Reduction in Rubella Virus Active Cases among Children and Adolescents after Rubella Vaccine Implementation in Tanzania: A Call for Sustained High Vaccination Coverage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamkar, R.; Jalilvand, S.; Mokhtari-Azad, T.; Nouri Jelyani, K.; Dahi-Far, H.; Soleimanjahi, H.; Nategh, R. Assessment of IgM enzyme immunoassay and IgG avidity assay for distinguishing between primary and secondary immune response to rubella vaccine. J. Virol. Methods 2005, 130, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Junaid, S.A.; Akpan, K.J.; Olabode, A.O. Sero-survey of rubella IgM antibodies among children in Jos, Nigeria. Virol. J. 2011, 8, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, J.M.; Castillo-Solorzano, C.; Spika, J.S.; Icenogle, J.; Glasser, J.W.; Gay, N.J.; Andrus, J.; Arvin, A.M. Reducing the global burden of congenital rubella syndrome: Report of the World Health Organization Steering Committee on Research Related to Measles and Rubella Vaccines and Vaccination, June 2004. J. Infect. Dis. 2005, 192, 1890–1897. [Google Scholar] [CrossRef] [Green Version]
- Mirambo, M.M.; Aboud, S.; Groß, U.; Majigo, M.; Mushi, M.F.; Mshana, S.E. Rubella seromarkers and determinants of infection among tanzanian children and adolescents in prevaccination Era: Are we in the right track? Int. J. Prevent. Med. 2017, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Mirambo, M.M.; Majigo, M.; Scana, S.D.; Mushi, M.F.; Aboud, S.; Groß, U.; Kidenya, B.R.; Mshana, S.E. Rubella natural immunity among adolescent girls in Tanzania: The need to vaccinate child bearing aged women. BMC Women’s Health 2018, 18, 3. [Google Scholar] [CrossRef] [Green Version]
- Kombich, J.J.; Muchai, P.C.; Tukei, P.; Borus, P.K. Rubella seroprevalence among primary and pre-primary school pupils at Moi’s Bridge location, Uasin Gishu District, Kenya. BMC Public Health 2009, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Mirambo, M.M.; Aboud, S.; Majigo, M.; Groβ, U.; Mshana, S.E. Adverse pregnancy outcomes among pregnant women with acute Rubella infections in Mwanza city, Tanzania. Int. J. Infect. Dis. 2019, 78, 72–77. [Google Scholar] [CrossRef] [Green Version]
- WHO. Position paper on rubella vaccines. In Weekly Epidemiological Record; WHO: Geneva, Switzerland, 2011; Volume 75, pp. 161–172. Available online: https://www.who.int/publications/i/item/WER8629 (accessed on 22 June 2022).
- Mirambo, M.M.; Aboud, S.; Mushi, M.F.; Seugendo, M.; Majigo, M.; Groß, U.; Mshana, S.E. Serological evidence of acute rubella infection among under-fives in Mwanza: A threat to increasing rates of congenital rubella syndrome in Tanzania. Italian J. Pediatr. 2016, 42, 1. [Google Scholar] [CrossRef] [Green Version]
- Gershon, A.A.; Hotez, P.J.; Katz, S. Infectious Diseases of Children, 11th ed.; Mosby: Maryland Heights, MO, USA, 2004. [Google Scholar]
- Peckham, C.; Tookey, P.; Hardelid, P. Rubella epidemiology: Surveillance to monitor and evaluate congenital rubella prevention strategies. Rubella Viruses 2006, 15, 95. [Google Scholar]
- Gregg, N. Congenital cataract following German measles in the mother, 1941. Epidemiol. Infect. 1991, 107, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Grillner, L.; Forsgren, M.; Barr, B.; Böttiger, M.; Danielsson, L.; De Verdier, C. Outcome of rubella during pregnancy with special reference to the 17th–24th weeks of gestation. Scand. J. Infect. Dis. 1983, 15, 321–325. [Google Scholar] [CrossRef]
