Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria
Abstract
:1. Introduction
1.1. Extracellular and Intracellular Bacterial Pathogens
1.2. Immunological Defense against Extracellular and Intracellular Bacterial Pathogens
1.3. Antibiotic-Resistant Bacterial Pathogens and the Urgent Need for New Vaccines
2. Types of Bacterial Vaccines and the Difficulties of Vaccination against Intracellular Bacterial Pathogens
2.1. Whole Cell Antigen (WCA)
2.2. Live Attenuated Bactericidal Vaccines (LAVs)
2.3. Live Recombinant Bacteria
2.4. Bacterial Ghosts (BGs)
2.5. Outer Membrane Vesicles (OMVs)
2.6. Toxoids and Recombinant Proteins
2.7. Polysaccharide Conjugate Vaccines
2.8. Antigen Delivery with Nanoparticles (NPs)
2.9. Nucleotide Immunization
2.9.1. Plasmid DNA
2.9.2. DNA Bound to NPs
2.9.3. Viral Vectors
2.9.4. Bacterial Vectors
2.9.5. mRNA
3. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Dramsi, S.; Cossart, P. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 1998, 14, 137–166. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.; Chen, C.; Portnoy, D.A. Strategies Used by Bacteria to Grow in Macrophages. Microbiol. Spectr. 2016, 4, 701–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, A.; Wehrly, T.D.; Nair, V.; Fischer, E.R.; Barker, J.R.; Klose, K.E.; Celli, J. The Early Phagosomal Stage of Francisella tularensis Determines Optimal Phagosomal Escape and Francisella Pathogenicity Island Protein Expression. Infect. Immun. 2008, 76, 5488–5499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baca, O.G.; Li, Y.-P.; Kumar, H. Survival of the Q fever agent Coxiella burnetii in the phagolysosome. Trends Microbiol. 1994, 2, 476–480. [Google Scholar] [CrossRef]
- Steele-Mortimer, O.; Meresse, S.; Gorvel, J.-P.; Toh, B.-H.; Finlay, B.B. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1999, 1, 33–49. [Google Scholar] [CrossRef]
- Walker, D.H.; Feng, H.M.; Popov, V.L. Rickettsial phospholipase A2 as a pathogenic mechanism in a model of cell injury by typhus and spotted fever group rickettsiae. Am. J. Trop. Med. Hyg. 2001, 65, 936–942. [Google Scholar] [CrossRef]
- Elwell, C.; Mirrashidi, K.; Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Genet. 2016, 14, 385–400. [Google Scholar] [CrossRef]
- Haraga, A.; Ohlson, M.B.; Miller, S.I. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 2008, 6, 53–66. [Google Scholar] [CrossRef]
- Isberg, R.R.; O’Connor, T.J.; Heidtman, M. The Legionella pneumophila replication vacuole: Making a cosy niche inside host cells. Nat. Rev. Genet. 2009, 7, 13–24. [Google Scholar] [CrossRef] [Green Version]
- McGeachy, M.J.; Cua, D.J. Th17 Cell Differentiation: The Long and Winding Road. Immunity 2008, 28, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Mak, T.W.; Saunders, M.E.; Jett, B.D. Chapter 5—B Cell Development, Activation and Effector Functions. In Primer to the Immune Response, 2nd ed.; Elsevier: Oxford, UK, 2014; pp. 111–142. ISBN 9780123852458. [Google Scholar] [CrossRef]
- Chan, E.D.; Riches, D.W. Potential Role of the JNK/SAPK Signal Transduction Pathway in the Induction of iNOS by TNF-α. Biochem. Biophys. Res. Commun. 1998, 253, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C.; Xie, Q.W. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 1994, 269, 13725–13728. [Google Scholar] [CrossRef]
- Kamijo, R.; Harada, H.; Matsuyama, T.; Bosland, M.; Gerecitano, J.; Shapiro, D.; Le, J.; Koh, S.I.; Kimura, T.; Green, S.J.; et al. Requirement for Transcription Factor IRF-1 in NO Synthase Induction in Macrophages. Science 1994, 263, 1612–1615. [Google Scholar] [CrossRef] [PubMed]
- Koide, N.; Mu, M.M.; Hassan, F.; Islam, S.; Tumurkhuu, G.; Dagvadorj, J.; Naiki, Y.; Mori, I.; Yoshida, T.; Yokochi, T. Lipopolysaccharide enhances interferon-γ-induced nitric oxide (NO) production in murine vascular endothelial cells via augmentation of interferon regulatory factor-1 activation. J. Endotoxin Res. 2007, 13, 167–175. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care–Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [Green Version]
- Lob, S.H.; Hoban, D.J.; Sahm, D.F.; Badal, R.E. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii. Int. J. Antimicrob. Agents 2016, 47, 317–323. [Google Scholar] [CrossRef]
- Dittrich, S.; Rattanavong, S.; Lee, S.J.; Panyanivong, P.; Craig, S.B.; Tulsiani, S.M.; Blacksell, S.D.; Dance, D.A.B.; Dubot-Pérès, A.; Sengduangphachanh, A.; et al. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: A prospective study. Lancet Glob. Heal. 2015, 3, e104–e112. [Google Scholar] [CrossRef]
- Kelly, D.J.; Fuerst, P.A.; Ching, W.; Richards, A.L. Scrub Typhus: The Geographic Distribution of Phenotypic and Genotypic Variants of Orientia tsutsugamushi. Clin. Infect. Dis. 2009, 48 (Suppl. 3), S203–S230. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Walker, D.H.; Jupiter, D.; Melby, P.C.; Arcari, C.M. A review of the global epidemiology of scrub typhus. PLoS Negl. Trop. Dis. 2017, 11, e0006062. [Google Scholar] [CrossRef] [Green Version]
- Watt, G.; Chouriyagune, C.; Ruangweerayud, R.; Watcharapichat, P.; Phulsuksombati, D.; Jongsakul, K.; Teja-Isavadharm, P.; Bhodhidatta, D.; Corcoran, K.D.; Dasch, G.A.; et al. Scrub typhus infections poorly responsive to antibiotics in northern Thailand. Lancet 1996, 348, 86–89. [Google Scholar] [CrossRef]
- Watt, G.; Kantipong, P.; Jongsakul, K.; Watcharapichat, P.; Phulsuksombati, D.; Strickman, D. Doxycycline and rifampicin for mild scrub-typhus infections in northern Thailand: A randomised trial. Lancet 2000, 356, 1057–1061. [Google Scholar] [CrossRef]
- Rajapakse, S.; Rodrigo, C.; Fernando, S.D. Drug treatment of scrub typhus. Trop. Dr. 2011, 41, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Svennerholm, A.-M. From cholera to enterotoxigenic Escherichia coli (ETEC) vaccine development. Indian J. Med. Res. 2011, 133, 188–194. [Google Scholar] [PubMed]
- Kabir, S. Critical Analysis of Compositions and Protective Efficacies of Oral Killed Cholera Vaccines. Clin. Vaccine Immunol. 2014, 21, 1195–1205. [Google Scholar] [CrossRef]
- Ruiz, S.; Wolfe, D.N. Vaccination against Q fever for biodefense and public health indications. Front. Microbiol. 2014, 5, 726. [Google Scholar] [CrossRef] [Green Version]
- Alhassan, A.; Liu, H.; McGill, J.; Cerezo, A.; Jakkula, L.U.M.R.; Nair, A.D.S.; Winkley, E.; Olson, S.; Marlow, D.; Sahni, A.; et al. Rickettsia rickettsii Whole-Cell Antigens Offer Protection against Rocky Mountain Spotted Fever in the Canine Host. Infect. Immun. 2019, 87, e00628-18. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.H. The realities of biodefense vaccines against Rickettsia. Vaccine 2009, 27 (Suppl. 4), D52–D55. [Google Scholar] [CrossRef] [Green Version]
- Osterloh, A. Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines 2021, 9, 896. [Google Scholar] [CrossRef]
- MacLennan, C.A.; Martin, L.B.; Micoli, F. Vaccines against invasive Salmonella disease: Current status and future directions. Hum. Vaccines Immunother. 2014, 10, 1478–1493. [Google Scholar] [CrossRef] [Green Version]
- Chambers, M.A.; Vordermeier, H.M.; Hewinsong, R.G.; Lowrie, D.B. DNA Vaccines Against Bacterial Pathogens. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2000–2013. [Google Scholar]
- Kawamura, R.; Kasahar, S.; Toyama, T.; Nishinarita, F.; Tsubaki, S. On the prevention of tsutsugamushi. Results of preventive inoculations for people in the endemic region, and laboratory tests with the Pescadores strain. Kitasato Arch. Exp. Med. 1939, 16, 93–109. [Google Scholar]
- Fox, J.P.; Jordan, M.E.; Gelfand, H.M. Immunization of man against epidemic typhus by infection with avirulent Rickettsia prowazeki strain E. IV. Persistence of immunity and a note as to differing complement-fixation antigen requirements in post-infection and post-vaccination sera. J. Immunol. 1957, 79, 348–354. [Google Scholar] [PubMed]
