development of Robust and Innovative Vaccine Effectiveness) Project. Brand-Specific Influenza Vaccine Effectiveness in Europe Season 2021/22. Available online: https://www.drive-eu.org/wp-content/uploads/2022/07/DRIVE_D7.9-IVE-Results-Report_Season-2021-22_FINAL.pdf (accessed on 6 August 2022).
- Godoy, P.; Romero, A.; Soldevila, N.; Torner, N.; Jané, M.; Martínez, A.; Caylà, J.A.; Rius, C.; Domínguez, A.; The Working Group on Surveillance of Severe Influenza Hospitalized Cases In Catalonia. Influenza vaccine effectiveness in reducing severe outcomes over six influenza seasons, a case-case analysis, Spain, 2010/11 to 2015/16. Euro Surveill. 2018, 23, 1700732. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, D.T.; Rappuoli, R.; De Gregorio, E.; Tsai, T.; Del Giudice, G. MF59 adjuvant: The best insurance against influenza strain diversity. Expert Rev. Vaccines 2011, 10, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Ansaldi, F.; Bacilieri, S.; Durando, P.; Sticchi, L.; Valle, L.; Montomoli, E.; Icardi, G.; Gasparini, R.; Crovari, P. Cross-protection by MF59-adjuvanted influenza vaccine: Neutralizing and haemagglutination-inhibiting antibody activity against A(H3N2) drifted influenza viruses. Vaccine 2008, 26, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Ansaldi, F.; Zancolli, M.; Durando, P.; Montomoli, E.; Sticchi, L.; Del Giudice, G.; Icardi, G. Antibody response against heterogeneous circulating influenza virus strains elicited by MF59- and non-adjuvanted vaccines during seasons with good or partial matching between vaccine strain and clinical isolates. Vaccine 2010, 28, 4123–4129. [Google Scholar] [CrossRef] [PubMed]
- Nicolay, U.; Heijnen, E.; Nacci, P.; Patriarca, P.A.; Leav, B. Immunogenicity of aIIV3, MF59-adjuvanted seasonal trivalent influenza vaccine, in older adults ≥65 years of age: Meta-analysis of cumulative clinical experience. Int. J. Infect. Dis. 2019, 85S, S1–S9. [Google Scholar] [CrossRef] [Green Version]
- Kavian, N.; Hachim, A.; Li, A.P.; Cohen, C.A.; Chin, A.W.; Poon, L.L.; Fang, V.J.; Leung, N.H.; Cowling, B.J.; Valkenburg, S.A. Assessment of enhanced influenza vaccination finds that FluAd conveys an advantage in mice and older adults. Clin. Transl. Immunol. 2020, 9, e1107. [Google Scholar] [CrossRef] [Green Version]
- Domnich, A.; Panatto, D.; Pariani, E.; Napoli, C.; Chironna, M.; Manini, I.; Rizzo, C.; Orsi, A.; Icardi, G.; IT-BIVE-HOSP Network Study Group. Relative effectiveness of the adjuvanted vs non-adjuvanted seasonal influenza vaccines against severe laboratory-confirmed influenza among hospitalized Italian older adults. Int. J. Infect. Dis. 2022, 125, 164–169. [Google Scholar] [CrossRef]
- Woodcock, T.; Greenfield, G.; Lalvani, A.; Majeed, A.; Aylin, P. Patient outcomes following emergency admission to hospital for COVID-19 compared with influenza: Retrospective cohort study. Thorax 2022, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Niquini, R.P.; Lana, R.M.; Pacheco, A.G.; Cruz, O.G.; Coelho, F.C.; Carvalho, L.M.; Villela, D.A.M.; Gomes, M.F.D.C.; Bastos, L.S. Description and comparison of demographic characteristics and comorbidities in SARI from COVID-19, SARI from influenza, and the Brazilian general population. Cad. Saude Publica. 2020, 36, e00149420. [Google Scholar] [CrossRef]
- Domnich, A.; Grassi, R.; Fallani, E.; Spurio, A.; Bruzzone, B.; Panatto, D.; Marozzi, B.; Cambiaggi, M.; Vasco, A.; Orsi, A.; et al. Changes in attitudes and beliefs concerning vaccination and influenza vaccines between the first and second COVID-19 pandemic waves: A longitudinal study. Vaccines 2021, 9, 1016. [Google Scholar] [CrossRef]
- Steinert, J.I.; Sternberg, H.; Prince, H.; Fasolo, B.; Galizzi, M.M.; Büthe, T.; Veltri, G.A. COVID-19 vaccine hesitancy in eight European countries: Prevalence, determinants, and heterogeneity. Sci. Adv. 2022, 8, eabm9825. [Google Scholar] [CrossRef] [PubMed]
