Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside
Abstract
:1. Introduction
2. The Fundamental Design of Novel Therapeutics for CHB: Targeting Both the Virus and the Host Immunity
3. Innovative Therapy Targeting the Virus to Control HBV Replication
3.1. Entry Inhibitor
3.2. Inhibitors of cccDNA
3.3. Core Protein Allosteric Modulators
3.4. RNA Interference
3.5. Summation of Innovative Therapy for CHB Targeting the Virus
4. Innovative Immune Therapy for Treating CHB
4.1. Immune Therapeutic Treatment of CHB Patients by Polyclonal Immune Modulators
4.2. Preclinical Studies with HBV Antigen-Based Immune Therapy in Animal Models of Chronic HBV Infection in the Benches and Subsequent Clinical Trials in the Bedsides of CHB Patients
4.3. HBsAg-Based Vaccine Therapy in Patients with CHB
4.4. HBsAg plus Anti-HBs Complex Vaccine for CHB
4.5. Combination Therapy of HBsAg-Based Vaccine, Multi HBV Antigen-Based Vaccine with Antiviral Drugs for Treating CHB
4.6. HBsAg-Based DNA Vaccine for Treating CHB Patients
4.7. Hepatitis B Core Antigen (HBcAg) as an Adjuvant for Treatment of CHB Patients: Preclinical Studies in the Benches and Clinical Trials in Patient’s Bedsides
4.8. Compilation of HBV-Antigen-Specific Immune Therapy for CHB
4.8.1. Limitation of HBsAg-Specific Innovative Immune Therapy for CHB Therapy
4.8.2. HBsAg Escape Mutant and Innovative Therapy for CHB
4.8.3. Possible Role of Immune Therapy against Hepatitis Delta Virus
5. Other New and Novel Therapeutic Approaches for Management of CHB
5.1. Role of Checkpoint Inhibitors for Treating CHB
5.2. Blocking Negative Impact of Circulating HBsAg on Host Immunity in CHB Patients by HBsAg Inhibitor
5.3. Engineered T Cells
5.4. Toll-Like Receptor (TLR) Antagonist
6. Summary Based on Past Experiences, Present Realities, and Future Projections about Innovative Therapies for CHB
6.1. Past Experiences
6.2. Present Realities
6.3. Future Projections
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Global Hepatitis Report 2017; World Health Organization: Geneva, Switzerland, 2017; Available online: http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf/ (accessed on 20 November 2021).
- MacLachlan, J.H.; Cowie, B.C. Hepatitis B virus epidemiology. Cold Spring Harb. Perspect. Med. 2015, 5, a021410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laras, A.; Koskinas, J.; Dimou, E.; Kostamena, A.; Hadziyannis, S.J. Intrahepatic levels and replicative activity of covalently closed circular hepatitis B virus DNA in chronically infected patients. Hepatology 2006, 44, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.-H. Natural history of hepatitis B virus infection: Pediatric perspective. J. Gastroenterol. 2010, 46, 1–8. [Google Scholar] [CrossRef]
- McMahon, B.J. The natural history of chronic hepatitis B virus infection. Hepatology 2009, 49, S45–S55. [Google Scholar] [CrossRef]
- Asselah, T.; Lada, O.; Moucari, R.; Martinot, M.; Boyer, N.; Marcellin, P. Interferon therapy for chronic hepatitis B. Clin. Liver Dis. 2007, 11, 839–849. [Google Scholar] [CrossRef]
