Vaccination and Transmission Risk during the Outbreak of B.1.1.529 (Omicron)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Karuppanan, K.; Subramaniam, G. Omicron (BA.1) and Sub-Variants (BA.1.1, BA.2 and BA.3) of SARS-CoV-2 Spike Infectivity and Pathogenicity: A Comparative Sequence and Structural-based Computational Assessment. J. Med. Virol. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rayati Damavandi, A.; Dowran, R.; Al Sharif, S.; Kashanchi, F.; Jafari, R. Molecular variants of SARS-CoV-2: Antigenic properties and current vaccine efficacy. Med. Microbiol. Immunol. 2022, 211, 79–103. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Favresse, J.; Bayart, J.L.; Mullier, F.; Elsen, M.; Eucher, C.; Van Eeckhoudt, S.; Roy, T.; Wieers, G.; Laurent, C.; Dogné, J.M.; et al. Antibody titres decline 3-month post-vaccination with BNT162b2. Emerg. Microbes Infect. 2021, 10, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021, 184, 2372–2383.e9. [Google Scholar] [CrossRef] [PubMed]
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; VanBlargan, L.A.; De Marco, A.; di Iulio, J.; et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2022, 602, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Redd, A.D.; Nardin, A.; Kared, H.; Bloch, E.M.; Abel, B.; Pekosz, A.; Laeyendecker, O.; Fehlings, M.; Quinn, T.C.; Tobian, A.A.R. Minimal cross-over between mutations associated with Omicron variant of SARS-CoV-2 and CD8+ T cell epitopes identified in COVID-19 convalescent individuals. Mbio 2022, 13, e0361721. [Google Scholar] [CrossRef] [PubMed]
- Holm Hansen, C.; Blicher Schelde, A.; Moustsen-Helm, I.R.; Emborg, H.D.; Grove Krause, T.; Mølbak, K.; Valentiner-Branth, P. Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: A Danish cohort study. medRxiv 2021. [Google Scholar] [CrossRef]
- Puhach, O.; Adea, K.; Hulo, N.; Sattonnet, P.; Genecand, C.; Iten, A.; Bausch, F.J.; Kaiser, L.; Vetter, P.; Eckerle, I.; et al. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med. 2022. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.; Grüne, B.; Buess, M.; Joisten, C.; Klobucnik, J.; Nießen, J.; Patten, D.; Wolff, A.; Wiesmüller, G.A.; Kossow, A.; et al. COVID-19 Breakthrough Infections and Transmission Risk: Real-World Data Analyses from Germany’s Largest Public Health Department (Cologne). Vaccines 2021, 9, 1267. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.; Hurraß, J.; Kossow, A.; Klobucnik, J.; Nießen, J.; Wiesmüller, G.A.; Grüne, B.; Joisten, C. Breakthrough infections with the SARS-CoV-2 Delta variant: Vaccinations halved transmission risk. Public Health 2022, 204, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Wochenbericht/Wochenberichte_Tab.html;jsessionid=9DB4F3749973A846715954CD48AF8ED4.internet092?nn=2444038 (accessed on 10 June 2022).
- Neuhann, F.; Buess, M.; Wolff, A.; Pusch, L.; Kossow, A.; Winkler, M.; Demir, J.; Beyé, M.; Wiesmüller, G.; Nießen, J.; et al. Softwareentwicklung zur Unterstützung der Prozesse im Gesundheitsamt der Stadt Köln in der SARS-CoV-2-Pandemie Digitales Kontaktmanagement (DiKoMa). Epidemiol. Bull. 2020, 23, 3–11. [Google Scholar] [CrossRef]
- Available online: https://www.rki.de/DE/Content/Infekt/Impfen/ImpfungenAZ/COVID-19/Impfempfehlung-Zusfassung.html (accessed on 18 May 2022).
- Available online: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/Handlungsanleitung_Labore.html (accessed on 10 June 2022).
- Available online: https://twitter.com/Wisplinghoff/status/1486248514975899649?s=20&t=FkZsSyiHuN8RGnNy2hysMA (accessed on 10 June 2022).
- Nikolaidis, M.; Papakyriakou, A.; Chlichlia, K.; Markoulatos, P.; Oliver, S.G.; Amoutzias, G.D. Comparative Analysis of SARS-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike ORF. Viruses 2022, 14, 707. [Google Scholar] [CrossRef] [PubMed]
- Amoutzias, G.D.; Nikolaidis, M.; Tryfonopoulou, E.; Chlichlia, K.; Markoulatos, P.; Oliver, S.G. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022, 14, 78. [Google Scholar] [CrossRef] [PubMed]
Group (n) | Mean | SD | p-Value * | Range | Median | p-Value ** | |
---|---|---|---|---|---|---|---|
Age (yrs.) | BVG (202) | 36.80 | 12.90 | 1.000 | 18–93 | 34.0 | 1.000 |
FVG (202) | 36.70 | 12.60 | 18–75 | 34.0 | |||
UCG (202) | 36.90 | 13.00 | 18–96 | 34.0 | |||
Number of contacts per IP † | BVG (202) | 1.01 | 1.79 | 0.680 | 0–11 | 0 | 0.456 |
FVG (202) | 1.03 | 1.75 | 0–15 | 0 | |||
UCG (202) | 0.96 | 1.80 | 0–18 | 0 | |||
Number of infected contacts per IP ‡ | BVG (83) | 0.86 | 0.96 | 0.115 | 0–5 | 1 | 0.041 |
FVG (95) | 1.08 | 1.07 | 0–5 | 1 | |||
UCG (86) | 1.08 | 0.91 | 0–3 | 1 | |||
Number of infected contacts to total number of contacts per IP ‡ | BVG (83) | 0.42 | 0.42 | 0.054 | 0–1 | 0.33 | 0.004 |
FVG (95) | 0.57 | 0.44 | 0–1 | 0.57 | |||
UCG (86) | 0.56 | 0.43 | 0–1 | 0.58 |
Sample | p-Value * | p-Value after Bonferroni Correction * |
---|---|---|
BVG vs. UCG | 0.008 | 0.025 |
BVG vs. FVG | 0.002 | 0.005 |
UCG vs. FVG | data | data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grüne, B.; Grüne, J.; Kossow, A.; Joisten, C. Vaccination and Transmission Risk during the Outbreak of B.1.1.529 (Omicron). Vaccines 2022, 10, 1003. https://doi.org/10.3390/vaccines10071003
Grüne B, Grüne J, Kossow A, Joisten C. Vaccination and Transmission Risk during the Outbreak of B.1.1.529 (Omicron). Vaccines. 2022; 10(7):1003. https://doi.org/10.3390/vaccines10071003
Chicago/Turabian StyleGrüne, Barbara, Jakob Grüne, Annelene Kossow, and Christine Joisten. 2022. "Vaccination and Transmission Risk during the Outbreak of B.1.1.529 (Omicron)" Vaccines 10, no. 7: 1003. https://doi.org/10.3390/vaccines10071003
APA StyleGrüne, B., Grüne, J., Kossow, A., & Joisten, C. (2022). Vaccination and Transmission Risk during the Outbreak of B.1.1.529 (Omicron). Vaccines, 10(7), 1003. https://doi.org/10.3390/vaccines10071003