- Heinze, G.; Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med. 2002, 21, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Level | % (N) |
---|---|---|
Age, years | Median (IQR) | 73 (58–83) |
Sex | Female | 46.3 (349) |
Male | 53.7 (404) | |
Area | North | 13.0 (98) |
Center | 31.5 (237) | |
South | 55.5 (418) | |
Month of symptom onset | Oct–Nov 2021 | 6.0 (45) |
Dec 2021 | 7.2 (54) | |
Jan 2022 | 20.6 (155) | |
Feb 2022 | 24.3 (183) | |
Mar 2022 | 27.2 (205) | |
Apr–May 2022 | 14.7 (111) | |
Swab delay, days | Median (IQR) | 2 (0–4) |
≥1 chronic condition | No | 73.7 (555) |
Yes | 26.3 (198) | |
COVID-19 vaccination | No | 14.3 (108) |
1 dose | 3.7 (28) | |
2 doses | 25.5 (192) | |
3 doses | 56.4 (425) | |
2020/21 influenza vaccination | No | 59.4 (447) |
Yes | 32.1 (242) | |
Unknown | 8.5 (64) | |
2021/22 influenza vaccination | No | 57.2 (431) |
Yes | 42.8 (322) |
Characteristic | Level | Cases (N = 19) | Controls (N = 734) | p |
---|---|---|---|---|
Age, years | Median (IQR) | 43 (28–69) | 73 (58–83) | <0.001 a |
Sex | Female, % (N) | 47.4 (9) | 46.3 (340) | >0.99 b |
Male, % (N) | 52.6 (10) | 53.7 (394) | ||
Area | North, % (N) | 42.1 (8) | 12.3 (90) | <0.001 b |
Center, % (N) | 47.4 (9) | 31.1 (228) | ||
South, % (N) | 10.5 (2) | 56.7 (416) | ||
Month of symptom onset | Oct–Nov 2021, % (N) | 0 (0) | 6.1 (45) | 0.003 b |
Dec 2021, % (N) | 10.5 (2) | 7.1 (52) | ||
Jan 2022, % (N) | 5.3 (1) | 21.0 (154) | ||
Feb 2022, % (N) | 5.3 (1) | 24.8 (182) | ||
Mar 2022, % (N) | 68.4 (13) | 26.2 (192) | ||
Apr–May 2022, % (N) | 10.5 (2) | 14.9 (109) | ||
Swab delay, days | Median (IQR) | 3 (0–4) | 2 (0–4) | 0.84 a |
≥1 chronic condition | No, % (N) | 73.7 (14) | 73.7 (541) | >0.99 b |
Yes, % (N) | 26.3 (5) | 26.3 (193) | ||
COVID-19 vaccination | No, % (N) | 0 (0) | 14.7 (108) | 0.092 b |
1 dose, % (N) | 10.5 (2) | 3.5 (26) | ||
2 doses, % (N) | 31.6 (6) | 25.3 (186) | ||
3 doses, % (N) | 57.9 (11) | 56.4 (414) | ||
2020/21 influenza vaccination | No, % (N) | 63.2 (12) | 59.3 (435) | 0.063 b |
Yes, % (N) | 15.8 (3) | 32.6 (239) | ||
Unknown, % (N) | 21.1 (4) | 8.2 (60) | ||
2021/22 influenza vaccination | No, % (N) | 89.5 (17) | 56.4 (414) | 0.004 b |
Yes, % (N) | 10.5 (2) | 43.6 (320) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panatto, D.; Domnich, A.; Chironna, M.; Loconsole, D.; Napoli, C.; Torsello, A.; Manini, I.; Montomoli, E.; Pariani, E.; Castaldi, S.; et al. Surveillance of Severe Acute Respiratory Infection and Influenza Vaccine Effectiveness among Hospitalized Italian Adults, 2021/22 Season. Vaccines 2023, 11, 83. https://doi.org/10.3390/vaccines11010083
Panatto D, Domnich A, Chironna M, Loconsole D, Napoli C, Torsello A, Manini I, Montomoli E, Pariani E, Castaldi S, et al. Surveillance of Severe Acute Respiratory Infection and Influenza Vaccine Effectiveness among Hospitalized Italian Adults, 2021/22 Season. Vaccines. 2023; 11(1):83. https://doi.org/10.3390/vaccines11010083
Chicago/Turabian StylePanatto, Donatella, Alexander Domnich, Maria Chironna, Daniela Loconsole, Christian Napoli, Alessandra Torsello, Ilaria Manini, Emanuele Montomoli, Elena Pariani, Silvana Castaldi, and et al. 2023. "Surveillance of Severe Acute Respiratory Infection and Influenza Vaccine Effectiveness among Hospitalized Italian Adults, 2021/22 Season" Vaccines 11, no. 1: 83. https://doi.org/10.3390/vaccines11010083
APA StylePanatto, D., Domnich, A., Chironna, M., Loconsole, D., Napoli, C., Torsello, A., Manini, I., Montomoli, E., Pariani, E., Castaldi, S., Orsi, A., Icardi, G., & on behalf of the IT-BIVE-HOSP Network Study Group. (2023). Surveillance of Severe Acute Respiratory Infection and Influenza Vaccine Effectiveness among Hospitalized Italian Adults, 2021/22 Season. Vaccines, 11(1), 83. https://doi.org/10.3390/vaccines11010083