- Grossi, G.; Viganò, M.; Loglio, A.; Lampertico, P. Hepatitis B virus long-term impact of antiviral therapy nucleot(s)ide analogues (NUCs). Liver Int. 2017, 37, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Zoulim, F.; Lebossé, F.; Levrero, M. Current treatments for chronic hepatitis B virus infections. Curr. Opin. Virol. 2016, 18, 109–116. [Google Scholar] [CrossRef]
- Yip, T.C.; Wong, V.W.; Tse, Y.K.; Liang, L.Y.; Hui, V.W.; Zhang, X.; Li, G.L.; Lui, G.C.Y.; Chan, H.L.Y.; Wong, G.L.H. Similarly low risk of hepatocellular carcinoma after either spontaneous or nucleos(t)ide analogue-induced hepatitis B surface antigen loss. Aliment. Pharmacol. Ther. 2020, 53, 321–331. [Google Scholar]
- De Fraga, R.S.; Van Vaisberg, V.; Mendes, L.C.A.; Carrilho, F.J.; Ono, S.K. Adverse events of nucleos(t)ide analogues for chronic hepatitis B: A systematic review. J. Gastroenterol. 2020, 55, 496–514. [Google Scholar] [CrossRef] [Green Version]
- Liem, K.S.; Fung, S.; Wong, D.K.; Yim, C.; Noureldin, S.; Chen, J.; Feld, J.J.; Hansen, B.E.; Janssen, H.L.A. Limited sustained response after stopping nucleos(t)ide analogues in patients with chronic hepatitis B: Results from a randomised controlled trial (Toronto STOP study). Gut 2019, 68, 2206–2213. [Google Scholar] [CrossRef]
- Wu, J.; Han, M.; Li, J.; Yang, X.; Yang, D. Immunopathogenesis of HBV Infection. Adv. Exp. Med. Biol. 2020, 1179, 71–107. [Google Scholar]
- Balmasova, I.P.; Yushchuk, N.D.; Mynbaev, O.; Alla, N.R.; Malova, E.; Shi, Z.; Gao, C.-L. Immunopathogenesis of chronic hepatitis B. World J. Gastroenterol. 2014, 20, 14156–14171. [Google Scholar] [CrossRef]
- Levy, G.A.; Chisari, F.V. The Immunopathogenesis of Chronic HBV Induced Liver Disease. Adv. Exp. Med. Biol. 2020, 1179, 71–107. [Google Scholar]
- Nassal, M. HBV cccDNA: Viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 2015, 64, 1972–1984. [Google Scholar] [CrossRef] [Green Version]
- Ruiz de Galarreta, M.; Lujambio, A. Therapeutic editing of hepatocyte genome in vivo. J. Hepatol. 2017, 67, 818–828. [Google Scholar] [CrossRef] [Green Version]
- Herrscher, C.; Roingeard, P.; Blanchard, E. Hepatitis B Virus Entry into Cells. Cells 2020, 9, 1486. [Google Scholar] [CrossRef]
- Bogomolov, P.; Alexandrov, A.; Voronkova, N.; Macievich, M.; Kokina, K.; Petrachenkova, M.; Lehr, T.; Lempp, F.A.; Wedemeyer, H.; Haag, M.; et al. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study. J. Hepatol. 2016, 65, 490–498. [Google Scholar] [CrossRef]
- Kang, C.; Syed, Y.Y. Bulevirtide: First Approval. Drugs 2020, 80, 1601–1605. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Schoneweis, K.; Bogomolov, P.O.; Voronkova, N.; Chulanov, V.; Stepanova, T.; Bremer, B.; Allweiss, L.; Dandri, M.; Burhenne, J.; et al. Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myr-cludex B in cwith PEG-interferon Alpha 2a in patients with chronic HBV/HDV co-infection. J. Hepatol. 2019, 70, 81. [Google Scholar] [CrossRef]
