Evaluating Johnson and Johnson COVID-19 Vaccination Outcomes in a Low-Income Hispanic Population
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Study Design
2.2. Protocol and Study Population
2.3. Methods
3. Results
3.1. All Visits (60 Visits Total; 39 Individual Patients)
3.2. Visits Less Than 30 Days after Vaccination (N = 15 Visits)
3.3. Visits 30–60 Days after Vaccination (N = 6)
3.4. Visits 60–90 Days after Vaccination (N = 9)
3.5. Visits 90–120 Days after Vaccination (N = 14)
3.6. Visits More Than 120 Days after Vaccination (N = 16)
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, W.; Zhang, Z.J.; Li, W. Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic. Int. J. Inf. Manag. 2021, 57, 102287. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin. Infect. Dis. 2020, 71, 778–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, L.; Ye, F.; Cheng, M.L.; Feng, Y.; Deng, Y.Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020, 52, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.T.; McConnell, K.; Burow, P.B.; Pofahl, K.; Merdjanoff, A.A.; Farrell, J. Impacts of the COVID-19 pandemic on rural America. Proc. Natl. Acad. Sci. USA 2021, 118, 2019378118. [Google Scholar] [CrossRef] [PubMed]
- Ravens-Sieberer, U.; Kaman, A.; Erhart, M.; Devine, J.; Schlack, R.; Otto, C. Impact of the COVID-19 pandemic on quality of life and mental health in children and adolescents in Germany. Eur. Child Adolesc. Psychiatry 2022, 31, 879–889. [Google Scholar] [CrossRef]
- Skegg, D.; Gluckman, P.; Boulton, G.; Hackmann, H.; Karim, S.S.A.; Piot, P.; Woopen, C. Future scenarios for the COVID-19 pandemic. Lancet 2021, 397, 777–778. [Google Scholar] [CrossRef]
- Our World in Data. Cumulative Confirmed COVID-19 Deaths. Available online: https://ourworldindata.org/covid-deaths (accessed on 22 November 2022).
- Adam, D. The pandemic’s true death toll: Millions more than official counts. Nature 2022, 601, 312–315. [Google Scholar] [CrossRef]
- Viglione, G. How many people has the coronavirus killed? Nature 2020, 585, 22–24. [Google Scholar] [CrossRef]
- Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
- Our World in Data. Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 22 November 2022).
- Holder, J. Tracking Coronavirus Vaccinations Around the World. Available online: https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html (accessed on 14 March 2022).
- Randall, T.; Sam, C.; Tartar, A.; Murray, P.; Cannon, C. More than 10.9 Billion Shots Given: COVID-19 Tracker. Available online: https://www.bloomberg.com/graphics/covid-vaccine-tracker-global-distribution/ (accessed on 14 March 2022).
- Katzourakis, A. COVID-19: Endemic doesn’t mean harmless. Nature 2022, 601, 485. [Google Scholar] [CrossRef]
- Banerjee, A. COVID-19–Receding Second Wave: Concerns about Pediatric Third Wave. Med. J. Dr. DY Patil Vidyapeeth 2021, 14, 477. [Google Scholar] [CrossRef]
- Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; García-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature 2021, 596, 495–504. [Google Scholar] [CrossRef]
- Powell, A. Omicron Optimism and Shift from Pandemic to Endemic. Available online: https://news.harvard.edu/gazette/story/2022/01/optimism-on-omicron-shift-from-pandemic-to-endemic/ (accessed on 21 March 2022).
- Herrero, L.; Madzokere, E. COVID-19 will likely shift from pandemic to endemic—But what does that mean. In Proceedings of the World Economic Forum, Davos, Switzerland, 26–29 January 2021. [Google Scholar]
- Stokel-Walker, C. COVID restrictions are lifting-what scientists think. Nature 2022, 603, 563. [Google Scholar] [CrossRef]
- TIME. The Omicron Wave Is Receding but the Pandemic Is Far from Over. Available online: https://time.com/6148270/covid-19-pandemic-far-from-over/ (accessed on 14 March 2022).