- Horstmann, D.M. Rubella. In Viral Infections of Humans; Springer: Berlin, Germany, 1976; pp. 409–427. [Google Scholar]
- Binnicker, M.; Jespersen, D.; Harring, J. Multiplex detection of IgM and IgG class antibodies to Toxoplasma gondii, rubella virus, and cytomegalovirus using a novel multiplex flow immunoassay. Clin. Vaccine Immunol. 2010, 17, 1734–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katow, S. Rubella virus genome diagnosis during pregnancy and mechanism of congenital rubella. Intervirology 1999, 41, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.; Bhatnagar, S. Antenatal diagnostic problem of congenital rubella. Ind. J. Pediatrics 2010, 77, 450–451. [Google Scholar] [CrossRef]
- Uyar, Y.; Balci, A.; Akcali, A.; Cabar, C. Prevalence of rubella and cytomegalovirus antibodies among pregnant women in northern Turkey. New Microbiol. 2008, 31, 451–455. [Google Scholar] [PubMed]
- Linguissi, L.S.G.; Nagalo, B.M.; Bisseye, C.; Kagoné, T.S.; Sanou, M.; Tao, I.; Benao, V.; Simporé, J.; Koné, B. Seroprevalence of toxoplasmosis and rubella in pregnant women attending antenatal private clinic at Ouagadougou, Burkina Faso. Asian Pac. J. Trop. Med. 2012, 5, 810–813. [Google Scholar] [CrossRef] [Green Version]
- Mwambe, B.; Mirambo, M.M.; Mshana, S.E.; Massinde, A.N.; Kidenya, B.R.; Michael, D.; Morona, D.; Majinge, C.; Groß, U. Sero-positivity rate of rubella and associated factors among pregnant women attending antenatal care in Mwanza, Tanzania. BMC Preg. Childbirth 2014, 14, 95. [Google Scholar] [CrossRef] [Green Version]
- Onakewhor, J.; Chiwuzie, J. Seroprevalence survey of rubella infection in pregnancy at the University of Benin Teaching Hospital, Benin City, Nigeria. Niger. J. Clin. Pract. 2011, 14, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Mirambo, M.M.; Majigo, M.; Aboud, S.; Groß, U.; Mshana, S.E. Serological makers of rubella infection in Africa in the pre vaccination era: A systematic review. BMC Res. Notes 2015, 8, 716. [Google Scholar] [CrossRef] [Green Version]
- Pandolfi, E.; Gesualdo, F.; Rizzo, C.; Bella, A.; Agricola, E.; Mastroiacovo, P.; Tozzi, A. Global seroprevalence of rubella among pregnant and childbearing age women: A meta-analysis. Eur. J. Public Health 2017, 27, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Usonis, V.; Anca, I.; André, F.; Chlibek, R.; Čižman, M.; Ivaskeviciene, I.; Mangarov, A.; Mészner, Z.; Perenovska, P.; Pokorn, M. Rubella revisited: Where are we on the road to disease elimination in Central Europe? Vaccine 2011, 29, 9141–9147. [Google Scholar] [CrossRef] [PubMed]
- Mirambo, M.M.; Matemba, L.; Majigo, M.; Mshana, S.E. Congenital Zika Virus Infection Paradigm: What is in the Wardrobe? A Narrative Review. East Afr. Sci. 2019, 1, 49–56. [Google Scholar] [CrossRef]
- Servey, J.T.; Reamy, B.V.; Hodge, J. Clinical presentations of parvovirus B19 infection. Am. Fam. Phys. 2007, 75, 373–376. [Google Scholar]
- Babigumira, J.B.; Morgan, I.; Levin, A. Health economics of rubella: A systematic review to assess the value of rubella vaccination. BMC Public Health 2013, 13, 406. [Google Scholar] [CrossRef] [Green Version]
- Mondiale de la Santé, O.; WHO. Rubella vaccines: WHO position paper–July 2020–Note de synthèse: Position de l’OMS concernant les vaccins antirubéoleux. In Weekly Epidemiological Record=Relevé Épidémiologique Hebdomadaire; WHO: Geneva, Switzerland, 2020; Volume 95, pp. 306–324. Available online: https://apps.who.int/iris/handle/10665/332952 (accessed on 22 June 2022).