- Yuen, M.F.; Gane, E.J.; Kim, D.J.; Weilert, F.; Yuen Chan, H.L.; Lalezari, J.; Hwang, S.G.; Nguyen, T.; Flores, O.; Hartman, G.; et al. Antiviral activity, safety, and pharmacokinetics of capsid assembly modulator NVR 3–778 in patients with chronic HBV infection. Gastroenterology 2019, 156, 1392–1403.e7. [Google Scholar] [CrossRef] [Green Version]
- Zoulim, F.; Lenz, O.; Vandenbossche, J.J.; Talloen, W.; Verbinnen, T.; Moscalu, I.; Streinu-Cercel, A.; Bourgeois, S.; Buti, M.; Crespo, J.; et al. JNJ-56136379, an HBV Capsid assembly modulator, is well-tolerated and has antiviral activity in a phase 1 study of patients with chronic infection. Gastroenterology 2020, 159, 521–533.e9. [Google Scholar] [CrossRef]
- Ma, X.; Lalezari, J.; Nguyen, T.; Bae, H.; Schiff, E.R.; Fung, S.; Yuen, R.M.F.; Hassanein, T.; Hann, H.W.; Elkhashab, M.; et al. LBO-06-Interim safety and efficacy results of the ABI-H0731 phase 2a program exploring the combination of ABI-H0731 with Nuc therapy in treatment-naive and treatment-suppressed chronic hepatitis B patients. J. Hepatol. 2019, 70, e130. [Google Scholar] [CrossRef]
- Nayagam, J.S.; Cargill, Z.C.; Agarwal, K. The Role of RNA Interference in Functional Cure Strategies for Chronic Hepatitis, B. Curr. Hepatol. Rep. 2020, 19, 362–369. [Google Scholar] [CrossRef]
- Yuen, M.; Schiefke, I.; Yoon, J.; Ahn, S.H.; Heo, J.; Kim, J.H.; Chan, H.L.Y.; Yoon, K.T.; Klinker, H.; Manns, M.; et al. RNA Interference therapy with ARC-520 results in prolonged hepatitis B surface antigen response in patients with chronic hepatitis B infection. Hepatology 2019, 72, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Gane, E.J.; Locarnini, S.; Lim, T.H.; Strasser, S.; Sievert, W.; Cheng, W.; Thompson, A.; Given, B.; Schluep, T.; Hamilton, J.; et al. First results with rna interference (rnai) in chronic hepatitis b (chb) using ARO-HBV. Hepatology 2018, 68, 1463A. [Google Scholar]
- Tsai, K.N.; Kuo, C.F.; Ou, J.J. Mechanisms of Hepatitis B Virus Persistence. Trends Microbiol. 2018, 26, 33–42. [Google Scholar] [CrossRef]
- Fanning, G.C.; Zoulim, F.; Hou, J.; Bertoletti, A. Therapeutic strategies for hepatitis B virus infection: Towards a cure. Nat. Rev. Drug. Discov. 2019, 18, 827–844. [Google Scholar] [CrossRef]
- Iannacone, M.; Guidotti, L.G. Immunobiology and pathogenesis of hepatitis B virus infection. Nat. Rev. Immunol. 2021, 22, 19–32. [Google Scholar] [CrossRef]
- Tilg, H.; Vogel, W.; Tratkiewicz, J.; Aulitzky, W.E.; Herold, M.; Gruber, M.; Geissler, D.; Umlauft, F.; Judmaier, G.; Schwulera, U.; et al. Pilot study of natural human interleukin-2 in patients with chronic hepatitis B: Immunomodulatory and antiviral effects. J. Hepatol. 1993, 19, 259–267. [Google Scholar] [CrossRef]
- Artillo, S.; Pastore, G.; Alberti, A.; Milella, M.; Santantonio, T.; Fattovich, G.; Giustina, G.; Ryff, J.-C.; Chaneac, M.; Bartolomé, J.; et al. Double-blind, randomized controlled trial of interleukin-2 treatment of chronic hepatitis B. J. Med. Virol. 1998, 54, 167–172. [Google Scholar] [CrossRef]
- Carreño, V.; Zeuzem, S.; Hopf, U.; Marcellin, P.; Cooksley, W.E.; Fevery, J.; Diago, M.; Reddy, R.; Peters, M.; Rittweger, K.; et al. A phase I/II study of recombinant human interleukin-12 in patients with chronic hepatitis B. J. Hepatol. 2000, 32, 317–324. [Google Scholar] [CrossRef]