- Charters, E.; Heitman, K. How epidemics end. Centaurus 2021, 63, 210–224. [Google Scholar] [CrossRef]
- Hachmann, N.P.; Miller, J.; Collier, A.-R.Y.; Ventura, J.D.; Yu, J.; Rowe, M.; Bondzie, E.A.; Powers, O.; Surve, N.; Hall, K. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA. 2.12. 1, BA. 4, and BA. 5. New. Engl. J. Med. 2022, 387, 86–88. [Google Scholar] [CrossRef]
- Bollinger, M.D.R.; Ray, M.D.S.; Maragakis, M.D.L. COVID Variants: What You Should Know. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-strain-of-coronavirus-what-you-should-know (accessed on 5 July 2022).
- World Health Organization. Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process. Available online: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_26May2022.pdf (accessed on 5 July 2022).
- World Health Organization. COVID-19 Advice for the Public: Getting Vaccinated. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice (accessed on 22 November 2022).
- CDC. COVID-19 Vaccines Are Effective. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness/index.html (accessed on 28 March 2022).
- Thompson, M.G.; Natarajan, K.; Irving, S.A.; Rowley, E.A.; Griggs, E.P.; Gaglani, M.; Klein, N.P.; Grannis, S.J.; DeSilva, M.B.; Stenehjem, E. Effectiveness of a third dose of mRNA vaccines against COVID-19–associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance—VISION Network, 10 States, August 2021–January 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 139–145. [Google Scholar]
- Lin, D.-Y.; Gu, Y.; Wheeler, B.; Young, H.; Holloway, S.; Sunny, S.-K.; Moore, Z.; Zeng, D. Effectiveness of COVID-19 vaccines over a 9-month period in North Carolina. N. Engl. J. Med. 2022, 386, 933–941. [Google Scholar] [CrossRef]
- Zheutlin, A.; Ott, M.; Sun, R.; Zemlianskaia, N.; Meyer, C.S.; Rubel, M.; Hayden, J.; Neri, B.; Kamath, T.; Khan, N.; et al. Durability of Protection Post–Primary COVID-19 Vaccination in the United States. Vaccines 2022, 10, 1458. [Google Scholar] [CrossRef]
- Havervall, S.; Jernbom Falk, A.; Klingström, J.; Ng, H.; Greilert-Norin, N.; Gabrielsson, L.; Salomonsson, A.-C.; Isaksson, E.; Rudberg, A.-S.; Hellström, C. SARS-CoV-2 induces a durable and antigen specific humoral immunity after asymptomatic to mild COVID-19 infection. PLoS ONE 2022, 17, e0262169. [Google Scholar] [CrossRef]
- Ferdinands, J.M.; Rao, S.; Dixon, B.E.; Mitchell, P.K.; DeSilva, M.B.; Irving, S.A.; Lewis, N.; Natarajan, K.; Stenehjem, E.; Grannis, S.J. Waning 2-Dose and 3-Dose effectiveness of mRNA vaccines against COVID-19–associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance—VISION Network, 10 States, August 2021–January 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 255. [Google Scholar]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X. BA. 2.12. 1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Teijaro, J.R.; Farber, D.L. COVID-19 vaccines: Modes of immune activation and future challenges. Nat. Rev. Immunol. 2021, 21, 195–197. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. SARS-CoV-2 T Cell Responses Elicited by COVID-19 Vaccines or Infection Are Expected to Remain Robust against Omicron. Viruses 2022, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Ladyzhets, B. What to Know About the Newest, Most Contagious Omicron Subvariants. Time, 5 July 2022. [Google Scholar]
- Zhang, N.; Li, K.; Liu, Z.; Nandakumar, K.S.; Jiang, S. A Perspective on the Roles of Adjuvants in Developing Highly Potent COVID-19 Vaccines. Viruses 2022, 14, 387. [Google Scholar] [CrossRef] [PubMed]
- Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef]
- CDC. Variant Proportions. Available online: https://covid.cdc.gov/covid-data-tracker/#variant-proportions (accessed on 21 March 2022).
