High Seroprevalence of Anti-SARS-CoV-2 IgM/IgG among Inhabitants of Sakaka City, Aljouf, Saudi Arabia
Abstract
:1. Introduction
2. Methodology
2.1. Study Design
2.2. Data Collection
2.3. Blood Samples Collection
2.4. Antibodies Testing Technique
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taha, A.E. The Severe Acute Respiratory Syndrome Coronavirus-2 Pandemic: An Overview to Control Human-wildlife and Human-human Interactions. J. Pure Appl. Microbiol. 2020, 14, 1095–1098. [Google Scholar] [CrossRef]
- Weitz, J.S.; Beckett, S.J.; Coenen, A.R.; Demory, D.; Dominguez-Mirazo, M.; Dushoff, J.; Leung, C.-Y.; Li, G.; Măgălie, A.; Park, S.W.; et al. Modeling shield immunity to reduce COVID-19 epidemic spread. Nat. Med. 2020, 26, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.-C.; Liu, W.; Zhang, P.-H.; Zhang, F.; Richardus, J.H. Disappearance of Antibodies to SARS-Associated Coronavirus after Recovery. N. Engl. J. Med. 2007, 357, 1162–1163. [Google Scholar] [CrossRef] [PubMed]
- Choe, P.G.; Perera, R.; Park, W.B.; Song, K.H.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Ko, L.W.R.; Park, S.W.; Kim, N.J.; et al. MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015. Emerg. Infect. Dis. 2017, 23, 1079–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Guo, Z.; Duan, C.; Chen, Z.; Wang, G.; Lu, Y.; Li, M.; Lu, J. Long-term persistence of IgG antibodies in SARS-CoV infected healthcare workers. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-P.; Wang, N.-C.; Chang, Y.-H.; Tian, X.-Y.; Na, D.-Y.; Zhang, L.-Y.; Zheng, L.; Lan, T.; Wang, L.-F.; Liang, G.-D. Duration of Antibody Responses after Severe Acute Respiratory Syndrome. Emerg. Infect. Dis. 2007, 13, 1562–1564. [Google Scholar] [CrossRef]
- Payne, D.C.; Iblan, I.; Rha, B.; Alqasrawi, S.; Haddadin, A.; Al Nsour, M.; Alsanouri, T.; Ali, S.S.; Harcourt, J.; Miao, C.; et al. Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg. Infect. Dis. 2016, 22, 1824–1826. [Google Scholar] [CrossRef]
- Severance, E.G.; Bossis, I.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Sullens, A.; Yolken, R.H.; Viscidi, R.P. Development of a Nucleocapsid-Based Human Coronavirus Immunoassay and Estimates of Individuals Exposed to Coronavirus in a U.S. Metropolitan Population. Clin. Vaccine Immunol. 2008, 15, 1805–1810. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.A.; Meyer, B.; Corman, V.M.; Al-Masri, M.; Turkestani, A.; Ritz, D.; Sieberg, A.; Aldabbagh, S.; Bosch, B.-J.; Lattwein, E.; et al. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study. Lancet Infect. Dis. 2015, 15, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Al Kahlout, R.A.; Nasrallah, G.K.; Farag, E.A.; Wang, L.; Lattwein, E.; Müller, M.A.; El Zowalaty, M.E.; Al Romaihi, H.E.; Graham, B.S.; Al Thani, A.A.; et al. Comparative Serological Study for the Prevalence of Anti-MERS Coronavirus Antibodies in High- and Low-Risk Groups in Qatar. J. Immunol. Res. 2019, 2019, 1386740. [Google Scholar] [CrossRef]
- Kroon, F.P.; Weiland, H.T.; Van Loon, A.M.; Van Furth, R. Abortive and Subclinical Poliomyelitis in a Family during the 1992 Epidemic in the Netherlands. Clin. Infect. Dis. 1995, 20, 454–456. [Google Scholar] [CrossRef]
- Smallman-Raynor, M.; Smallman-Raynor, M.R.; Cliff, A.D. Poliomyelitis: Emergence to Eradication; Oxford University Press: New York, NY, USA, 2006; Volume 32. [Google Scholar]
- Mbabazi, W.B.; Nanyunja, M.; Smallman-Raynor, M.R.; Cliff, A.D.; Makumbi, I.; Braka, F.; Baliraine, F.N.; Kisakye, A.; Bwogi, J.; Mugyenyi, P.; et al. Achieving measles control: Lessons from the 2002-06 measles control strategy for Uganda. Health Policy Plan. 2009, 24, 261–269. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-COVID-19-final-report.pdf (accessed on 15 September 2022).
- Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they closely related? Clin. Microbiol. Infect. 2020, 26, 729–734. [Google Scholar] [CrossRef]
- El-Masry, E.A.; Mohamed, R.A.; Ali, R.I.; Al Mulhim, M.F.; Taha, A.E. Novel coronavirus disease-related knowledge, attitudes, and practices among the residents of Al-Jouf region in Saudi Arabia. J. Infect. Dev. Ctries. 2021, 15, 22–39. [Google Scholar] [CrossRef]
- Taha, A.E. Can COVID-19 Be Transmitted Sexually by Semen? J. Pure Appl. Microbiol. 2020, 14, 2287–2293. [Google Scholar] [CrossRef]
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 2020, 382, 970–971. [Google Scholar] [CrossRef] [Green Version]
- Hetta, H.F.; Muhammad, K.; El-Masry, E.A.; Taha, A.E.; Ahmed, E.A.; Phares, C.; Kader, H.A.; Waheed, Y.; Zahran, A.M.; Yahia, R.; et al. The interplay between vitamin D and COVID-19: Protective or bystander? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2131–2145. [Google Scholar] [CrossRef]
- Tan, W.-T.; Lu, Y.; Zhang, J.; Wang, J.; Dan, Y.; Tan, Z.; He, X.; Qian, C.; Sun, Q.; Hu, Q.; et al. Viral Kinetics and Antibody Responses in Patients with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody Responses to SARS-CoV-2 in Patients with Novel Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034. [Google Scholar] [CrossRef]
- Filchakova, O.; Dossym, D.; Ilyas, A.; Kuanysheva, T.; Abdizhamil, A.; Bukasov, R. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244, 123409. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.-M.; Tsai, K.-F.; Kuo, W.-H.; Wu, C.-H.; Yu, C.-I.; You, H.-L.; Lee, C.-T. The Waxing, Waning, and Predictors of Humoral Responses to Vector-Based SARS-CoV-2 Vaccine in Hemodialysis Patients. Vaccines 2022, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, F.; Buonfrate, D.; Moro, L.; Rodari, P.; Piubelli, C.; Caldrer, S.; Riccetti, S.; Sinigaglia, A.; Barzon, L. Antibody Response to the BNT162b2 mRNA COVID-19 Vaccine in Subjects with Prior SARS-CoV-2 Infection. Viruses 2021, 13, 422. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Coronavirus COVID-19 Dashboard. Available online: https://covid19.who.int (accessed on 8 December 2021).
- World Health Organization (WHO). Saudi Arabia: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/region/emro/country/sa (accessed on 13 November 2021).
- Franchini, M.; Liumbruno, G.M.; Pezzo, M. COVID-19 vaccine-associated immune thrombosis and thrombocytopenia (VITT): Diagnostic and therapeutic recommendations for a new syndrome. Eur. J. Haematol. 2021, 107, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.Y.; Assafi, M.S.; Othman, H.E.; Shukri, H.M. Prevalence of SARS -CoV-2 IgG/IgM antibodies among patients in Zakho City, Kurdistan, Iraq. J. Infect. Dev. Ctries. 2022, 16, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Shakiba, M.; Nazemipour, M.; Salari, A.; Mehrabian, F.; Nazari, S.S.H.; Rezvani, S.M.; Ghasempour, Z.; Heidarzadeh, A.; Mansournia, M.A. Seroprevalence of SARS-CoV-2 in Guilan Province, Iran, April 2020. Emerg. Infect. Dis. 2021, 27, 636–638. [Google Scholar] [CrossRef]
- Bendavid, E.; Mulaney, B.; Sood, N.; Shah, S.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.; Saavedra-Walker, R.; Tedrow, J.; Bogan, A.; et al. COVID-19 antibody seroprevalence in Santa Clara County, California. Int. J. Epidemiol. 2021, 50, 410–419. [Google Scholar] [CrossRef]
- Dopico, C.; Hanke, L.; Sheward, J.; Christian, M.; Muschiol, S.; Grinberg, N.; Adori, M.; Christian, M.; Vidakovics, L.P.; Kim, C.; et al. Probabilistic approaches for classifying highly variable anti-SARS-CoV-2 antibody responses. medRxiv 2021. [Google Scholar] [CrossRef]