- Martín, J.; Quiroga, J.A.; Bosch, O. Changes in cytokine production during therapy with granulocyte-macrophage colo-ny-stimulating factor in patients with chronic hepatitis B. Hepatology 1994, 20, 1156–1161. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.; García, R.; Rua, M.J.; Serrano, B.; Moraleda, G.; Feijoo, E.; Bartolomé, J.; Ortiz, F.; Castillo, I.; Carreño, V. Le-vamisole and interferon in children with chronic hepatitis B. Hepatology 1993, 18, 264–269. [Google Scholar] [CrossRef]
- Farhat, B.A.; Marinos, G.; Daniels, H.M.; Naoumov, N.V.; Williams, R. Evaluation of efficacy and safety of thymus humoral fac-tor-gamma 2 in the management of chronic hepatitis B. J. Hepatol. 1995, 23, 21–27. [Google Scholar] [CrossRef]
- Woltman, A.M.; Ter Borg, M.J.; Binda, R.S.; Sprengers, D.; von Blomberg, B.M.; Scheper, R.J.; Hayashi, K.; Nishi, N.; Boonstra, A.; van der Molen, R. Alpha-galactosylceramide in chronic hepatitis B infection: Results from a randomized placebo-controlled Phase I/II trial. Antivir. Ther. 2009, 14, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Iino, S.; Toyota, J.; Kumada, H.; Kiyosawa, K.; Kakumu, S.; Sata, M.; Suzuki, H.; Martins, E.B. The efficacy and safety of thymosin alpha-1 in Japanese patients with chronic hepatitis B; results from a randomized clinical trial. J. Viral Hepat. 2005, 12, 300–306. [Google Scholar] [CrossRef]
- You, J.; Zhuang, L.; Cheng, H.-Y.; Yan, S.-M.; Yu, L.; Huang, J.-H.; Tang, B.-Z.; Huang, M.-L.; Ma, Y.-L.; Chongsuvivatwong, V.; et al. Efficacy of thymosin alpha-1 and interferon alpha in treatment of chronic viral hepatitis B: A randomized controlled study. World J. Gastroenterol. 2006, 12, 6715–6721. [Google Scholar] [CrossRef]
- Chisari, F.V. Hepatitis B Virus Transgenic Mice: Models of Viral Immunobiology and Pathogenesis. Transgenic Models Hum. Viral Immunol. Dis. 1996, 206, 149–173. [Google Scholar]
- Akbar, S.M.F.; Onji, M. Hepatitis B virus (HBV)-transgenic mice as an investigative tool to study immunopathology during HBV infection. Int. J. Exp. Pathol. 2002, 79, 279–291. [Google Scholar] [CrossRef]
- Liu, Y.; Maya, S.; Ploss, A. Animal models of hepatitis B virus infection-success, challenges, and future directions. Viruses 2021, 13, 777. [Google Scholar] [CrossRef]
- Araki, K.; Miyazaki, J.; Hino, O.; Tomita, N.; Chisaka, O.; Matsubara, K.; Yamamura, K. Expression and replication of hepatitis B virus genome in transgenic mice. Proc. Natl. Acad. Sci. USA 1989, 86, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Akbar, S.F.; Kajino, K.; Tanimoto, K.; Kurose, K.; Masumoto, T.; Michitaka, K.; Horiike, N.; Onji, M. Placebo-controlled trial of vaccination with hepatitis B virus surface antigen in hepatitis B virus transgenic mice. J. Hepatol. 1997, 26, 131–137. [Google Scholar] [CrossRef]
- Wirth, S.; Guidotti, L.G.; Ando, K.; Schlicht, H.J.; Chisari, F.V. Breaking tolerance leads to autoantibody production but not au-toimmune liver disease in hepatitis B virus envelope transgenic mice. J. Immunol. 1995, 154, 2504–2515. [Google Scholar]