- Alivio Medical Center. Available online: https://www.aliviomedicalcenter.org/# (accessed on 21 March 2022).
- Alobuia, W.M.; Dalva-Baird, N.P.; Forrester, J.D.; Bendavid, E.; Bhattacharya, J.; Kebebew, E. Racial disparities in knowledge, attitudes and practices related to COVID-19 in the USA. J. Public Health (Oxf.) 2020, 42, 470–478. [Google Scholar] [CrossRef]
- Rawaf, S.; Allen, L.N.; Stigler, F.L.; Kringos, D.; Quezada Yamamoto, H.; van Weel, C.; Global Forum on Universal Health, C.; Primary Health, C. Lessons on the COVID-19 pandemic, for and by primary care professionals worldwide. Eur. J. Gen. Pract. 2020, 26, 129–133. [Google Scholar] [CrossRef]
- D’Souza, R.S.; Wolfe, I. COVID-19 vaccines in high-risk ethnic groups. Lancet 2021, 397, 1348. [Google Scholar] [CrossRef]
- Despres, C. Update: Coronavirus Case Rates and Death Rates for Latinos in the United States. Available online: https://salud-america.org/coronavirus-case-rates-and-death-rates-for-latinos-in-the-united-states/ (accessed on 21 March 2022).
- Yoch, M. Examining the impact: COVID-19 and the Hispanic Community. Available online: https://www.healthdata.org/acting-data/examining-impact-covid-19-and-hispanic-community#:~:text=According%20to%20an%20analysis%20by,higher%20among%20younger%20age%20demographics (accessed on 21 March 2022).
- CDC. Risk for COVID-19 Infection, Hospitalization, and Death By Race/Ethnicity. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html (accessed on 21 March 2022).
- CDC. Demographic Trends of COVID-19 Cases and Deaths in the US Reported to CDC. Available online: https://covid.cdc.gov/covid-data-tracker/#demographics (accessed on 21 March 2022).
- Macias Gil, R.; Marcelin, J.R.; Zuniga-Blanco, B.; Marquez, C.; Mathew, T.; Piggott, D.A. COVID-19 pandemic: Disparate health impact on the Hispanic/Latinx population in the United States. J. Infect. Dis. 2020, 222, 1592–1595. [Google Scholar] [CrossRef]
- Owens, C.; Pertuz, G.; Sanchez, J.; Ayala, J.; Pimentel, L.; Lamb, C.; Lopez Mayo, Y.; Lopez Yunez, A. The COVID-19 Pandemic in a Hispanic population: A primary care perspective. J. Am. Board Fam. Med. 2022, 35, 686–694. [Google Scholar] [CrossRef]
- Ochola, L.; Ogongo, P.; Mungai, S.; Gitaka, J.; Suliman, S. Performance Evaluation of Lateral Flow Assays for Coronavirus Disease-19 Serology. Clin. Lab. Med. 2022, 42, 31–56. [Google Scholar] [CrossRef]
- Ransegnola, B.; Jin, D.; Lamb, C.C.; Shaz, B.H.; Hillyer, C.D.; Luchsinger, L.L. COVID19 antibody detection using lateral flow assay tests in a cohort of convalescent plasma donors. BMC Res. Notes 2020, 13, 372. [Google Scholar]
- Polinski, J.M.; Weckstein, A.R.; Batech, M.; Kabelac, C.; Kamath, T.; Harvey, R.; Jain, S.; Rassen, J.A.; Khan, N.; Schneeweiss, S. Durability of the single-dose Ad26. COV2. S vaccine in the prevention of COVID-19 infections and hospitalizations in the US before and during the Delta variant surge. JAMA Netw. Open 2022, 5, e222959. [Google Scholar] [CrossRef]
- JNJ. Johnson & Johnson’s Janssen COVID-19 Vaccine Overview and Safety; JNJ: New Brunswick, NJ, USA, 2022. [Google Scholar]
- Mandavilli, A. As Virus Data Mounts, the J.&J. Vaccine Holds Its Own. Available online: https://www.nytimes.com/2022/03/15/health/covid-johnson-vaccine.html (accessed on 21 March 2022).