- MCSP. Maternal and Child survival Program. In Immunization MCSP Tanzania Program; USAID; MCSP: Washington, DC, USA, 2019. [Google Scholar]
- Masresha, B.; Shibeshi, M.; Kaiser, R.; Luce, R.; Katsande, R.; Mihigo, R. Congenital rubella syndrome in the African region—Data from sentinel surveillance. J. Immunol. Sci. 2018, 2, 145–149. [Google Scholar] [CrossRef]
- Barreto, J.; Sacramento, I.; Robertson, S.E.; Langa, J.; Gourville, E.; Wolfson, L.; Schoub, B.D. Antenatal rubella serosurvey in Maputo, Mozambique. Trop. Med. Int. Health 2006, 11, 559–564. [Google Scholar] [CrossRef]
- Tahita, M.C.; Hübschen, J.M.; Tarnagda, Z.; Ernest, D.; Charpentier, E.; Kremer, J.R.; Muller, C.P.; Ouedraogo, J.B. Rubella seroprevalence among pregnant women in Burkina Faso. BMC Infect. Dis. 2013, 13, 164. [Google Scholar] [CrossRef] [Green Version]
- Sasita, S.; Urio, S.; Mohamed, S.; Mghamba, J.; Mmbuji, P. Rubella Outbreak in Tanga City, Tanzania. Available online: http://repository.eac.int/bitstream/handle/11671/584/EAIDSNet%20Bulletin%20June-Sept%20Issue%202011.pdf?sequence=1 (accessed on 22 June 2022).
- Kadigi, D.M. A Measles and Rubella Laboratory Based Surveillance Report in Tanzania. Master’s Thesis, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, 2008. [Google Scholar]
- WHO. Surveillance Guide for Vaccine-Preventable Diseases in the WHO South-East Asia Region; WHO: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/handle/10665/277459 (accessed on 20 June 2022).
- WHO. African Regional Guidelines for Measles and Rubella Surveillance; WHO: Geneva, Switzerland, 2015; Available online: https://www.afro.who.int/sites/default/files/2017-06/who-african-regional-measles-and-rubella-surveillance-guidelines_updated-draft-version-april-2015_1.pdf (accessed on 20 June 2022).
- WHO. Annual Status Update on Measles and Rubella Elimination 2018; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- UHSA. Laboratory Confirmed Cases of Measles, Rubella And Mumps; Agency UHS: London, UK, 2021; Volume 16. [Google Scholar]
- WHO/UNICEF. United Republic of Tanzania, Measles Vaccination Coverage; WHO/UNICEF: Geneva, Switzerland, 2021. [Google Scholar]
- Mirambo, M.M.; Hokororo, A.; Mrutu, N.B.; Majigo, M.; Aboud, S.; Groβ, U.; Mshana, S.E. Strategic immunization to control rubella and congenital rubella syndrome in Tanzania. In Policy Brief; Catholic University of Health and Allied Sciences, 2016; pp. 5–7. Available online: https://www.bugando.ac.tz/schools/microbiology/assets/document/MIRAMBO_RUBELLA_PB_2016.pdf (accessed on 27 June 2022).
SN | Age Category (years) | Before | After |
---|---|---|---|
1 | 0–1 | 71/101 (16.8%) | 48/828 (5.8%) |
2 | 1–5 | 169/645 (26.2%) | 103/4222 (2.4%) |
3 | 5–18 | 348/892 (39.1%) | 68/2062 (3.3%) |
p-value | p < 0.01 | p < 0.01 |
SN | Region | Sample Tested | Cases before Vaccination (%) | Sample Tested | Cases after Vaccination (%) | Reduction (%) |
---|---|---|---|---|---|---|
1 | Arusha | 80 | 33 (41.3) | 208 | 6 (2.9) | 93.0 |
2 | Dar es salaam | 111 | 32 (29.8) | 375 | 6 (1.6) | 94.6 |
3 | Dodoma | 102 | 21 (20.6) | 321 | 8 (2.5) | 87.9 |