- Wisseman, C.L., Jr. Concepts of louse-borne typhus control in developing countries: The use of the living attenuated E strain typhus vaccine in epidemic and endemic situations. Adv. Exp. Med. Biol. 1972, 31, 97–130. [Google Scholar] [PubMed]
- Safar, H.A.; Mustafa, A.S.; Amoudy, H.A.; El-Hashim, A. The effect of adjuvants and delivery systems on Th1, Th2, Th17 and Treg cytokine responses in mice immunized with Mycobacterium tuberculosis-specific proteins. PLoS ONE 2020, 15, e0228381. [Google Scholar] [CrossRef]
- Nieuwenhuizen, N.E.; Kulkarni, P.S.; Shaligram, U.; Cotton, M.F.; Rentsch, C.A.; Eisele, B.; Grode, L.; Kaufmann, S.H.E. The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Front. Immunol. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Crocquet-Valdes, P.; Díaz-Montero, C.; Feng, H.; Li, H.; Barrett, A.; Walker, D. Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine 2001, 20, 979–988. [Google Scholar] [CrossRef]
- Panthel, K.; Meinel, K.M.; Domènech, V.E.S.; Trülzsch, K.; Rüssmann, H. Salmonella type III-mediated heterologous antigen delivery: A versatile oral vaccination strategy to induce cellular immunity against infectious agents and tumors. Int. J. Med. Microbiol. 2008, 298, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Darji, A.; Guzmán, C.A.; Gerstel, B.; Wachholz, P.; Timmis, K.N.; Wehland, J.; Chakraborty, T.; Weiss, S. Oral Somatic Transgene Vaccination Using Attenuated S. typhimurium. Cell 1997, 91, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Rüssmann, H.; Igwe, E.I.; Sauer, J.; Hardt, W.-D.; Bubert, A.; Geginat, G. Protection Against Murine Listeriosis by Oral Vaccination with Recombinant Salmonella Expressing Hybrid Yersinia Type III Proteins. J. Immunol. 2001, 167, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Igwe, E.I.; Geginat, G.; Rüssmann, H. Concomitant Cytosolic Delivery of Two Immunodominant Listerial Antigens by Salmonella enterica Serovar Typhimurium Confers Superior Protection against Murine Listeriosis. Infect. Immun. 2002, 70, 7114–7119. [Google Scholar] [CrossRef] [Green Version]
- Rüssmann, H.; Gerdemann, U.; Igwe, E.I.; Panthel, K.; Heesemann, J.; Garbom, S.; Wolf-Watz, H.; Geginat, G. Attenuated Yersinia pseudotuberculosis Carrier Vaccine for Simultaneous Antigen-Specific CD4 and CD8 T-Cell Induction. Infect. Immun. 2003, 71, 3463–3472. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhang, B.-Z.; Lin, Q.; Deng, J.; Yu, B.; Arya, S.; Yuen, K.-Y.; Huang, J.-D. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect. Dis. 2018, 18, 195. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Jiao, J.; Gregory, A.E.; Wang, P.; Bi, Y.; Wang, X.; Jiang, Y.; Wen, B.; Portnoy, D.A.; Samuel, J.E.; et al. Identification of Coxiella burnetii CD8+ T-Cell Epitopes and Delivery by Attenuated Listeria monocytogenes as a Vaccine Vector in a C57BL/6 Mouse Model. J. Infect. Dis. 2017, 215, 1580–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuveny, S.; White, M.D.; Adar, Y.Y.; Kafri, Y.; Altboum, Z.; Gozes, Y.; Kobiler, D.; Shafferman, A.; Velan, B. Search for Correlates of Protective Immunity Conferred by Anthrax Vaccine. Infect. Immun. 2001, 69, 2888–2893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorse, G.J.; Keitel, W.; Keyserling, H.; Taylor, D.N.; Lock, M.; Alves, K.; Kenner, J.; Deans, L.; Gurwith, M. Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: A randomized, double-blinded, controlled, multicenter trial. Vaccine 2006, 24, 5950–5959. [Google Scholar] [CrossRef] [PubMed]
- Keitel, W.A. Recombinant protective antigen 102 (rPA102): Profile of a second-generation anthrax vaccine. Expert Rev. Vaccines 2006, 5, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Zink, T.K. Gorse GJ, et al. “Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: A randomized, double-blinded, controlled, multicenter trial” [Vaccine 24 (2006) 5950–5959]. Vaccine 2006, 25, 2766–2767. [Google Scholar] [CrossRef]
- Hannesschlager, J.R. Results of a safety and immunogenicity study of an early-stage investigational rPA102 vaccine as compared to the FDA licensed anthrax vaccine (anthrax vaccine adsorbed (AVA. BioThrax)). Vaccine 2007, 25, 3247. [Google Scholar] [CrossRef]
- Venkatasubramaniam, A.; Adhikari, R.P.; Kort, T.; Liao, G.C.; Conley, S.; Abaandou, L.; Kailasan, S.; Onodera, Y.; Krishnan, S.; Djagbare, D.M.; et al. TBA225, a fusion toxoid vaccine for protection and broad neutralization of staphylococcal superantigens. Sci. Rep. 2019, 9, 3279. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, R.; Fernã¡ndez, S.; Zayas, C.; Acosta, A.; Sarmiento, M.E.; Ferro, V.A.; Rosenqvist, E.; Campa, C.; Cardoso, D.; Garcia, L.; et al. Bacterial Outer Membrane Vesicles and Vaccine Applications. Front. Immunol. 2014, 5, 121. [Google Scholar] [CrossRef] [Green Version]
- Chbib, C.; Shah, S.M.; Gala, R.P.; Uddin, M.N. Potential Applications of Microparticulate-Based Bacterial Outer Membrane Vesicles (OMVs) Vaccine Platform for Sexually Transmitted Diseases (STDs): Gonorrhea, Chlamydia, and Syphilis. Vaccines 2021, 9, 1245. [Google Scholar] [CrossRef]
- Dentovskaya, S.V.; Vagaiskaya, A.S.; Platonov, M.E.; Trunyakova, A.S.; Kotov, S.A.; Krasil’Nikova, E.A.; Titareva, G.M.; Mazurina, E.M.; Gapel’Chenkova, T.V.; Shaikhutdinova, R.Z.; et al. Peptidoglycan-Free Bacterial Ghosts Confer Enhanced Protection against Yersinia pestis Infection. Vaccines 2021, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Senevirathne, A.; Hewawaduge, C.; Lee, J.H. Immunization of chicken with flagellin adjuvanted Salmonella enteritidis bacterial ghosts confers complete protection against chicken salmonellosis. Poult. Sci. 2021, 100, 101205. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Yang, H.; Zheng, W.; Zhang, Q.; Zhao, D.; Li, G. Enhancement of immune responses by co-administration of bacterial ghosts-mediated Neisseria gonorrhoeae DNA vaccines. J. Appl. Microbiol. 2021, 130, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.L.; Bonato, V.L.D.; Coelho-Castelo, A.A.M.; de Souza, A.O.; Santos, S.A.; Lima, K.M.; Faccioli, L.H.; Rodrigues, J.M. Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Ther. 2005, 12, 281–287. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, J.; Chen, X.; Xia, M.; Lu, Y.; Qiu, W.; Feng, G.; Zhao, D.; Li, Y.; He, F.; et al. A novel recombinant DNA vaccine encoding Mycobacterium tuberculosis ESAT-6 and FL protects against Mycobacterium tuberculosis challenge in mice. J. Biomed. Res. 2013, 27, 406–420. [Google Scholar] [CrossRef]
- Gu, M.-L.; Leppla, S.H.; Klinman, D.M. Protection against anthrax toxin by vaccination with a DNA plasmid encoding anthrax protective antigen. Vaccine 1999, 17, 340–344. [Google Scholar] [CrossRef]
- Cornell, K.A.; Bouwer, H.G.; Hinrichs, D.J.; Barry, R.A. Genetic immunization of mice against Listeria monocytogenes using plasmid DNA encoding listeriolysin O. J. Immunol. 1999, 163, 322–329. [Google Scholar]
- Uchijima, M.; Yoshida, A.; Nagata, T.; Koide, Y. Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I-restricted T cell responses against an intracellular bacterium. J. Immunol. 1998, 161, 5594–5599. [Google Scholar]
- Koide, Y.; Nagata, T.; Uchijima, M.; Yoshida, A.; Aoshi, T. DNA vaccines for infections with intracellular bacteria. Nippon. Saikingaku Zasshi 1999, 54, 773–793. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.M.; Phillpotts, R.J.; Perkins, S.D.; Jacobs, S.C.; Williamson, E. Gene gun mediated vaccination is superior to manual delivery for immunisation with DNA vaccines expressing protective antigens from Yersinia pestis or Venezuelan Equine Encephalitis virus. Vaccine 1999, 18, 588–596. [Google Scholar] [CrossRef]
- Hornef, M.W.; Noll, A.; Schirmbeck, R.; Reimann, J.; Autenrieth, I.B. DNA vaccination using coexpression of cytokine genes with a bacterial gene encoding a 60-kDa heat shock protein. Med. Microbiol. Immunol. 2000, 189, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Noll, A.; Bucheler, N.; Bohn, E.; Schirmbeck, R.; Reimann, J.; Autenrieth, I.B. DNA immunization confers systemic, but not mucosal, protection against enteroinvasive bacteria. Eur. J. Immunol. 1999, 29, 986–996. [Google Scholar] [CrossRef]