- Almaeen, A.H.; Alduraywish, A.A.; Ghazy, A.A.; El-Metwally, T.H.; Alayyaf, M.; Alrayes, F.H.; Alinad, A.K.M.; Albulayhid, S.B.H.; Aldakhil, A.R.; Taha, A.E. The Pre-Vaccination Donated Blood Is Free from Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) but Is Rich with Anti-SARS-CoV-2 Antibodies: A Cross-Section Saudi Study. Int. J. Environ. Res. Public Health 2022, 19, 7119. [Google Scholar] [CrossRef]
- Ali, A.M.; Ali, K.M.; Fatah, M.H.; Tawfeeq, H.M.; Rostam, H.M. SARS-CoV-2 Reinfection in Patients Negative for Immunoglobulin G Following Recovery from COVID-19. New Microbes New Infect. 2021, 43, 100926. [Google Scholar] [CrossRef]
- Alsofayan, Y.M.; Althunayyan, S.M.; Khan, A.A.; Hakawi, A.M.; Assiri, A.M. Clinical characteristics of COVID-19 in Saudi Arabia: A national retrospective study. J. Infect. Public Health 2020, 13, 920–925. [Google Scholar] [CrossRef]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25, 2000180. [Google Scholar] [CrossRef] [Green Version]
- Gudbjartsson, D.F.; Helgason, A.; Jonsson, H.; Magnusson, O.T.; Melsted, P.; Norddahl, G.L.; Saemundsdottir, J.; Sigurdsson, A.; Sulem, P.; Agustsdottir, A.B.; et al. Spread of SARS-CoV-2 in the Icelandic Population. N. Engl. J. Med. 2020, 382, 2302–2315. [Google Scholar] [CrossRef]
- Long, Q.-X.; Liu, B.-Z.; Deng, H.-J.; Wu, G.-C.; Deng, K.; Chen, Y.-K.; Liao, P.; Qiu, J.-F.; Lin, Y.; Cai, X.-F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Long, Q.-X.; Tang, X.-J.; Shi, Q.-L.; Li, Q.; Deng, H.-J.; Yuan, J.; Hu, J.-L.; Xu, W.; Zhang, Y.; Lv, F.-J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Buitrago-Garcia, D.; Simancas-Racines, D.; Achig, P.Z.; Del Campo, R.; Ciapponi, A.; Sued, O.; Martinez-García, L.; Rutjes, A.W.; Low, N.; et al. False-negative results of initial RT-PCR assays for COVID-19: A systematic review. PLoS ONE 2020, 15, e0242958. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19) Update: Serological Tests [Press Release]. FDA: Silver Spring, MD, USA, 7 April 2020. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-serological-tests (accessed on 15 September 2022).
- Nottingham, S. Nearly 91% of Americans Have Been Ordered to Stay at Home. CNN. Published 2 April 2020. Available online: https://edition.cnn.com/world/live-news/coronavirus-pandemic-04-02-20-intl/h_31be689eb8404149e126dce751d6045f (accessed on 15 September 2022).
- OECD (2020). Testing for COVID-19: A Way to Lift Confinement Restrictions. Available online: https://read.oecd-ilibrary.org/view/?ref=129_129658-l62d7lr66u&title=Testing-for-COVID-19-A-way-to-lift-confinement-restrictions (accessed on 15 September 2022).
- Francis, A.I.; Ghany, S.; Gilkes, T.; Umakanthan, S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. 2021, 98, 389–394. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Sibbel, S.; McKeon, K.; Luo, J.; Wendt, K.; Walker, A.G.; Kelley, T.; Lazar, R.; Zywno, M.L.; Connaire, J.J.; Tentori, F.; et al. Real-World Effectiveness and Immunogenicity of BNT162b2 and mRNA-1273 SARS-CoV-2 Vaccines in Patients on Hemodialysis. J. Am. Soc. Nephrol. 2021, 33, 49–57. [Google Scholar] [CrossRef]
- Ni, L.; Ye, F.; Cheng, M.-L.; Feng, Y.; Deng, Y.-Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020, 52, 971–977.e3. [Google Scholar] [CrossRef] [PubMed]
- Thevarajan, I.; Nguyen, T.H.O.; Koutsakos, M.; Druce, J.; Caly, L.; van de Sandt, C.E.; Jia, X.; Nicholson, S.; Catton, M.; Cowie, B.; et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med. 2020, 26, 453–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Wang, A.; Liu, M.; Wang, Q.; Chen, J.; Xia, S.; Ling, Y.; Zhang, Y.; Xun, J.; Lu, L.; et al. Neutralizing Antibody Responses to SARS-CoV-2 in a COVID-19 Recovered Patient Cohort and Their Implications. Available online: https://www.medrxiv.org/content/10.1101/2020.03.30.20047365v2 (accessed on 4 August 2021).