- Our World in Data. COVID-19 Vaccine Doses Administered by Manufacturer, European Union. Available online: https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer?country=~European+Union (accessed on 21 March 2022).
- Cohn, B.A.; Cirillo, P.M.; Murphy, C.C.; Krigbaum, N.Y.; Wallace, A.W. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science 2022, 375, 331–336. [Google Scholar] [CrossRef]
- Janssen Vaccines & Prevention BV. A Randomized, Double-Blind, Placebo-Controlled Phase 3 Study to Assess the Efficacy and Safety of Ad26. COV2. S for the Prevention of SARS-CoV-2-Mediated COVID-19 in Adults Aged 18 Years and Older. Available online: https://www.jnj.com/coronavirus/ensemble-1-study-protocol (accessed on 15 March 2022).
- FDA. In Vitro Diagnostics EUAs—Serology and Other Adaptive Immune Response Tests for SARS-CoV-2. Available online: https://www.fda.gov/medical-devices/coronavirus-disease-2019-COVID-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-serology-and-other-adaptive-immune-response-tests-sars-cov-2 (accessed on 12 August 2021).
- Haddad, F.; Lamb, C.C.; Kullar, R.; Sakoulas, G. Point-Of-Care Clinical Evaluation of the Clungene® SARS-CoV-2 Virus IgG/IgM 15-Minute Rapid Test Cassette with the Cobas® Roche RT-PCR Platform in Patients with or without COVID-19. LymphoSign J. 2021, 8, 55–63. [Google Scholar] [CrossRef]
- Lamb, C.C.; Haddad, F.; Lopez-Yunez, A.; Carroll, M.; Moncrieffe, J. Expanded Clinical Evaluation of the CLUNGENE® Rapid COVID-19 Antibody Test. J. Clin. Cell Immunol. 2021, 12, 1000620. [Google Scholar]
- Haddad, F. IgG/IgM Antibody Test in Patients Who Have Tested Negative or Positive for COVID-19 with the Standard Method of COVID-19 Testing. Available online: https://clinicaltrials.gov/ct2/show/NCT04402814?cond=clungene&draw=2&rank=1 (accessed on 15 March 2022).
- Lamb, C. COVID-19 diagnostic testing: Lessons learned for innovative product development during a public health emergency J. Commer. Biotechnol. 2020, 25, 52–61. [Google Scholar] [CrossRef]
- Osher, G.; Lamb, C.C.; Ibarra, Y.; Erickson-Samson, D. Observational Study of SARS-CoV-2 Antibody Immune Response in a Cohort of Patients at a North Suburban Chicago, Illinois Physician’s Practice. LymphoSign J. 2020, 7, 104–107. [Google Scholar] [CrossRef]
- FDA. Clungene SARS-CoV-2 VIRUS (COVID-19) IgG/IgM Rapid Test Cassette. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfrl/rl.cfm?lid=660403&lpcd=QKO (accessed on 15 March 2022).