- Volz, A.; Sutter, G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv. Virus Res. 2017, 97, 187–243. [Google Scholar] [CrossRef] [PubMed]
- Al-Mariri, A.; Tibor, A.; Lestrate, P.; Mertens, P.; De Bolle, X.; Letesson, J.-J. Yersinia enterocolitica as a Vehicle for a Naked DNA Vaccine Encoding Brucella abortus Bacterioferritin or P39 Antigen. Infect. Immun. 2002, 70, 1915–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corthésy-Theulaz, I.E.; Hopkins, S.; Bachmann, D.; Saldinger, P.F.; Porta, N.; Haas, R.; Zheng-Xin, Y.; Meyer, T.; Bouzourène, H.; Blum, A.L.; et al. Mice Are Protected from Helicobacter pylori Infection by Nasal Immunization with Attenuated Salmonella typhimurium phoPc Expressing Urease A and B Subunits. Infect. Immun. 1998, 66, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Miki, K.; Nagata, T.; Tanaka, T.; Kim, Y.-H.; Uchijima, M.; Ohara, N.; Nakamura, S.; Okada, M.; Koide, Y. Induction of Protective Cellular Immunity against Mycobacterium tuberculosis by Recombinant Attenuated Self-Destructing Listeria monocytogenes Strains Harboring Eukaryotic Expression Plasmids for Antigen 85 Complex and MPB/MPT51. Infect. Immun. 2004, 72, 2014–2021. [Google Scholar] [CrossRef] [Green Version]
- Ecke, R.S.; Gilliam, A.G. The effect of Cox-type vaccine on louse-borne typhus fever; an account of 61 cases of naturally occurring typhus fever in patients who had previously received one or more injections of Cox-type vaccine. Am. J. Trop. Med. Hyg. 1945, 25, 447–642. [Google Scholar] [CrossRef]
- Dupont, H.L.; Hornick, R.B.; Dawkins, A.T.; Heiner, G.G.; Fabrikant, I.B.; Wisseman, J.C.L.; Woodward, T.E. Rocky Mountain Spotted Fever: A Comparative Study of the Active Immunity Induced by Inactivated and Viable Pathogenic Rickettsia rickettsii. J. Infect. Dis. 1973, 128, 340–344. [Google Scholar] [CrossRef]
- Lopez, A.L.; Gonzales, M.L.A.; Aldaba, J.G.; Nair, G.B. Killed oral cholera vaccines: History, development and implementation challenges. Ther. Adv. Vaccines 2014, 2, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Luzuriaga, M.A.; Herbert, F.C.; Brohlin, O.R.; Gadhvi, J.; Howlett, T.; Shahrivarkevishahi, A.; Wijesundara, Y.H.; Venkitapathi, S.; Veera, K.; Ehrman, R.; et al. Metal–Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS Nano 2021, 15, 17426–17438. [Google Scholar] [CrossRef]
- Ching, W.M.; Wang, H.; Davis, J.; Dasch, G.A. Amino Acid Analysis and Multiple Methylation of Lysine Residues in The Surface Protein Antigen of Rickettsia Prowazekii. In Techniques in Protein Chemistry IV; Academic Press: Cambridge, MA, USA, 1993; pp. 307–314. [Google Scholar]
- Zhang, J.-Z.; Hao, J.-F.; Walker, D.H.; Yu, X.-J. A mutation inactivating the methyltransferase gene in avirulent Madrid E strain of Rickettsia prowazekii reverted to wild type in the virulent revertant strain Evir. Vaccine 2006, 24, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.; Galen, J.E.; Fasano, A.; Kaper, J.B. CVD110, an attenuated Vibrio cholerae O1 El Tor live oral vaccine strain. Infect. Immun. 1993, 61, 4462–4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.H.; Greenberg, R.N.; Pasetti, M.F.; Livio, S.; Lock, M.; Gurwith, M.; Levine, M.M. Safety and Immunogenicity of Single-Dose Live Oral Cholera Vaccine Strain CVD 103-HgR, Prepared from New Master and Working Cell Banks. Clin. Vaccine Immunol. 2014, 21, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, A.; Lepage, J.E.; Sullivan, K.M.; Seed, S.M. Vaxchora: A Single-Dose Oral Cholera Vaccine. Ann. Pharmacother. 2017, 51, 584–589. [Google Scholar] [CrossRef]
- Whitworth, T.; Popov, V.L.; Yu, X.-J.; Walker, D.H.; Bouyer, D.H. Expression of the Rickettsia prowazekii pld or tlyC Gene in Salmonella enterica Serovar Typhimurium Mediates Phagosomal Escape. Infect. Immun. 2005, 73, 6668–6673. [Google Scholar] [CrossRef] [Green Version]
- Driskell, L.O.; Yu, X.-J.; Zhang, L.; Liu, Y.; Popov, V.L.; Walker, D.H.; Tucker, A.M.; Wood, D.O. Directed Mutagenesis of the Rickettsia prowazekii pld Gene Encoding Phospholipase D. Infect. Immun. 2009, 77, 3244–3248. [Google Scholar] [CrossRef] [Green Version]
- Noriea, N.F.; Clark, T.R.; Hackstadt, T. Targeted Knockout of the Rickettsia rickettsii OmpA Surface Antigen Does Not Diminish Virulence in a Mammalian Model System. mBio 2015, 6, e00323-15. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, D.I.M.; Schoen, C.U.; Goebel, W.; Pilgrim, S. Comparison of Different Live Vaccine Strategies In Vivo for Delivery of Protein Antigen or Antigen-Encoding DNA and mRNA by Virulence-Attenuated Listeria monocytogenes. Infect. Immun. 2006, 74, 3946–3957. [Google Scholar] [CrossRef] [Green Version]
- Skinner, M.A.; Yuan, S.; Prestidge, R.; Chuk, D.; Watson, J.D.; Tan, P.L. Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect. Immun. 1997, 65, 4525–4530. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jiang, Y.; Cui, Z.; Yang, W.; Yue, L.; Ma, Y.; Shi, S.; Wang, C.; Qian, A. Mycobacterium vaccaeinduces a strong Th1 response that subsequently declines in C57BL/6 mice. J. Veter. Sci. 2016, 17, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Rüssmann, H.; Weissmüller, A.; Geginat, G.; Igwe, E.I.; Roggenkamp, A.; Bubert, A.; Goebel, W.; Hof, H.; Heesemann, J. Yersinia enterocolitica-mediated translocation of defined fusion proteins to the cytosol of mammalian cells results in peptide-specific MHC class I-restricted antigen presentation. Eur. J. Immunol. 2000, 30, 1375–1384. [Google Scholar] [CrossRef]
- Galán, J.E. Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 1996, 20, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.-W.; Singh, A.V.; Sitti, M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. Rev. 2016, 106 Pt A, 27–44. [Google Scholar] [CrossRef]
- Langemann, T.; Koller, V.J.; Muhammad, A.; Kudela, P.; Mayr, U.B.; Lubitz, W. The Bacterial Ghost platform system: Production and applications. Bioeng. Bugs 2010, 1, 326–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Ji, H.; Kong, X.; Lei, P.; Yang, Q.; Wu, W.; Jin, L.; Sun, D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics 2021, 13, 1892. [Google Scholar] [CrossRef]
- Senevirathne, A.; Hewawaduge, C.; Park, J.-Y.; Park, S.; Lee, J.H. Parenteral immunization of Salmonella Typhimurium ghosts with surface-displayed Escherichia coli flagellin enhancesTLR-5 mediated activation of immune responses that protect the chicken against Salmonella infection. Microb. Pathog. 2020, 147, 104252. [Google Scholar] [CrossRef]
- Ekong, E.E.; Okenu, D.N.; Mania-Pramanik, J.; He, Q.; Igietseme, J.U.; Ananaba, G.A.; Lyn, D.; Black, C.; Eko, F.O. AVibrio choleraeghost-based subunit vaccine induces cross-protective chlamydial immunity that is enhanced by CTA2B, the nontoxic derivative of cholera toxin. FEMS Immunol. Med. Microbiol. 2009, 55, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, N.; She, F. Helicobacter pylori outer inflammatory protein DNA vaccine-loaded bacterial ghost enhances immune protective efficacy in C57BL/6 mice. Vaccine 2014, 32, 6054–6060. [Google Scholar] [CrossRef]
- Riedmann, E.M.; Lubitz, W.; McGrath, J.; Kyd, J.; Cripps, A.W. Effectiveness of engineering the nontypeableHaemophilus influenzaeantigen Omp26 as an S-layer fusion in bacterial ghosts as a mucosal vaccine delivery. Hum. Vaccines 2011, 7, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, Z.; Zhang, J.; Xi, L.; Cui, Y.; Zhang, W.; Zhang, J.; Zhang, H. A safe non-toxic Brucella abortus ghosts induce immune responses and confer protection in BALB/c mice. Mol. Immunol. 2020, 124, 117–124. [Google Scholar] [CrossRef]