- Suthar, M.S.; Zimmerman, M.; Kauffman, R.; Mantus, G.; Linderman, S.; Vanderheiden, A.; Nyhoff, L.; Davis, C.; Adekunle, S.; Affer, M.; et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep. Med. 2020, 1, 100040. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, X.; Xin, Q.; Pan, Y.; Hu, Y.; Li, J.; Chu, Y.; Feng, Y.; Wang, Q. Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and Convalescent Patients. Clin. Infect. Dis. 2020, 10, 2688–2694. [Google Scholar] [CrossRef]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef]
- Bradley, T.; Grundberg, E.; Selvarangan, R. Antibody responses boosted in seropositive healthcare workers after single dose of SARS-CoV-2 mRNA vaccine. medRxiv 2021. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; The PARIS Team; Simonet, V. Robust spike antibody responses and increased reactogenicity in seropositive individuals after a 2 single dose of SARS-CoV-2 mRNA vaccine. medRxiv 2021. [Google Scholar] [CrossRef]
- Levi, R.; Azzolini, E.; Pozzi, C.; Ubaldi, L.; Lagioia, M.; Mantovani, A.; Rescigno, M. One dose of SARS-CoV-2 vaccine exponentially increases antibodies in individuals who have recovered from symptomatic COVID-19. J. Clin. Investig. 2021, 131, e149154. [Google Scholar] [CrossRef]
- Manisty, C.; Otter, A.D.; Treibel, T.A.; McKnight, Á.; Altmann, D.M.; Brooks, T.; Noursadeghi, M.; Boyton, R.J.; Semper, A.; Moon, J.C. Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals. Lancet 2021, 397, 1057–1058. [Google Scholar] [CrossRef]
- Prendecki, M.; Clarke, C.; Brown, J.; Cox, A.; Gleeson, S.; Guckian, M.; Randell, P.; Pria, A.D.; Lightstone, L.; Xu, X.-N.; et al. Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. Lancet 2021, 397, 1178–1181. [Google Scholar] [CrossRef]
- Saadat, S.; Rikhtegaran-Tehrani, Z.; Logue, J.; Newman, M.; Frieman, M.B.; Harris, A.D.; Sajadi, M.M. Single dose vaccination in healthcare workers previously infected with SARS-CoV-2. MedRxiv 2021. [Google Scholar] [CrossRef]
- Stamatatos, L.; Czartoski, J.; Wan, Y.H.; Homad, L.J.; Rubin, V.; Glantz, H.; Neradilek, M.; Seydoux, E.; Jennewein, M.F.; MacCamy, A.J.; et al. A single mRNA immunization boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021, 372, 6549. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Dcosta, B.M.; Samanovic-Golden, M.; Herati, R.S.; Cornelius, A.; Mulligan, M.J.; Landau, N.R. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 2021. [Google Scholar] [CrossRef]
Total (n = 400) | IgM | Test of Significance | p | IgG | Test of Significance | p | ||||
---|---|---|---|---|---|---|---|---|---|---|
Negative n = 217 (54.2%) | Positive n = 183 (45.8%) | Negative n = 231 (57.7%) | Positive n = 169 (42.3%) | |||||||
Previous PCR testing | Not done | 238 (59.5%) | 119 (54.8%) | 119 (65%) | χ2 = 12.326 | 0.006 * | 176 (76.2%) | 62 (36.7%) | χ2 = 82.708 | <0.001 * |
Done and the last two PCR tests were positive | 50 (12.5%) | 36 (16.6%) | 14 (7.7%) | 5 (2.2%) | 45 (26.6%) | |||||