- Shen, Z.-Y.; Zheng, W.-P.; Liu, T.; Yang, Y.; Song, H.-L. Effects of dendritic cells from hepatitis B virus transgenic mice-stimulated au-tologous lymphocytes on hepatitis B virus replication: A study on the impact of specific sensitized effector cells on in vitro virus replication. Viral. Immunol. 2015, 29, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Akbar, S.M.; Inaba, K.; Onji, M. Upregulation of MHC class II antigen on dendritic cells from hepatitis B virus transgenic mice by interferon-gamma: Abrogation of immune response defect to a T-cell-dependent antigen. Immunology 1996, 87, 519–527. [Google Scholar] [CrossRef]
- Pol, S.; Driss, F.; Michel, M.-L.; Nalpas, B.; Berthelot, P.; Brechot, C. Specific vaccine therapy in chronic hepatitis B infection. Lancet 1994, 344, 342. [Google Scholar] [CrossRef]
- Senturk, H.; Tabak, F.; Akdogan, M.; Erdem, L.; Mert, A.; Ozaras, R.; Sander, E.; Ozbay, G.; Badur, S. Therapeutic vaccination in chronic hepatitis B. J. Gastroenterol. Hepatol. 2002, 17, 72–76. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, X.X.; Yao, X.; Jiang, J.H.; Xie, Y.H.; Yuan, Z.H.; Wen, Y.M. Serum HBeAg sero-conversion correlated with de-crease of HBsAg and HBV DNA in chronic hepatitis B patients treated with a therapeutic vaccine. Vaccine 2010, 28, 8169–8174. [Google Scholar] [CrossRef]
- Yalcin, K.; Acar, M.; Degertekin, H. Specific Hepatitis B Vaccine Therapy in Inactive HBsAg Carriers: A Randomized Controlled Trial. Infection 2003, 31, 221–225. [Google Scholar] [CrossRef]
- Pol, S.; Nalpas, B.; Driss, F.; Michel, M.-L.; Tiollais, P.; Denis, J.; Bréchot, C. Efficacy and limitations of a specific immunotherapy in chronic hepatitis B. J. Hepatol. 2001, 34, 917–921. [Google Scholar] [CrossRef]
- Wen, Y.-M.; Wu, X.-H.; Hu, D.-C.; Zhang, Q.-P.; Guo, S.-Q. Hepatitis B vaccine and anti-HBs complex as approach for vaccine therapy. Lancet 1995, 345, 1575–1576. [Google Scholar] [CrossRef]
- Xu, D.Z.; Zhao, K.; Guo, L.M.; Li, L.J.; Xie, Q.; Ren, H.; Zhang, J.M.; Xu, M.; Wang, H.F.; Huang, W.X.; et al. A randomized con-trolled phase IIb trial of antigen-antibody immunogenic complex therapeutic vaccine in chronic hepatitis B patients. PLoS ONE 2008, 3, e2565. [Google Scholar] [CrossRef]
- Xu, D.Z.; Wang, X.Y.; Shen, X.L.; Gong, G.Z.; Ren, H.; Guo, L.M.; Sun, A.M.; Xu, M.; Li, L.J.; Guo, X.H.; et al. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: Experiences and findings. J. Hepatol. 2013, 59, 450–453. [Google Scholar] [CrossRef]
- Dahmen, A.; Herzog-Hauff, S.; Böcher, W.O.; Galle, P.R.; Löhr, H.F. Clinical and immunological efficacy of intradermal vaccine plus lamivudine with or without interleukin-2 in patients with chronic hepatitis B. J. Med. Virol. 2002, 66, 452–460. [Google Scholar] [CrossRef]
- Horiike, N.; Fazle Akbar, S.M.; Michitaka, K.; Joukou, K.; Yamamoto, K.; Kojima, N.; Hiasa, Y.; Abe, M.; Onji, M. In vivo immun-ization by vaccine therapy following virus suppression by lamivudine: A novel approach for treating patients with chronic hepa-titis B. J. Clin. Virol. 2005, 32, 156–161. [Google Scholar] [CrossRef]