- CLUNGENE. CLUNGENE COVID-19 IgG/IgM Rapid Test Kit EUA Submission # EUA201121; CLUNGENE: Chullora, Australia, 2020. [Google Scholar]
- Shay, D.K. Safety monitoring of the Janssen (Johnson & Johnson) COVID-19 vaccine—United States, March–April 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 680–684. [Google Scholar]
- Xu, S.; Huang, R.; Sy, L.S.; Glenn, S.C.; Ryan, D.S.; Morrissette, K.; Shay, D.K.; Vazquez-Benitez, G.; Glanz, J.M.; Klein, N.P. COVID-19 vaccination and Non–COVID-19 mortality risk—Seven integrated health care organizations, United States, December 14, 2020–July 31, 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1520. [Google Scholar] [CrossRef]
- den Hartog, G.; Vos, E.R.; van den Hoogen, L.L.; van Boven, M.; Schepp, R.M.; Smits, G.; van Vliet, J.; Woudstra, L.; Wijmenga-Monsuur, A.J.; van Hagen, C.C. Persistence of Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 in Relation to Symptoms in a Nationwide Prospective Study. Clin. Infect. Dis. 2021, 73, 2155–2162. [Google Scholar] [CrossRef]
- Dan, J.; Mateus, J.; Kato, Y.; Hastie, K.; Yu, E.; Faliti, C. Immunological Memory to Sars-CoV-2 Assessed for up to 8. Months after Infection. Science 2021, 371, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Gaebler, C.; Wang, Z.; Lorenzi, J.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y. Evolution of antibody immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Rodda, L.B.; Netland, J.; Shehata, L.; Pruner, K.B.; Morawski, P.M.; Thouvenel, C.; Takehara, K.K.; Eggenberger, J.; Hemann, E.A.; Waterman, H.R.; et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 2021, 184, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Seow, J. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
ID Number (N = 74) | Vaccination Date (mm/dd/yyyy) | 1st Antibody Result | 2nd Antibody Result |
---|---|---|---|
1 | 6/8/2021 | Positive | Positive |
4 | 6/8/2021 | Negative | Positive |
5 | 6/8/2021 | Positive | Positive |
6 | 6/9/2021 | Negative | Negative |
7 | 6/9/2021 | Positive | Positive |
8 | 6/9/2021 | Positive | Positive |
9 | 6/9/2021 | Positive | Positive |
12 | 6/10/2021 | Positive | Positive |
14 | 6/10/2021 | Positive | Positive |
17 | 6/15/2021 | Negative | Negative |
23 | 6/18/2021 | Positive | Positive |
24 | 6/18/2021 | Positive | Positive |
25 | 6/18/2021 | Positive | Positive |
31 | 6/21/2021 | Positive | Positive |
34 | 6/21/2021 | Negative | Negative |
37 | 6/24/2021 | Negative | Negative |
39 | 6/26/2021 | Negative | Negative |
46 | 6/29/2021 | Positive | Positive |
54 | 7/12/2021 | Positive | Positive |
59 | 7/23/2021 | Positive | Positive |
67 | 8/28/2021 | Positive | Positive |
10 | 6/9/2021 | Negative | |
16 | 6/15/2021 | Positive | |
38 | 6/26/2021 | Positive | |
40 | 6/26/2021 | Positive | |
65 | 8/21/2021 | Positive | |
66 | 8/21/2021 | Positive | |
72 | 10/25/2021 | Positive | |
73 | 10/25/2021 | Negative | |
74 | 10/25/2021 | Positive | |
11 | 6/9/2021 | Negative | |
18 | 6/15/2021 | Negative | |
21 | 6/17/2021 | Negative | |
22 | 6/17/2021 | Negative | |
29 | 6/21/2021 | Negative | |
33 | 6/21/2021 | Negative | |
36 | 6/22/2021 | Negative | |
43 | 6/28/2021 | Negative | |