Done and the last two PCR tests were negative | 94 (23.5%) | 56 (25.8%) | 38 (20.8%) | 45 (19.5%) | 49 (29%) | |||||
Done and the last two PCR tests; one was positive and the other was negative | 18 (4.5%) | 6 (2.8%) | 12 (6.6%) | 5 (2.2%) | 13 (7.7%) | |||||
Interval between the date of the last PCR positive testing and date of Ig testing (days) | n.≠ (Mean ± SD.) | 68 (231.5 ± 71.9) | 42 (206.2 ± 47.5) | 26 (272.5 ± 85.6) | t = 3.618 * | 0.001 * | 10 (214.8 ± 72.5) | 58 (234.4 ± 72) | t = 0.795 | 0.430 |
Median (Min.–Max.) | 227.5 (78–385) | 220.5 (78–308) | 291 (105–385) | 216 (138–385) | 228.5 (78–383) |
Total (n = 400) | IgM | Test of Sig. | p | |||
---|---|---|---|---|---|---|
Negative n = 217 (54.2%) | Positive n = 183 (45.8%) | |||||
Age (years) | Mean ± SD. | 34.5 ± 13.5 | 35.8 ± 14.6 | 33 ± 11.9 | U = 17402.50 * | 0.033 * |
Median (Min.–Max.) | 35.5 (7–82) | 39 (7–82) | 33 (13–80) | |||
˂20 | 61 (15.3%) | 33 (15.2%) | 28 (15.3%) | χ2 = 10.597 * | 0.031 * | |
20–29 | 91 (22.8%) | 43 (19.8%) | 48 (26.2%) | |||
30–39 | 78 (19.5%) | 34 (15.7%) | 44 (24%) | |||
40–49 | 125 (31.3%) | 78 (35.9%) | 47 (25.7%) | |||
≥50 | 45 (11.3%) | 29 (13.4%) | 16 (8.7%) | |||
Gender | Male | 311 (77.8%) | 166 (76.5%) | 145 (79.2%) | χ2 = 0.430 | 0.512 |
Female | 89 (22.3%) | 51 (23.5%) | 38 (20.8%) | |||
Education | Illiterate | 74 (18.5%) | 54 (24.9%) | 20 (10.9%) | χ2 = 15.251 * | 0.002 * |
Student | 134 (33.5%) | 64 (29.5%) | 70 (38.3%) | |||
Bachelor | 109 (27.3%) | 61 (28.1%) | 48 (26.2%) | |||
Postgraduate study | 83 (20.8%) | 38 (17.5%) | 45 (24.6%) | |||
Occupation | Medical/Allied heath student | 19 (4.8%) | 7 (3.2%) | 12 (6.6%) | χ2 = 2.542 | 0.281 |
Healthcare Workers | 62 (15.5%) | 33 (15.2%) | 29 (15.8%) | |||
Others | 319 (79.8%) | 177 (81.6%) | 142 (77.6%) | |||
Height (cm) | Mean ± SD. | 172.3 ± 9.61 | 170.4 ± 11 | 174.5 ± 7 | U = 15651.0 * | <0.001 * |
Median (Min.–Max.) | 174 (90–193) | 172 (90–191) | 175 (155–193) | |||
Weight (kg) | Mean ± SD. | 78.5 ± 13.1 | 78.8 ± 14.5 | 78.3 ± 11.2 | t = 0.402 | 0.688 |
Median (Min.–Max.) | 80 (21–120) | 80 (21–115) | 79 (55–120) | |||
Lifestyle | Smoking | 68 (17%) | 20 (9.2%) | 48 (26.2%) | χ2 = 20.365 * | <0.001 * |
Physical activity | 177 (44.3%) | 111 (51.2%) | 66 (36.1%) | χ2 = 9.159 * | 0.002 * | |
Healthy diet | 204 (51%) | 132 (60.8%) | 72 (39.3%) | χ2 = 18.339 * | <0.001 * | |
Vitamin supplements | 118 (29.5%) | 56 (25.8%) | 62 (33.9%) | χ2 = 3.111 | 0.078 | |
Herbal preferences | 2 (0.5%) | 0 (0%) | 2 (1.1%) | χ2 = 2.384 | FEp = 0.209 | |
Comorbidities | Hypertension | 46 (11.5%) | 22 (10.1%) | 24 (13.1%) | χ2 = 0.864 | 0.353 |
Diabetes Type 2 | 29 (7.3%) | 19 (8.8%) | 10 (5.5%) | χ2 = 1.599 | 0.206 | |
Diabetes Type 1 | 3 (0.8%) | 0 (0%) | 3 (1.6%) | χ2 = 3.584 | FEp = 0.095 | |
CVD | 12 (3%) | 8 (3.7%) | 4 (2.2%) | χ2 = 0.768 | 0.381 | |
Kidney | 3 (0.8%) | 0 (0%) | 3 (1.6%) | χ2 = 3.584 | FEp = 0.095 | |
GERD | 23 (5.8%) | 21 (9.7%) | 2 (1.1%) | χ2 = 13.50 * | <0.001 * | |