- Le Hoa, P.T.; Huy, N.T.; Thu, L.T.; Nga, C.N.; Nakao, K.; Eguchi, K.; Chi, N.H.; Hoang, B.H.; Hirayama, K. Randomized controlled study investigating viral suppression and serological response following pre-S1/pre-S2/S vaccine therapy combined with lamivudine treatment in HBeAg-positive patients with chronic hepatitis B. Antimicrob. Agents. Chemother. 2009, 53, 5134–5140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandepapelière, P.; Lau, G.K.; Leroux-Roels, G.; Horsmans, Y.; Gane, E.; Tawandee, T.; bin Merican, M.S.; Win, K.M.; Treop, C.; Cooksley, G.; et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: A ran-domized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine 2007, 25, 8585–8597. [Google Scholar] [CrossRef]
- Oka, Y.; Akbar, S.M.F.; Horiike, N.; Joko, K.; Onji, M. Mechanism and therapeutic potential of DNA-based immunization against the envelope proteins of hepatitis B virus in normal and transgenic mice. Immunology 2001, 103, 90–97. [Google Scholar] [CrossRef]
- Fontaine, H.; Kahi, S.; Chazallon, C.; Bourgine, M.; Varaut, A.; Buffet, C.; Godon, O.; Meritet, J.F.; Saidi, Y.; Michel, M.L.; et al. An-ti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: A randomised trial-ANRS HB02 VAC-ADN. Gut 2015, 64, 139–147. [Google Scholar] [CrossRef]
- Lobaina, Y.; Palenzuela, D.; García, D.; Rodrfguez, D.; Pichardo, D.; Muzio, V.; Aguilar, J.C. Comparative study of the immuno-genicity and immunoenhancing effects of two hepatitis B core antigen variants in mice by nasal administration. Vaccine 2006, 24, S58–S59. [Google Scholar] [CrossRef]
- Bourgine, M.; Crabe, S.; Lobaina, Y.; Guillen, G.; Aguilar, J.C.; Michel, M.L. Nasal route favors the induction of CD4+ T cell re-sponses in the liver of HBV-carrier mice immunized with a recombinant hepatitis B surface- and core-based therapeutic vaccine. Antivir. Res. 2018, 153, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.M.F.; Chen, S.; Al-Mahtab, M.; Abe, M.; Hiasa, Y.; Onji, M. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus. Antivir. Res. 2012, 96, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, A.A.; Delgado, C.G.; Estévez, Z.C.; Martínez, J.C.; Ríos, G.V.; Aureoles-Roselló, S.M.; Zaldívar, R.A.; Guzmán, M.A.; Baile, N.F.; Reyes, P.D.; et al. Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant hepatitis B surface and core antigens. Int. J. Infect. Dis. 2007, 11, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mahtab, M.; Akbar, S.M.F.; Aguilar, J.C.; Uddin, H.; Khan, S.I.; Rahman, S. Therapeutic potential of a combined hepatitis B virus surface and core antigen vaccine in patients with chronic hepatitis B. Hepatol. Int. 2013, 7, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Al Mahtab, M.; Akbar, S.M.F.; Aguilar, J.C.; Guillen, G.; Penton, E.; Tuero, A.; Yoshida, O.; Hiasa, Y.; Onji, M. Treatment of chronic hepatitis B naïve patients with a therapeutic vaccine containing HBs and HBc antigens (a randomized, open and treat-ment-controlled phase III clinical trial). PLoS ONE 2018, 13, e0201236. [Google Scholar] [CrossRef]