45 | 6/29/2021 | Positive | |
15 | 6/11/2021 | ||
47 | 6/29/2021 | ||
48 | 6/29/2021 | ||
53 | 7/12/2021 | ||
55 | 7/13/2021 | ||
56 | 7/14/2021 | ||
57 | 7/16/2021 | ||
61 | 7/28/2021 | ||
63 | 8/3/2021 | ||
64 | 8/3/2021 | ||
68 | 8/30/2021 | ||
69 | 8/30/2021 | ||
70 | 8/30/2021 | ||
71 | 8/30/2021 | ||
2 * | 6/8/2021 | ||
3 * | 6/8/2021 | ||
13 * | 6/10/2021 | ||
19 * | 6/15/2021 | ||
20 * | 6/15/2021 | ||
26 * | 6/19/2021 | ||
27 * | 6/19/2021 | ||
28 * | 6/19/2021 | ||
30 * | 6/21/2021 | ||
32 * | 6/21/2021 | ||
35 * | 6/22/2021 | ||
41 * | 6/26/2021 | ||
42 * | 6/28/2021 | ||
44 * | 6/28/2021 | ||
49 * | 7/6/2021 | ||
50 * | 7/6/2021 | ||
51 * | 7/6/2021 | ||
52 * | 7/6/2021 | ||
58 * | 7/16/2021 | ||
60 * | Not vaccinated | ||
62 * | Not vaccinated |
Days Following Vaccination | Negative | Positive | Total |
---|---|---|---|
<30 | 4 (27%) | 11 (73%) | 15 |
30–60 | 1 (17%) | 5 (83%) | 6 |
60–90 | 3 (33%) | 6 (67%) | 9 |
90–120 | 6 (43%) | 8 (57%) | 14 |
>120 | 7 (44%) | 9 (56%) | 16 |
Variables Correlated to Antibody Response | All Follow-Up Visits | Follow-Up Visit #1 | Follow-Up Visit #2 | <30 Days | 30–60 Days | 60–90 Days | 90–120 Days | >120 Days |
---|---|---|---|---|---|---|---|---|
* Sample Size (N) | 60 ** | 30 | 30 | 15 | 6 | 9 | 14 | 16 |
Days after Vaccination | −0.22 | −0.03 | −0.24 | 0.21 | −0.31 | −0.23 | −0.44 | −0.37 |
Adverse events: | ||||||||
Pain at injection site | 0.05 | 0.03 | −0.21 | 0.12 | 0.32 | −0.50 | −0.29 | |
Headache | 0.05 | −0.02 | −0.12 | 0.25 | ||||
Fatigue | −0.23 | −0.49 | −0.85 | −1.00 | 0.38 | |||
Muscle aches | −0.02 | −0.15 | −0.34 | 0.25 | ||||
Nausea | 0.01 | −0.05 | −0.44 | 0.20 | 0.25 | |||
Dizziness | 0.01 | −0.05 | −0.21 | 0.20 | ||||
Fever | −0.14 | −0.14 | −0.21 | |||||
Duration of symptoms (days) | 0.03 | −0.09 | −0.21 | −0.26 | 0.32 | −0.29 | ||
Demographic data: | ||||||||
Gender (0 = F, 1 = M) | −0.15 | −0.07 | −0.22 | −0.34 | 0.45 | 0.19 | −0.29 | −0.16 |
Age | −0.12 | −0.13 | −0.12 | −0.40 | −0.07 | 0.15 | −0.24 | 0.01 |
Diabetes | −0.08 | −0.05 | −0.07 | −0.21 | 0.20 | 0.24 | −0.22 | |
Hypertension | −0.08 | −0.21 | 0.03 | −0.45 | 0.20 | −0.06 | 0.10 | |
Hyperlipidemia | −0.10 | −0.14 | −0.05 | −0.21 | 0.24 | −0.22 | ||
Rheumatological diseases | −0.08 | −0.14 | −0.04 | 0.20 | −0.50 | −0.05 | ||
Height | −0.14 | −0.04 | −0.24 | −0.35 | −0.15 | 0.01 | −0.32 | −0.28 |
Weight | −0.13 | −0.05 | −0.19 | −0.55 | 0.34 | −0.01 | −0.27 | −0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamb, C.; Owens, C.; Gamboa, W.; Lopez-Yunez, A. Evaluating Johnson and Johnson COVID-19 Vaccination Outcomes in a Low-Income Hispanic Population. Vaccines 2023, 11, 148. https://doi.org/10.3390/vaccines11010148
Lamb C, Owens C, Gamboa W, Lopez-Yunez A. Evaluating Johnson and Johnson COVID-19 Vaccination Outcomes in a Low-Income Hispanic Population. Vaccines. 2023; 11(1):148. https://doi.org/10.3390/vaccines11010148
Chicago/Turabian StyleLamb, Christopher, Christopher Owens, Wendy Gamboa, and Alfredo Lopez-Yunez. 2023. "Evaluating Johnson and Johnson COVID-19 Vaccination Outcomes in a Low-Income Hispanic Population" Vaccines 11, no. 1: 148. https://doi.org/10.3390/vaccines11010148