Autoimmune | 2 (0.5%) | 0 (0%) | 2 (1.1%) | χ2 = 2.384 | FEp = 0.209 | |
Chronic inflammatory | 5 (1.3%) | 0 (0%) | 5 (2.7%) | χ2 = 6.004 | 0.019 * | |
Chronic respiratory | 19 (4.8%) | 3 (1.6%) | 16 (7.4%) | χ2 = 7.214 * | 0.007 * | |
Type of the current medications | Antihypertensive | 41 (10.3%) | 18 (8.3%) | 23 (12.6%) | χ2 = 1.971 | 0.160 |
Anti-diabetic | 33 (8.3%) | 19 (8.8%) | 14 (7.7%) | χ2 = 0.160 | 0.689 | |
Antibiotic | 6 (1.5%) | 1 (0.5%) | 5 (2.7%) | χ2 = 3.467 | FEp = 0.098 | |
Anti-inflammatory | 5 (1.3%) | 0 (0%) | 5 (2.7%) | χ2 = 6.004 | FEp = 0.019 * | |
Immunosuppressive | 2 (0.5%) | 0 (0%) | 2 (1.1%) | χ2 = 2.384 | FEp = 0.209 | |
Blood thinners | 8 (2%) | 8 (3.7%) | 0 (0%) | χ2 = 6.884 | FEp = 0.009 * | |
Previous COVID-19-like symptoms | No | 234 (58.5%) | 119 (54.8%) | 115 (62.8%) | χ2 = 2.619 | 0.106 |
Yes | 166 (41.5%) | 98 (45.2%) | 68 (37.2%) | |||
IgG | Negative | 231 (57.8%) | 141 (65%) | 90 (49.2%) | χ2 = 10.153 * | 0.001 * |
Positive | 169 (42.3%) | 76 (35%) | 93 (50.8%) | |||
Contact with a person having a positive SARS-CoV-2-RNA PCR test | No | 238 (59.5%) | 100 (46.1%) | 138 (75.4%) | χ2 = 35.433 * | <0.001 * |
Yes | 162 (40.5%) | 117 (53.9%) | 45 (24.6%) | |||
Contact with a person suffering from COVID-19-like symptoms without or with negative RT-PCR results | No | 230 (57.5%) | 92 (42.4%) | 138 (75.4%) | χ2 = 44.277 * | <0.001 * |
Yes | 170 (42.5%) | 125 (57.6%) | 45 (24.6%) | |||
Vaccination | No | 225 (56.2%) | 138 (63.6%) | 87 (47.5%) | χ2 = 10.397 * | 0.001* |
Yes | 175 (43.8%) | 79 (36.4%) | 96 (52.5%) | |||
AstraZeneca | 96 (24%) | 54 (24.9%) | 42 (23%) | χ2 = 0.204 | 0.652 | |
Pfizer | 79 (19.8%) | 25 (11.5%) | 54 (29.5%) | χ2 = 20.266 * | <0.001 * | |
Doses of vaccines | No dose | 225 (56.3%) | 138 (63.6%) | 87 (47.5%) | χ2 = 26.625 | <0.001 * |
One dose only | 88 (22%) | 53 (24.4%) | 35 (19.1%) | |||
Two doses | 87 (21.8%) | 26 (12%) | 61 (33.3%) | |||
Interval between the date of first vaccine dose and date of Ig testing (days) | n.≠ (Mean ± SD.) | 175 (83.8 ± 73.7) | 79 (61.9 ± 70.3) | 96 (101.8 ± 71.9) | U = 2429.50 | <0.001 * |
Median (Min.–Max.) | 42 (0–251) | 27 (0–251) | 99.5 (5–241) | |||
Interval between the date of second vaccine dose and date of Ig testing (days) | n.≠ (Mean ± SD.) | 87 (77.3 ± 57.9) | 26 (78.3 ± 51.1) | 61 (76.9 ± 60.9) | U = 771.0 | 0.838 |
Median (Min.–Max.) | 71 (1–194) | 87 (2–150) | 62 (1–194) | |||
Interval between the date of last vaccine dose and date of Ig testing (days) | n.≠ (Mean ± SD.) | 175 (54.8 ± 54.3) | 79 (43.2 ± 44.1) | 96 (64.4 ± 59.9) | U = 2951.50 | 0.012 * |
Median (Min.–Max.) | 29 (0–241) | 23 (0–182) | 32.5 (1–241) |
Total (n = 400) | IgG | Test of Sig. | p | |||
---|---|---|---|---|---|---|
Negative n = 231 (57.7%) | Positive n = 169 (42.3%) | |||||
Age (years) | Mean ± SD. | 34.5 ± 13.5 | 33.4 ± 11.7 | 36.1 ± 15.5 | U = 18148 | 0.229 |
Median (Min.–Max.) | 35.5 (7–82) | 34 (7–60) | 39 (10–82) | |||