- Kloos, D.U.; Strätz, M.; Güttler, A.; Steffan, R.J.; Timmis, K.N. Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death. J. Bacteriol. 1994, 176, 7352–7361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganeshpurkar, A.; Ganeshpurkar, A.; Pandey, V.; Agnihotri, A.; Bansal, D.; Dubey, N. Harnessing the potential of bacterial ghost for the effective delivery of drugs and biotherapeutics. Int. J. Pharm. Investig. 2014, 4, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batah, A.M.; Ahmad, T.A. The development of ghost vaccines trials. Expert Rev. Vaccines 2020, 19, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Furuyama, N.; Sircili, M.P. Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application. BioMed Res. Int. 2021, 2021, 1490732. [Google Scholar] [CrossRef]
- Finne, J.; Leinonen, M.; Mäkelä, P. Antigenic Similarities Between Brain Components and Bacteria Causing Meningitis: Implications for Vaccine Development and Pathogenesis. Lancet 1983, 2, 355–357. [Google Scholar] [CrossRef]
- Norheim, G.; Aase, A.; Caugant, D.A.; Høiby, E.A.; Fritzsønn, E.; Tangen, T.; Kristiansen, P.; Heggelund, U.; Rosenqvist, E. Development and characterisation of outer membrane vesicle vaccines against serogroup A Neisseria meningitidis. Vaccine 2005, 23, 3762–3774. [Google Scholar] [CrossRef]
- Masignani, V.; Pizza, M.; Moxon, E.R. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Front. Immunol. 2019, 10, 751. [Google Scholar] [CrossRef]
- Petousis-Harris, H. Impact of meningococcal group B OMV vaccines, beyond their brief. Hum. Vaccines Immunother. 2018, 14, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Paynter, J.; Goodyear-Smith, F.; Morgan, J.; Saxton, P.; Black, S.; Petousis-Harris, H. Effectiveness of a Group B Outer Membrane Vesicle Meningococcal Vaccine in Preventing Hospitalization from Gonorrhea in New Zealand: A Retrospective Cohort Study. Vaccines 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wang, X.; Sun, X.; Guan, Z.; Sun, W. Outer Membrane Vesicles Displaying a Heterologous PcrV-HitA Fusion Antigen Promote Protection against Pulmonary Pseudomonas aeruginosa Infection. mSphere 2021, 6, e00699-21. [Google Scholar] [CrossRef]
- Alaniz, R.C.; Deatherage, B.L.; Lara, J.C.; Cookson, B.T. Membrane Vesicles Are Immunogenic Facsimiles of Salmonella typhimurium That Potently Activate Dendritic Cells, Prime B and T Cell Responses, and Stimulate Protective Immunity In Vivo. J. Immunol. 2007, 179, 7692–7701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, A.; de Souza, J.; Sánchez-Gómez, S.; Pardo-Ros, M.; Irache, J.M.; Gamazo, C. Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine 2011, 29, 8222–8229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrens, F.; Funk-Hilsdorf, T.; Kuebler, W.; Simmons, S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int. J. Mol. Sci. 2021, 22, 3858. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.M.; Mostafa, A.; Teubner, L.; Mahmoud, S.H.; Kandeil, A.; Elshesheny, R.; Boubak, T.A.; Frantz, R.; La Pietra, L.; Pleschka, S.; et al. Bacterial Outer Membrane Vesicles (OMVs)-Based Dual Vaccine for Influenza A H1N1 Virus and MERS-CoV. Vaccines 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Gurung, M.; Moon, D.C.; Choi, C.W.; Lee, J.H.; Bae, Y.C.; Kim, J.; Lee, Y.C.; Seol, S.Y.; Cho, D.T.; Kim, S.I.; et al. Staphylococcus aureus Produces Membrane-Derived Vesicles That Induce Host Cell Death. PLoS ONE 2011, 6, e27958. [Google Scholar] [CrossRef] [Green Version]
- Thay, B.; Wai, S.N.; Oscarsson, J. Staphylococcus aureus α-Toxin-Dependent Induction of Host Cell Death by Membrane-Derived Vesicles. PLoS ONE 2013, 8, e54661. [Google Scholar] [CrossRef]
- Hu, C.-M.J.; Fang, R.H.; Luk, B.T.; Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 2013, 8, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Bartolini, E.; Ianni, E.; Frigimelica, E.; Petracca, R.; Galli, G.; Scorza, F.B.; Norais, N.; Laera, D.; Giusti, F.; Pierleoni, A.; et al. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles 2013, 2. [Google Scholar] [CrossRef]
- Schetters, S.T.; Jong, W.; Horrevorts, S.K.; Kruijssen, L.J.; Engels, S.; Stolk, D.; Daleke-Schermerhorn, M.H.; Garcia-Vallejo, J.; Houben, D.; Unger, W.W.; et al. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomater. 2019, 91, 248–257. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, K.-S.; Lee, S.-R.; Kim, E.; Kim, M.-S.; Lee, E.-Y.; Gho, Y.S.; Kim, J.-W.; Bishop, R.E.; Chang, K.-T. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim. Biophys. Acta 2009, 1788, 2150–2159. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, D.T.; Rahman, D.; McGee, J.P.; Jeffery, H.; Davies, M.C.; Williams, P.; Davis, S.S.; Challacombe, S.J. Biodegradable microparticles as controlled release antigen delivery systems. Immunology 1991, 73, 239–242. [Google Scholar] [PubMed]
- Janes, K.; Calvo, P.; Alonso, M. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 2001, 47, 83–97. [Google Scholar] [CrossRef]
- Fredriksen, B.N.; Grip, J. PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine 2012, 30, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Li, H.; Jiang, H.; Yu, J.; Wang, Y.; Ke, H.; Gong, T.; Zhang, Z.; Sun, X. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials 2017, 122, 105–113. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, S.-H.; Kang, W.; Choi, Y.S.; Lee, S.-R.; You, S.; Lee, H.K.; Chang, K.-T.; Shin, E.-C. Adjuvant effect of bacterial outer membrane vesicles with penta-acylated lipopolysaccharide on antigen-specific T cell priming. Vaccine 2011, 29, 8293–8301. [Google Scholar] [CrossRef]
- O’Donoghue, E.J.; Krachler, A.M. Mechanisms of outer membrane vesicle entry into host cells. Cell. Microbiol. 2016, 18, 1508–1517. [Google Scholar] [CrossRef]
- Gao, W.; Fang, R.H.; Thamphiwatana, S.; Luk, B.T.; Li, J.; Angsantikul, P.; Zhang, Q.; Hu, C.-M.J.; Zhang, L. Modulating Antibacterial Immunity via Bacterial Membrane-Coated Nanoparticles. Nano Lett. 2015, 15, 1403–1409. [Google Scholar] [CrossRef] [Green Version]
- Camacho, A.; Irache, J.M.; de Souza, J.; Sánchez-Gómez, S.; Gamazo, C. Nanoparticle-based vaccine for mucosal protection against Shigella flexneri in mice. Vaccine 2013, 31, 3288–3294. [Google Scholar] [CrossRef]
- Bell, C.E.; Eisenberg, D. Crystal Structure of Diphtheria Toxin Bound to Nicotinamide Adenine Dinucleotide. Biochemistry 1996, 35, 1137–1149. [Google Scholar] [CrossRef]
- Reisbig, R.; Olsnes, S.; Eiklid, K. The cytotoxic activity of Shigella toxin. Evidence for catalytic inactivation of the 60 S ribosomal subunit. J. Biol. Chem. 1981, 256, 8739–8744. [Google Scholar] [CrossRef]
- Spears, K.J.; Roe, A.J.; Gally, D.L. A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol. Lett. 2006, 255, 187–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beutin, L. Emerging enterohaemorrhagic Escherichia coli, causes and effects of the rise of a human pathogen. J. Vet. Med. B Infect. Dis. Vet. Public Health 2006, 53, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.A. The Escherichia coli Hemolysin. EcoSal Plus 2005, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Moayeri, M.; Leppla, S.H. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol. 2014, 22, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Brossier, F.; Mock, M. Toxins of Bacillus anthracis. Toxicon 2001, 39, 1747–1755. [Google Scholar] [CrossRef]
- Bharati, K.; Ganguly, N.K. Cholera toxin: A paradigm of a multifunctional protein. Indian J. Med. Res. 2011, 133, 179–187. [Google Scholar]
- Schiavo, G.; Benfenati, F.; Poulain, B.; Rossetto, O.; De Laureto, P.P.; Dasgupta, B.R.; Montecucco, C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992, 359, 832–835. [Google Scholar] [CrossRef]
- Ray, K.; Marteyn, B.; Sansonetti, P.J.; Tang, C.M. Life on the inside: The intracellular lifestyle of cytosolic bacteria. Nat. Rev. Genet. 2009, 7, 333–340. [Google Scholar] [CrossRef]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- Luciana, L.; Borio, M.D. The Second Generation Anthrax Vaccine Candidate: rPA102; Clinicians’ Biosecurity News 2005; Monthly Clinical Issues in Biosecurity Series. Available online: https://www.centerforhealthsecurity.org/cbn/2005/cbnTOPICS_071305.htm (accessed on 20 March 2022).