4 | Geita | 19 | 21 (15.8) | 266 | 8 (3) | 81.0 |
5 | Iringa | 40 | 9 (22.5) | 200 | 1 (0.5) | 97.8 |
6 | Kagera | 68 | 26 (38.2) | 351 | 10 (2.8) | 92.7 |
7 | Katavi | 25 | 6 (24) | 207 | 10 (4.8) | 80.0 |
8 | Kigoma | 77 | 30 (39) | 362 | 9 (2.5) | 93.6 |
9 | Kilimanjaro | 79 | 23 (29.1) | 188 | 7 (3.7) | 87.3 |
10 | Lindi | 54 | 17 (31.5) | 160 | 9 (5.6) | 82.2 |
11 | Manyara | 41 | 19 (46.3) | 194 | 7 (3.6) | 92.2 |
12 | Mara | 55 | 16 (29.1) | 262 | 6 (2.3) | 92.1 |
13 | Mbeya | 120 | 22 (18.3) | 361 | 10 (2.8) | 84.7 |
14 | Morogoro | 35 | 13 (37.1) | 241 | 13 (5.4) | 85.4 |
15 | Mtwara | 81 | 26 (32.1) | 604 | 23 (3.8) | 88.2 |
16 | Mwanza | 134 | 50 (37.3) | 284 | 9 (3.2) | 91.4 |
17 | Njombe | 39 | 15 (38.5) | 203 | 6 (2.9) | 92.5 |
18 | * Pemba | 14 | 11 (78.6) | 31 | 2 (6.4) | 91.9 |
19 | Pwani | 90 | 36 (40) | 210 | 5 (2.4) | 94.0 |
20 | Rukwa | 24 | 6 (25) | 147 | 7 (4.7) | 81.2 |
21 | Ruvuma | 39 | 10 (25.6) | 196 | 6 (3) | 88.3 |
22 | Shinyanga | 28 | 7 (25) | 258 | 3 (1.2) | 95.2 |
23 | Simiyu | 34 | 6 (17.6) | 276 | 13 (4.7) | 73.3 |
24 | Singida | 47 | 14 (29.8) | 350 | 6 (1.7) | 94.3 |
25 | Songwe | 10 | 2 (20) | 196 | 6 (3.1) | 84.5 |
26 | Tabora | 49 | 20 (40.8) | 224 | 8 (3.6) | 91.2 |
27 | Tanga | 135 | 58 (42.9) | 337 | 14 (4.1) | 90.4 |
28 | ** Unguja | 8 | 3 (37.5) | 97 | 1 (1) | 97.3 |
Total | 1638 | 534 (32.6) | 7112 | 219 (3.1) | 90.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michael, F.; Mirambo, M.M.; Lyimo, D.; Kyesi, F.; Msanga, D.R.; Joachim, G.; Nyaki, H.; Magodi, R.; Mujuni, D.; Tinuga, F.; et al. Reduction in Rubella Virus Active Cases among Children and Adolescents after Rubella Vaccine Implementation in Tanzania: A Call for Sustained High Vaccination Coverage. Vaccines 2022, 10, 1188. https://doi.org/10.3390/vaccines10081188
Michael F, Mirambo MM, Lyimo D, Kyesi F, Msanga DR, Joachim G, Nyaki H, Magodi R, Mujuni D, Tinuga F, et al. Reduction in Rubella Virus Active Cases among Children and Adolescents after Rubella Vaccine Implementation in Tanzania: A Call for Sustained High Vaccination Coverage. Vaccines. 2022; 10(8):1188. https://doi.org/10.3390/vaccines10081188
Chicago/Turabian StyleMichael, Fausta, Mariam M. Mirambo, Dafrossa Lyimo, Furaha Kyesi, Delfina R. Msanga, Georgina Joachim, Honest Nyaki, Richard Magodi, Delphius Mujuni, Florian Tinuga, and et al. 2022. "Reduction in Rubella Virus Active Cases among Children and Adolescents after Rubella Vaccine Implementation in Tanzania: A Call for Sustained High Vaccination Coverage" Vaccines 10, no. 8: 1188. https://doi.org/10.3390/vaccines10081188
APA StyleMichael, F., Mirambo, M. M., Lyimo, D., Kyesi, F., Msanga, D. R., Joachim, G., Nyaki, H., Magodi, R., Mujuni, D., Tinuga, F., Bulula, N., Nestory, B., Mongi, D., Makuwani, A., Katembo, B., Mwengee, W., Mphuru, A., Mohamed, N., Kayabu, D., ... Mshana, S. E. (2022). Reduction in Rubella Virus Active Cases among Children and Adolescents after Rubella Vaccine Implementation in Tanzania: A Call for Sustained High Vaccination Coverage. Vaccines, 10(8), 1188. https://doi.org/10.3390/vaccines10081188