˂20 | 61 (15.3%) | 33 (14.3%) | 28 (16.6%) | χ2 = 8.842 | 0.065 | |
20-29 | 91 (22.8%) | 60 (26%) | 31 (18.3%) | |||
30-39 | 78 (19.5%) | 51 (22.1%) | 27 (16%) | |||
40-49 | 125 (31.3%) | 67 (29%) | 58 (34.3%) | |||
≥50 | 45 (11.3%) | 20 (8.7%) | 25 (14.8%) | |||
Gender | Male | 311 (77.8%) | 173 (74.9%) | 138 (81.7%) | χ2 = 2.582 | 0.108 |
Female | 89 (22.3%) | 58 (25.1%) | 31 (18.3%) | |||
Education | Illiterate | 74 (18.5%) | 43 (18.6%) | 31 (18.3%) | χ2 = 0.819 | 0.845 |
Student | 134 (33.5%) | 74 (32%) | 60 (35.5%) | |||
Bachelor | 109 (27.3%) | 63 (27.3%) | 46 (27.2%) | |||
Postgraduate study | 83 (20.8%) | 51 (22.1%) | 32 (18.9%) | |||
Occupation | Medical/Allied heath student | 19 (4.8%) | 9 (3.9%) | 10 (5.9%) | χ2 = 1.238 | 0.538 |
Healthcare Workers | 62 (15.5%) | 34 (14.7%) | 28 (16.6%) | |||
Others | 319 (79.8%) | 188 (81.4%) | 131 (77.5%) | |||
Height (cm) | Mean ± SD. | 172.3 ± 9.61 | 170.2 ± 9.1 | 175.1 ± 9.6 | U = 12133.0 * | <0.001 * |
Median (Min.–Max.) | 174 (90–193) | 172 (90–190) | 177 (135–193) | |||
Weight (kg) | Mean ± SD. | 78.5 ± 13.1 | 76.3 ± 12.4 | 81.5 ± 13.5 | t = 3.997 * | <0.001 * |
Median (Min.–Max.) | 80 (21–120) | 79 (21–120) | 80 (38–120) | |||
Lifestyle | Smoking | 68 (17%) | 24 (10.4%) | 44 (26%) | χ2 = 16.932 * | <0.001 * |
Physical activity | 177 (44.3%) | 98 (42.4%) | 79 (46.7%) | χ2 = 0.739 | 0.390 | |
Healthy diet | 204 (51%) | 113 (48.9%) | 91 (53.8%) | χ2 = 0.949 | 0.330 | |
Vitamin supplements | 118 (29.5%) | 48 (20.8%) | 70 (41.4%) | χ2 = 19.993 * | <0.001 * | |
Herbal preferences | 2 (0.5%) | 1 (0.4%) | 1 (0.6%) | χ2 = 0.049 | FEp = 1.000 | |
Comorbidities | Hypertension | 46 (11.5%) | 9 (3.9%) | 37 (21.9%) | χ2 = 31.061 * | <0.001 * |
Diabetes Type 2 | 29 (7.3%) | 7 (3%) | 22 (13%) | χ2 = 14.478 * | <0.001 * | |
Diabetes Type 1 | 3 (0.8%) | 1 (0.4%) | 2 (1.2%) | χ2 = 0.739 | FEp = 0.576 | |
CVD | 12 (3%) | 1 (0.4%) | 11 (6.5%) | χ2 = 12.382 * | <0.001 * | |
Kidney | 3 (0.8%) | 1 (0.4%) | 2 (1.2%) | χ2 = 0.739 | FEp = 0.576 | |
GERD | 23 (5.8%) | 10 (4.3%) | 13 (7.7%) | χ2 = 2.037 | 0.153 | |
Autoimmune | 2 (0.5%) | 1 (0.4%) | 1 (0.6%) | χ2 = 0.049 | FEp = 1.000 | |
Chronic inflammatory | 5 (1.3%) | 0 (0%) | 5 (3%) | χ2 = 6.921 | FEp = 0.013 * | |
Chronic respiratory | 19 (4.8%) | 6 (3.6%) | 13 (5.6%) | χ2 = 0.931 | 0.335 | |
Type of the current medications | Antihypertensive | 41 (10.3%) | 6 (2.6%) | 35 (20.7%) | χ2 = 34.805 | <0.001 * |
Anti-diabetic | 33 (8.3%) | 8 (3.5%) | 25 (14.8%) | χ2 = 16.551 | <0.001 * | |
Antibiotic | 6 (1.5%) | 2 (0.9%) | 4 (2.4%) | χ2 = 1.488 | FEp = 0.246 | |
Anti-inflammatory | 5 (1.3%) | 3 (1.3%) | 2 (1.2%) | χ2 = 0.011 | FEp = 1.000 | |
Immunosuppressive | 2 (0.5%) | 0 (0%) | 2 (1.2%) | χ2 = 2.747 | FEp = 0.178 | |
Blood thinners | 8 (2%) | 0 (0%) | 8 (4.7%) | χ2 = 11.158 | FEp = 0.001 * | |
Previous COVID-19-like symptoms | No | 234 (58.5%) | 174 (75.3%) | 60 (35.5%) | χ2 = 63.749 * | <0.001 * |
Yes | 166 (41.5%) | 57 (24.7%) | 109 (64.5%) | |||