- Galán, J.E.; Collmer, A. Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells. Science 1999, 284, 1322–1328. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, G.R.; Wolf-Watz, H. The Yersinia Yop virulon: A bacterial system for subverting eukaryotic cells. Mol. Microbiol. 1997, 23, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Wiley, D.J.; Shrestha, N.; Yang, J.; Atis, N.; Dayton, K.; Schesser, K. The Activities of the Yersinia Protein Kinase A (YpkA) and Outer Protein J (YopJ) Virulence Factors Converge on an eIF2α Kinase. J. Biol. Chem. 2009, 284, 24744–24753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.-S.; Szaba, F.M.; Kummer, L.W.; Chromy, B.A.; Smiley, S.T. Yersinia pestis YopE Contains a Dominant CD8 T Cell Epitope that Confers Protection in a Mouse Model of Pneumonic Plague. J. Immunol. 2011, 187, 897–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Juarbe, N.; Shen, H.; Bergman, M.A.; Orihuela, C.J.; Dube, P.H. YopE specific CD8+ T cells provide protection against systemic and mucosal Yersinia pseudotuberculosis infection. PLoS ONE 2017, 12, e0172314. [Google Scholar] [CrossRef] [Green Version]
- Phelps, C.C.; Vadia, S.; Boyaka, P.N.; Varikuti, S.; Attia, Z.; Dubey, P.; Satoskar, A.R.; Tweten, R.; Seveau, S. A listeriolysin O subunit vaccine is protective against Listeria monocytogenes. Vaccine 2020, 38, 5803–5813. [Google Scholar] [CrossRef]
- Tanaka, Y.; Taneichi, M.; Kasai, M.; Kakiuchi, T.; Uchida, T. Liposome-Coupled Antigens Are Internalized by Antigen-Presenting Cells via Pinocytosis and Cross-Presented to CD8+ T Cells. PLoS ONE 2010, 5, e15225. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.N.; Zheng, X.; O’Connell, C.M.; Wiesenfeld, H.C.; Hillier, S.L.; Taylor, B.D.; Picard, M.D.; Flechtner, J.B.; Zhong, W.; Frazer, L.C.; et al. Identification of Chlamydia trachomatis Antigens Recognized by T Cells From Highly Exposed Women Who Limit or Resist Genital Tract Infection. J. Infect. Dis. 2016, 214, 1884–1892. [Google Scholar] [CrossRef] [Green Version]
- Morse, K.; Norimine, J.; Hope, J.C.; Brown, W.C. Breadth of the CD4+ T cell response to Anaplasma marginale VirB9-1, VirB9-2 and VirB10 and MHC class II DR and DQ restriction elements. Immunogenetics 2012, 64, 507–523. [Google Scholar] [CrossRef]
- Lopez, J.E.; Palmer, G.H.; Brayton, K.A.; Dark, M.J.; Leach, S.E.; Brown, W.C. Immunogenicity of Anaplasma marginale Type IV Secretion System Proteins in a Protective Outer Membrane Vaccine. Infect. Immun. 2007, 75, 2333–2342. [Google Scholar] [CrossRef] [Green Version]
- Thema, N.; Tshilwane, S.; Son, L.; Smith, R.; Faber, F.; Steyn, H.; van Kleef, M.; Liebenberg, J.; Pretorius, A. Ehrlichia ruminantium antigens and peptides induce cytotoxic T cell responses in vitro. Vet. Immunol. Immunopathol. 2019, 207, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nandi, B.; Hogle, K.; Vitko, N.; Winslow, G.M. CD4 T-Cell Epitopes Associated with Protective Immunity Induced following Vaccination of Mice with an Ehrlichial Variable Outer Membrane Protein. Infect. Immun. 2007, 75, 5453–5459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazi, M.; Caro-Gomez, E.; Góez, Y.; Cespedes, M.A.; Hidalgo, M.; Correa, P.; Valbuena, G. Discovery of a Protective Rickettsia prowazekii Antigen Recognized by CD8+ T Cells, RP884, Using an In Vivo Screening Platform. PLoS ONE 2013, 8, e76253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caro-Gomez, E.; Gazi, M.; Goez, Y.; Valbuena, G. Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 2014, 32, 4968–4976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Díaz-Montero, C.M.; Valbuena, G.; Yu, X.-J.; Olano, J.P.; Feng, H.-M.; Walker, D.H. Identification of CD8 T-Lymphocyte Epitopes in OmpB of Rickettsia conorii. Infect. Immun. 2003, 71, 3920–3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Montero, C.M.; Feng, H.M.; Crocquet-Valdes, P.A.; Walker, D.H. Identification of protective components of two major outer membrane proteins of spotted fever group Rickettsiae. Am. J. Trop. Med. Hyg. 2001, 65, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Xiong, X.; Jiao, J.; Yang, X.; Jiang, Y.; Wen, B.; Gong, W. Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine 2017, 35, 7204–7212. [Google Scholar] [CrossRef]
- Gong, W.; Xiong, X.; Qi, Y.; Jiao, J.; Duan, C.; Wen, B. Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice. Vaccine 2014, 32, 2027–2033. [Google Scholar] [CrossRef]
- Gong, W.; Qi, Y.; Xiong, X.; Jiao, J.; Duan, C.; Wen, B. Rickettsia rickettsiiouter membrane protein YbgF induces protective immunity in C3H/HeN mice. Hum. Vaccines Immunother. 2015, 11, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Hickman, C.J.; Stover, C.; Joseph, S.W.; Oaks, E.V. Molecular cloning and sequence analysis of a Rickettsia tsutsugamushi 22 kDa antigen containing B- and T-cell epitopes. Microb. Pathog. 1991, 11, 19–31. [Google Scholar] [CrossRef]
- Chen, W.-J.; Niu, D.-S.; Zhang, X.-Y.; Chen, M.-L.; Cui, H.; Wei, W.-J.; Wen, B.-H.; Chen, X.-R. Recombinant 56-Kilodalton Major Outer Membrane Protein Antigen of Orientia tsutsugamushi Shanxi and Its Antigenicity. Infect. Immun. 2003, 71, 4772–4779. [Google Scholar] [CrossRef] [Green Version]
- Seong, S.Y.; Park, S.G.; Huh, M.S.; Jang, W.J.; Kim, H.R.; Han, T.H.; Choi, M.S.; Chang, W.H.; Kim, I.S. Mapping of antigenic determinant regions of the Bor56 protein of Orientia tsutsugamushi. Infect. Immun. 1997, 65, 5250–5256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaiah, A.; Koralur, M.C.; Dasch, G.A. Complexity of type-specific 56 kDa antigen CD4 T-cell epitopes of Orientia tsutsugamushi strains causing scrub typhus in India. PLoS ONE 2018, 13, e0196240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, S.Y.; Huh, M.S.; Jang, W.J.; Park, S.G.; Kim, J.G.; Woo, S.G.; Choi, M.S.; Kim, I.S.; Chang, W.H. Induction of homologous immune response to Rickettsia tsutsugamushi Boryong with a partial 56-kilodalton recombinant antigen fused with the maltose-binding protein MBP-Bor56. Infect. Immun. 1997, 65, 1541–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, S.; Kim, H.-R.; Huh, M.; Park, S.; Kang, J.; Han, T.; Choi, M.; Chang, W.; Kim, I. Induction of neutralizing antibody in mice by immunization with recombinant 56 kDa protein of Orientia tsutsugamushi. Vaccine 1997, 15, 1741–1747. [Google Scholar] [CrossRef]
- Choi, S.; Jeong, H.J.; Ju, Y.R.; Gill, B.; Hwang, K.-J.; Lee, J. Protective Immunity of 56-kDa Type-Specific Antigen of Orientia tsutsugamushi Causing Scrub Typhus. J. Microbiol. Biotechnol. 2014, 24, 1728–1735. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.-Y.; Sharma, P.; Kim, G.; Kim, Y.; Min, C.-K.; Choi, M.-S.; Kim, I.-S.; Cho, N.-H. Immunization with an Autotransporter Protein of Orientia tsutsugamushi Provides Protective Immunity against Scrub Typhus. PLoS Negl. Trop. Dis. 2015, 9, e0003585. [Google Scholar] [CrossRef]
- Ha, N.-Y.; Shin, H.M.; Sharma, P.; Cho, H.A.; Min, C.-K.; Kim, H.-I.; Yen, N.T.H.; Kang, J.-S.; Kim, I.-S.; Choi, M.-S.; et al. Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen. J. Nanobiotechnol. 2016, 14, 76. [Google Scholar] [CrossRef] [Green Version]
- Scholzen, A.; Richard, G.; Moise, L.; Hartman, E.; Bleeker-Rovers, C.P.; Reeves, P.M.; Paul, S.R.; Martin, W.D.; De Groot, A.S.; Poznansky, M.C.; et al. Coxiella burnetii Epitope-Specific T-Cell Responses in Patients with Chronic Q Fever. Infect. Immun. 2019, 87, e00213-19. [Google Scholar] [CrossRef]
- Rappuoli, R.; De Gregorio, E.; Costantino, P. On the mechanisms of conjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Barel, L.A.; Mulard, L.A. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: From concept to efficacy in human. Hum. Vaccines Immunother. 2019, 15, 1338–1356. [Google Scholar] [CrossRef]
- Ihssen, J.; Kowarik, M.; Dilettoso, S.; Tanner, C.; Wacker, M.; Thöny-Meyer, L. Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Factories 2010, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon-Gonzalez, R.; Marradi, M.; Garcia, I.; Petrovsky, N.; Alvarez-Dominguez, C. Novel nanoparticle vaccines for Listeriosis. Hum. Vaccines Immunother. 2015, 11, 2501–2503. [Google Scholar] [CrossRef] [Green Version]
- Rio, E.R.-D.; Marradi, M.; González, R.C.; Cabanes, E.F.; Penadés, S.; Petrovsky, N.; Alvarez-Dominguez, C. A gold glyco-nanoparticle carrying a listeriolysin O peptide and formulated with Advax™ delta inulin adjuvant induces robust T-cell protection against listeria infection. Vaccine 2015, 33, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Gonzalez, R.; Terán-Navarro, H.; Frande-Cabanes, E.; Ferrández-Fernández, E.; Freire, J.; Penadés, S.; Marradi, M.; García, I.; Gomez-Román, J.; Yañez-Díaz, S.; et al. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities. Nanomaterials 2016, 6, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, A.; Williamson, E.; Prior, J.; Butcher, W.; Thompson, I.; Shaw, A.; Titball, R. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine 2012, 30, 6777–6782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dakterzada, F.; Mobarez, A.M.; Roudkenar, M.H.; Mohsenifar, A. Induction of humoral immune response against Pseudomonas aeruginosa flagellin(1-161) using gold nanoparticles as an adjuvant. Vaccine 2016, 34, 1472–1479. [Google Scholar] [CrossRef]
- Gregory, A.; Judy, B.M.; Qazi, O.; Blumentritt, C.A.; Brown, K.A.; Shaw, A.; Torres, A.G.; Titball, R.W. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine 2015, 11, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Pokharkar, V.; Bhumkar, D.; Suresh, K.; Shinde, Y.; Gairola, S.; Jadhav, S.S. Gold nanoparticles as a potential carrier for transmucosal vaccine delivery. J. Biomed. Nanotechnol. 2011, 7, 57–59. [Google Scholar] [CrossRef]
- Barhate, G.; Gautam, M.; Gairola, S.; Jadhav, S.; Pokharkar, V. Enhanced Mucosal Immune Responses Against Tetanus Toxoid Using Novel Delivery System Comprised of Chitosan-Functionalized Gold Nanoparticles and Botanical Adjuvant: Characterization, Immunogenicity, and Stability Assessment. J. Pharm. Sci. 2014, 103, 3448–3456. [Google Scholar] [CrossRef]
- Zhao, L.; Mahony, D.; Cavallaro, A.S.; Zhang, B.; Zhang, J.; Deringer, J.R.; Zhao, C.-X.; Brown, W.C.; Yu, C.; Mitter, N.; et al. Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS ONE 2016, 11, e0154295. [Google Scholar] [CrossRef]
- Zhang, B.; Cavallaro, A.S.; Mody, K.T.; Zhang, J.; Deringer, J.R.; Brown, W.C.; Mahony, T.J.; Yu, C.; Mitter, N. Nanoparticle-Based Delivery of Anaplasma marginale Membrane Proteins; VirB9-1 and VirB10 Produced in the Pichia pastoris Expression System. Nanomaterials 2016, 6, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manish, M.; Rahi, A.; Kaur, M.; Bhatnagar, R.; Singh, S. A Single-Dose PLGA Encapsulated Protective Antigen Domain 4 Nanoformulation Protects Mice against Bacillus anthracis Spore Challenge. PLoS ONE 2013, 8, e61885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angsantikul, P.; Thamphiwatana, S.; Gao, W.; Zhang, L. Cell Membrane-Coated Nanoparticles As an Emerging Antibacterial Vaccine Platform. Vaccines 2015, 3, 814–828. [Google Scholar] [CrossRef]
- Diwan, M. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release 2002, 85, 247–262. [Google Scholar] [CrossRef]
- Irache, J.M.; Salman, H.H.; Gomez, S.; Espuelas, S.; Gamazo, C. Poly anhydride nanoparticles as adjuvants for mucosal vaccination. Front. Biosci. 2010, 2, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, E.; Diogo, G.R.; Pepponi, I.; Van Dolleweerd, C.; Arias, M.A.; Locht, C.; Rider, C.C.; Sibley, L.; Cutting, S.M.; Loxley, A.; et al. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur. J. Immunol. 2014, 44, 440–449. [Google Scholar] [CrossRef]
- Hart, P.; Copland, A.; Diogo, G.R.; Harris, S.; Spallek, R.; Oehlmann, W.; Singh, M.; Basile, J.; Rottenberg, M.; Paul, M.; et al. Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection. Mol. Ther. 2018, 26, 822–833. [Google Scholar] [CrossRef]
- Feng, G.; Jiang, Q.; Xia, M.; Lu, Y.; Qiu, W.; Zhao, D.; Lu, L.; Peng, G.; Wang, Y. Enhanced Immune Response and Protective Effects of Nano-chitosan-based DNA Vaccine Encoding T Cell Epitopes of Esat-6 and FL against Mycobacterium Tuberculosis Infection. PLoS ONE 2013, 8, e61135. [Google Scholar] [CrossRef] [Green Version]
- Das, I.; Padhi, A.; Mukherjee, S.; Dash, D.P.; Kar, S.; Sonawane, A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology 2017, 28, 165101. [Google Scholar] [CrossRef]
- Lima, K.M.; da Santos, S.; Lima, V.M.F.; Coelho-Castelo, A.A.M.; Rodrigues, J.M.; Silva, C.L. Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis. Gene Ther. 2003, 10, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarifar, F. Plasmid DNA vaccines: Where are we now? Drugs Today 2018, 54, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Noll, A.; Roggenkamp, A.; Heesemann, J.; Autenrieth, I.B. Protective role for heat shock protein-reactive alpha beta T cells in murine yersiniosis. Infect. Immun. 1994, 62, 2784–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, B.; Morrow, M.P.; Hutnick, N.A.; Shin, T.H.; Lucke, C.E.; Weiner, D.B. Clinical Applications of DNA Vaccines: Current Progress. Clin. Infect. Dis. 2011, 53, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, A.; Riaz, H.; Dong, F.; Luo, X.; Yu, X.; Han, Y.; Chong, Z.; Han, L.; Guo, A.; Yang, L. Evaluation of efficacy, biodistribution and safety of antibiotic-free plasmid encoding somatostatin genes delivered by attenuated Salmonella enterica serovar Choleraesuis. Vaccine 2014, 32, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Sheets, R.L.; Stein, J.; Manetz, T.S.; Duffy, C.; Nason, M.; Andrews, C.; Kong, W.-P.; Nabel, G.J.; Gomez, P.L. Biodistribution of DNA Plasmid Vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile Virus Is Similar, without Integration, despite Differing Plasmid Backbones or Gene Inserts. Toxicol. Sci. 2006, 91, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Braat, H.; Rottiers, P.; Hommes, D.W.; Huyghebaert, N.; Remaut, E.; Remon, J.; van Deventer, S.J.; Neirynck, S.; Peppelenbosch, M.; Steidler, L. A Phase I Trial With Transgenic Bacteria Expressing Interleukin-10 in Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2006, 4, 754–759. [Google Scholar] [CrossRef]