IgM | Negative | 217 (54.3%) | 141 (61%) | 76 (45%) | χ2 = 10.153* | 0.001 * |
Positive | 183 (45.8%) | 90 (39%) | 93 (55%) | |||
Contact with a person having a positive SARS-CoV-2-RNA PCR test | No | 238 (59.5%) | 164 (71%) | 74 (43.8%) | χ2 = 29.983 * | <0.001* |
Yes | 162 (40.5%) | 67 (29%) | 95 (56.2%) | |||
Contact with a person suffering from COVID-19-like symptoms without or with negative RT-PCR results | No | 230 (57.5%) | 157 (68%) | 73 (43.2%) | χ2 = 24.504 * | <0.001 * |
Yes | 170 (42.5%) | 74 (32%) | 96 (56.8%) | |||
Vaccination | No | 225 (56.2%) | 178 (77.1%) | 47 (27.8%) | χ2 = 96.177 * | <0.001 * |
Yes | 175 (43.8%) | 53 (22.9%) | 122 (72.2%) | |||
AstraZeneca | 96 (24%) | 32 (13.9%) | 64 (37.9%) | χ2 = 30.864 * | <0.001 * | |
Pfizer | 79 (19.8%) | 21 (9.1%) | 58 (34.3%) | χ2 = 39.193 * | <0.001 * | |
Doses of vaccines | No dose | 225 (56.3%) | 178 (77.1%) | 47 (27.8%) | χ2 = 112.870 * | <0.001 * |
One dose only | 88 (22%) | 40 (17.3%) | 48 (28.4%) | |||
Two doses | 87 (21.8%) | 13 (5.6%) | 74 (43.8%) | |||
Interval between the date of first vaccine dose and date of Ig testing (days) | n.≠ (Mean ± SD.) | 175 (83.8 ± 73.7) | 53 (35.3 ± 39.2) | 122 (104.8 ± 75.4) | U = 1480.5 * | <0.001 * |
Median (Min.–Max.) | 42 (0–251) | 24 (0–200) | 107.5 (0–251) | |||
Interval between the date of second vaccine dose and date of Ig testing (days) | n.≠ (Mean ± SD.) | 87 (77.3 ± 57.9) | 13 (40.9 ± 51.7) | 74 (83.7 ± 56.8) | U = 249.50 * | 0.006 * |
Median (Min.–Max.) | 71 (1–194) | 23 (2–168) | 82.5 (1–194) | |||
Interval between the date of last vaccine dose and date of Ig testing (days) | n.≠ (Mean ± SD.) | 175 (54.8 ± 54.3) | 53 (27.9 ± 32.8) | 122 (66.5 ± 57.6) | U = 1842.50 | <0.001 * |
Median (Min.–Max.) | 29 (0–241) | 21 (0–168) | 40 (0–241) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, A.E.; Alduraywish, A.A.; Almaeen, A.H.; El-Metwally, T.H.; Alayyaf, M.; Mallick, A.; Abouelkheir, M. High Seroprevalence of Anti-SARS-CoV-2 IgM/IgG among Inhabitants of Sakaka City, Aljouf, Saudi Arabia. Vaccines 2023, 11, 26. https://doi.org/10.3390/vaccines11010026
Taha AE, Alduraywish AA, Almaeen AH, El-Metwally TH, Alayyaf M, Mallick A, Abouelkheir M. High Seroprevalence of Anti-SARS-CoV-2 IgM/IgG among Inhabitants of Sakaka City, Aljouf, Saudi Arabia. Vaccines. 2023; 11(1):26. https://doi.org/10.3390/vaccines11010026
Chicago/Turabian StyleTaha, Ahmed E., Abdulrahman A. Alduraywish, Abdulrahman H. Almaeen, Tarek H. El-Metwally, Mohammad Alayyaf, Ayesha Mallick, and Mohamed Abouelkheir. 2023. "High Seroprevalence of Anti-SARS-CoV-2 IgM/IgG among Inhabitants of Sakaka City, Aljouf, Saudi Arabia" Vaccines 11, no. 1: 26. https://doi.org/10.3390/vaccines11010026
APA StyleTaha, A. E., Alduraywish, A. A., Almaeen, A. H., El-Metwally, T. H., Alayyaf, M., Mallick, A., & Abouelkheir, M. (2023). High Seroprevalence of Anti-SARS-CoV-2 IgM/IgG among Inhabitants of Sakaka City, Aljouf, Saudi Arabia. Vaccines, 11(1), 26. https://doi.org/10.3390/vaccines11010026