- Tavel, J.A.; Martin, J.E.; Kelly, G.G.; Enama, M.E.; Shen, J.M.; Gomez, P.L.; Andrews, C.A.; Koup, R.A.; Bailer, R.T.; Stein, J.A.; et al. Safety and Immunogenicity of a Gag-Pol Candidate HIV-1 DNA Vaccine Administered by a Needle-Free Device in HIV-1-Seronegative Subjects. J. Acquir. Immune Defic. Syndr. 2007, 44, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.S.; Endsley, A.N.; Huang, L. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012, 30, 2256–2272. [Google Scholar] [CrossRef] [Green Version]
- De Serrano, L.O.; Burkhart, D.J. Liposomal vaccine formulations as prophylactic agents: Design considerations for modern vaccines. J. Nanobiotechnol. 2017, 15, 83. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; Sousa, Â.; Faria, R.; Neves, A.R.; Queiroz, J.A. Conception of Plasmid DNA and Polyethylenimine Delivery Systems with Potential Application in Field. In DNA Vaccines; Humana Press: New York, NY, USA, 2021; pp. 271–284. [Google Scholar] [CrossRef]
- Maraskovsky, E.; Brasel, K.; Teepe, M.; Roux, E.R.; Lyman, S.D.; Shortmanfi, K.; McKenna, H.J. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: Multiple dendritic cell subpopulations identified. J. Exp. Med. 1996, 184, 1953–1962. [Google Scholar] [CrossRef]
- Maraskovsky, E.; Daro, E.; Roux, E.; Teepe, M.; Maliszewski, C.R.; Hoek, J.; Caron, D.; Lebsack, M.E.; McKenna, H.J. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000, 96, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Antonysamy, M.A.; Thomson, A.W. Flt3 Ligand (Fl) and Its Influence on Immune Reactivity. Cytokine 2000, 12, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Pavot, V.; Sebastian, S.; Turner, A.V.; Matthews, J.; Gilbert, S.C. Generation and Production of Modified Vaccinia Virus Ankara (MVA) as a Vaccine Vector. Methods Mol. Biol. 2017, 1581, 97–119. [Google Scholar] [CrossRef]
- Goonetilleke, N.P.; McShane, H.; Hannan, C.M.; Anderson, R.J.; Brookes, R.H.; Hill, A.V.S. Enhanced Immunogenicity and Protective Efficacy Against Mycobacterium tuberculosis of Bacille Calmette-Guérin Vaccine Using Mucosal Administration and Boosting with a Recombinant Modified Vaccinia Virus Ankara. J. Immunol. 2003, 171, 1602–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.; Goonetilleke, N.P.; McShane, H.; Clark, S.O.; Hatch, G.; Gilbert, S.C.; Hill, A.V.S. Boosting with Poxviruses Enhances Mycobacterium bovis BCG Efficacy against Tuberculosis in Guinea Pigs. Infect. Immun. 2005, 73, 3814–3816. [Google Scholar] [CrossRef] [Green Version]
- Tameris, M.D.; Hatherill, M.; Landry, B.S.; Scriba, T.J.; Snowden, M.A.; Lockhart, S.; E Shea, J.; McClain, J.B.; Hussey, G.D.; Hanekom, W.A.; et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: A randomised, placebo-controlled phase 2b trial. Lancet 2013, 381, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Leung-Theung-Long, S.; Gouanvic, M.; Coupet, C.-A.; Ray, A.; Tupin, E.; Silvestre, N.; Marchand, J.-B.; Schmitt, D.; Hoffmann, C.; Klein, M.; et al. A Novel MVA-Based Multiphasic Vaccine for Prevention or Treatment of Tuberculosis Induces Broad and Multifunctional Cell-Mediated Immunity in Mice and Primates. PLoS ONE 2015, 10, e0143552. [Google Scholar] [CrossRef] [Green Version]
- Leung-Theung-Long, S.; Coupet, C.-A.; Gouanvic, M.; Schmitt, D.; Ray, A.; Hoffmann, C.; Schultz, H.; Tyagi, S.; Soni, H.; Converse, P.J.; et al. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis. PLoS ONE 2018, 13, e0196815. [Google Scholar] [CrossRef] [Green Version]
- Malowany, J.I.; McCormick, S.; Santosuosso, M.; Zhang, X.; Aoki, N.; Ngai, P.; Wang, J.; Leitch, J.; Bramson, J.; Wan, Y.; et al. Development of Cell-Based Tuberculosis Vaccines: Genetically Modified Dendritic Cell Vaccine Is a Much More Potent Activator of CD4 and CD8 T Cells Than Peptide- or Protein-Loaded Counterparts. Mol. Ther. 2006, 13, 766–775. [Google Scholar] [CrossRef]
- Shen, C.F.; Jacob, D.; Zhu, T.; Bernier, A.; Shao, Z.; Yu, X.; Patel, M.; Lanthier, S.; Kamen, A. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate. Vaccine 2016, 34, 3381–3387. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, V.D.; Innocentin, S.; Lefèvre, F.; Azevedo, V.; Wal, J.-M.; Langella, P.; Chatel, J.-M. Use of Native Lactococci as Vehicles for Delivery of DNA into Mammalian Epithelial Cells. Appl. Environ. Microbiol. 2006, 72, 7091–7097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagnik, B.; Padh, H.; Desai, P. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis. Microbes Infect. 2016, 18, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Mancha-Agresti, P.; Drumond, M.M.; Carmo, F.L.R.D.; Santos, M.M.; dos Santos, J.S.C.; Venanzi, F.; Chatel, J.-M.; Leclercq, S.Y.; Azevedo, V. A New Broad Range Plasmid for DNA Delivery in Eukaryotic Cells Using Lactic Acid Bacteria: In Vitro and In Vivo Assays. Mol. Ther. Methods Clin. Dev. 2017, 4, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatel, J.-M.; Pothelune, L.; Ah-Leung, S.; Corthier, G.; Wal, J.-M.; Langella, P. In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther. 2008, 15, 1184–1190. [Google Scholar] [CrossRef]
- Yurina, V. Live Bacterial Vectors—A Promising DNA Vaccine Delivery System. Med. Sci. 2018, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Lopez, M.J.V.; Schimmeck, H.; Gropengießer, J.; Middendorf, L.; Quitmann, M.; Schneider, C.; Holstermann, B.; Wacker, R.; Heussler, V.; Reimer, R.; et al. Activation of the macroautophagy pathway by Yersinia enterocoliticapromotes intracellular multiplication and egress of yersiniae from epithelial cells. Cell. Microbiol. 2019, 21, e13046. [Google Scholar] [CrossRef]
- Yoon, W.; Park, Y.; Kim, S.; Bang, I.S. Development of an Oral Salmonella-Based Vaccine Platform against SARS-CoV-2. Vaccines 2022, 10, 67. [Google Scholar] [CrossRef]
- Shata, M.T.; Hone, D.M. Vaccination with a Shigella DNA Vaccine Vector Induces Antigen-Specific CD8 + T Cells and Antiviral Protective Immunity. J. Virol. 2001, 75, 9665–9670. [Google Scholar] [CrossRef] [Green Version]
- Xu, F. Immunogenicity of an HIV-1 gag DNA vaccine carried by attenuated Shigella. Vaccine 2003, 21, 644–648. [Google Scholar] [CrossRef]
- Pizarro-Cerdá, J.; Cossart, P. Listeria monocytogenes: Cell biology of invasion and intracellular growth. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Kuo, C.-Y.; Ho, J.K.; White, P.J.; Jazayeri, J.A.; Pouton, C.W. A suicidal strain of Listeria monocytogenes is effective as a DNA vaccine delivery system for oral administration. Vaccine 2017, 35, 5115–5122. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef] [PubMed]
- Hajj, K.A.; Whitehead, K.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Azizian, K.T.; Haque, A.A.; Henderson, J.M.; Hendel, A.; Shore, S.; Antony, J.S.; Hogrefe, R.I.; Kormann, M.S.; Porteus, M.H.; et al. Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification. Mol. Ther. Nucleic Acids 2018, 12, 530–542. [Google Scholar] [CrossRef]
- Sartorius, R.; Trovato, M.; Manco, R.; D’Apice, L.; De Berardinis, P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. npj Vaccines 2021, 6, 127. [Google Scholar] [CrossRef]
- Sun, T.; Holowka, T.; Song, Y.; Zierow, S.; Leng, L.; Chen, Y.; Xiong, H.; Griffith, J.; Nouraie, M.; Thuma, P.E.; et al. A Plasmodium -encoded cytokine suppresses T-cell immunity during malaria. Proc. Natl. Acad. Sci. USA 2012, 109, E2117–E2126. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.B.; Siu, E.; Sun, T.; Exler, V.; Brito, L.; Hekele, A.; Otten, G.; Augustijn, K.; Janse, C.J.; Ulmer, J.B.; et al. Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection. Nat. Commun. 2018, 9, 2714. [Google Scholar] [CrossRef]
- Raj, D.K.; Das Mohapatra, A.; Jnawali, A.; Zuromski, J.; Jha, A.; Cham-Kpu, G.; Sherman, B.; Rudlaff, R.M.; Nixon, C.E.; Hilton, N.; et al. Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature 2020, 582, 104–108. [Google Scholar] [CrossRef]
Vaccine | E | C | L | Example |
---|---|---|---|---|
WCA | X | V. cholerae (Dukoral, Shanchol) [24,25] | ||
X | C. burnetii (Q-Vax) [26] | |||
X | R. rickettsii [27,28,29] | |||
X | R. prowazekii [28,29] (was used for the immunization of soldiers during the First World War) | |||
X | O. tsutsugamushi [28,29] | |||
LAV | X | M. tuberculosis (BCG) | ||
X | S. enterica ssp. [30] | |||
X | B. anthracis (BioThrax) | |||
X | F. tularensis (LVS) [31] | |||
X | V. cholerae (Vaxchora) | |||
X | O. tsutsugamushi [32,33,34] | |||
X | R. prowazekii [32,33,34] | |||
Live recombinant bacteria | X | M. tuberculosis (M. vaccae expressing M. tuberculosis antigens) [35] | ||
X | M. tuberculosis (VPM1002; BCG with urease C replaced by LLO from L. monocytogenes) [36] | |||
X | R. rickettsii (M. vaccae expressing OmpA fragments from R. rickettsii) [37] | |||
X | L. monocytogenes (S. Typhimurium expressing a fusion protein of Salmonella SspH2 and p60 antigen from L. monocytogenes) [38] | |||
X | L. monocytogenes (S. Typhimurium transferring DNA encoding for a nonhemolytic LLO variant) [39] | |||
X | L. monocytogenes (S. Typhimurium expressing fusion proteins of YopE and LLO or p60) [40,41] | |||
X | L. monocytogenes (Y. pseudotuberculosis expressing a fusion protein of YopE and LLO) [42] | |||
X | S. aureus (S. Typhimurium expressing SaEsxA and SaEsxB from S. aureus) [43] | |||
X | C. burnetii (L. monocytogenes expressing C. burnetii CD8+ T cell antigens) [44] | |||
Toxoid/subunit vaccines | X | C. diphteriae (dTAP combined vaccine) | ||
X | C. tetani (dTAP combined vaccine) | |||
X | B. pertussis (dTAP combined vaccine) | |||
X | N. meningitidis (Trumenba) | |||
X | B. anthracis (rPA102) [45,46,47,48,49] | |||
X | S. aureus [50] | |||
Polysaccharide conjugates | X | H. influenzae: PedvaxHIB, ActHIB, HibTITER | ||
X | S. pneumoniae: Prevnar, Pneumovax 23 | |||
X | N. meningitidis: Menactra, Menveo, Menomune | |||
OMVs | X | N. meningitidis serogroup B (Bexsero/4CMenB, VA-MENGOC-BC, MeNZB, MenBVac) | ||
X | V. cholerae [51,52] | |||
X | B. pertussis [51,52] | |||
X | M. smegmatis [51,52] | |||
X | BCG [51,52] | |||
X | C. trachomatis [51,52] | |||
X | T. pallidum [51,52] | |||
BGs | X X X | Y. pestis [53] S. Typhimurium (S. enteritides BGs expressing flagellin) [54]) N. ghonorhea (S. enteritides BGs carrying DNA for N. ghonorhea antigens) [55]) | ||
Plasmid DNA | X | M. tuberculosis (hsp65 from M. leprae) [56], Esat6 T cell epitopes) [57] B. anthracis (PA antigen) [58] | ||
X | L. monocytogenes (LLO or LLO91-99 CD8+ T cell epitope) [39,59,60,61] | |||
X | Y. pestis (V antigen) [62] | |||
X | Y. enterocolitica (hsp60+/−IFNγ coexpression) [63,64] | |||
X | C. pneumonia, enterotoxic E. coli, H. pylori, L. interrogans, P. aeruginosa, B. burgdorferi, S. pneumoniae, S. aureus, Chlamydia ssp. [31] | |||
Viral vectors | X | M. tuberculosis (85A antigen) [65] | ||
Bacterial vectors | X | B. abortus (Y. enterolica encoding bacterioferritin) [66] | ||
X | H. pylori (S. Typhimurium encoding urease A and B subunits [67] | |||
X | M. tuberculosis (L. monocytogenes encoding antigen 85 complex and MPB7MpT51 antigen) [68] | |||
NPs | X | please see Section 2.8. Antigen delivery with nanoparticles (NPs) |
Pathogen | Antigen | Ref. |
---|---|---|
Chlamydia | Immunodominant CD8+ T cell antigens: CT529, CT511, CT461 (C. trachomatis) | [141] |
Anaplasma | VirB9-1, VirB9-2, VirB10, conjugal transfer protein (CTP) (A. marginale) | [142,143] |
Ehrlichia | CD8+ T cell antigens: Erum0660, Erum2330, Erum2540, Erum2580, Erum5000 (E. ruminantum) CD4+ T cell antigen: OMP-19 (E. muris, E. chaffeensis) | [144,145] |
Rickettsia ssp. | SFG rickettsiae: OmpA, OmpB, Adr2, YbgF TG rickettsiae: OmpB, CD8+ T cell antigens: RP403, RP598 RP739, RP778 | [37,146,147,148,149,150,151,152] |
Orientia | Sta22, Sta56, ScaA | [153,154,155,156,157,158,159,160,161] |
Coxiella | CD8+ T cell antigens: 17 T4SS-related proteins (C. burnetii) CD4+ T cell antigens: CBU_1835/protoporphyrinogen oxidase, CBU_1513/protoporphyrinogen oxidase, CBU_1398/SucB, CBU_0718, CBU_0307/outer membrane protein | [44,162] |
NP Carrier | Bacterium | Antigen | Ref. |
---|---|---|---|
AuNPs and chitosan-functionalized AuNPs (CsAuNPs) | L. monocytogenes | Listeriolysin peptide LLO91-99 or glyceraldehyde-3-phosphate dehydrogenase (GAPDH)1-22 peptide | [166,167,168] |
Y. pestis | F1 antigen | [169] | |
B. mallei | Lipopolysaccharide | [171] | |
P. aeruginosa | Flagellin peptide 1-161 (Flagellin1-161) | [170] | |
C. tetani | Tetanus toxoid | [172,173] | |
E. coli | Bacterial OMVs | [120] | |
Zinc oxide NPs | O. tsutsugamushi | ScaA protein | [161] |
Silica NPs | A. marginale | VirB9-1, VirB9-2, and VirB10 | [174,175] |
Chitosan NPs | M. tuberculosis | DNA encoding for T cell epitopes from Esat6 and FL | [182] |
M. tuberculosis | Mycobacterial lipids | [183] | |
PLGA nanospheres | M. tuberculosis | Plasmid DNA encoding for mycobacterial hsp65 | [184] |
B. anthracis | Protective antigen (PA) domain 4 | [176] | |
S. aureus | Red blood cell membrane and insertion of the alpha toxin (α-hemolysin (Hlα)) into the membrane | [177] | |
C. tetani | Tetanus toxoid | [178] | |
PA NPs | S. flexneri | Encapsulated bacterial OMVs | [121] |
S. enteritidis | Flagellin | [179] | |
Yellow carnauba wax NPs | M. tuberculosis | Fusion protein of Acr, Ag85B, and heparin-binding hemagglutinin adhesion antigen (HBHA) | [181] |
M. tuberculosis | Ag85B and HBHA | [180] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osterloh, A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines 2022, 10, 751. https://doi.org/10.3390/vaccines10050751
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines. 2022; 10(5):751. https://doi.org/10.3390/vaccines10050751
Chicago/Turabian StyleOsterloh, Anke. 2022. "Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria" Vaccines 10, no. 5: 751. https://doi.org/10.3390/vaccines10050751