- Akbar, S.M.F.; Al Mahtab, M.; Aguilar, J.C.; Yoshida, O.; Penton, E.; Guillen, G.; Hiasa, Y. Sustained antiviral and liver protection by a nasal therapeutic vaccine (NASVAC), containing both HBsAg and HBcAg) in patients with chronic hepatitis B; 2-year fol-low-up of phase III clinical trial. Pathogens 2021, 10, 1440. [Google Scholar] [CrossRef]
- Akbar, S.M.F.; Al Mahtab, M.; Aguilar, J.C.; Yoshida, O.; Khan, S.; Penton, E.; Gerardo, G.N.; Hiasa, Y. The Safety and Efficacy of a Therapeutic Vaccine for Chronic Hepatitis B: A Follow-Up Study of Phase III Clinical Trial. Vaccines 2021, 10, 45. [Google Scholar] [CrossRef]
- Yoshida, O.; Imai, Y.; Shiraishi, K.; Tokumoto, Y.; Sanada, T.; Tsukiyama-Kohara, K.; Miyazaki, T.; Kamishita, T.; Aguilar, J.C.; Guillen, G.E. HBsAg Reduction by Nasal Administration of a Therapeutic Vaccine Containing HBsAg and HBcAg (NASVAC) in Patients with Chronic HBV Infection: The Results of 18 Months Follow-Up. In The Liver Meeting Digital ExperienceTM.; American Association for the Study of Liver Diseases: Boston, MA, USA, 2020. [Google Scholar]
- Gaggar, A.; Coeshott, C.; Apelian, D.; Rodell, T.; Armstrong, B.R.; Shen, G.; Subramanian, G.M.; McHutchison, J.G. Safety, tolerability and immunogenicity of GS-4774, a hepatitis B virus-specific therapeutic vaccine, in healthy subjects: A randomized study. Vaccine 2014, 32, 4925–4931. [Google Scholar] [CrossRef] [Green Version]
- Lok, A.S.; Pan, C.Q.; Han, S.-H.B.; Trinh, H.N.; Fessel, W.J.; Rodell, T.; Massetto, B.; Lin, L.; Gaggar, A.; Subramanian, G.M.; et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J. Hepatol. 2016, 65, 509–516. [Google Scholar] [CrossRef]
- Moradpour, D.; Wands, J.R.; Melegari, M. Chasing the escape mutant. Hepatology 1993, 18, 1011–1014. [Google Scholar] [CrossRef]
- Carman, W.F.; Zanetti, A.R.; Karayiannis, P.; Waters, J.; Manzillo, G.; Tanzi, E.; Zuckerman, A.J.; Thomas, H.C. Vaccine-induced escape mutant of hepatitis B virus. Lancet 1990, 336, 325–329. [Google Scholar] [CrossRef]
- Sheldon, J.; Soriano, V. Hepatitis B virus escape mutants induced by antiviral therapy. J. Antimicrob. Chemother. 2008, 61, 766–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, C.; Da, B.; Glenn, B.S. HBV/HDV coinfection: A challenge for therapeutics. Clin. Liver. Dis. 2019, 23, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Fisicaro, P.; Valdatta, C.; Massari, M.; Loggi, E.; Biasini, E.; Sacchelli, L.; Cavallo, M.C.; Silini, E.M.; Andreone, P.; Missale, G.; et al. An-tiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis, B. Gastroenterology 2010, 138, 682–693. [Google Scholar] [CrossRef]
- Balsitis, S.; Gali, V.; Mason, P.J.; Chaniewski, S.; Levine, S.M.; Wichroski, M.J.; Feulner, M.; Song, Y.; Granaldi, K.; Loy, J.K.; et al. Safety and efficacy of anti-PD-L1 therapy in the woodchuck model of HBV infection. PLoS ONE 2018, 13, e0190058. [Google Scholar] [CrossRef] [Green Version]
- Gane, E.; Verdon, D.J.; Brooks, A.E.; Gaggar, A.; Nguyen, A.H.; Subramanian, G.M.; Schwabe, C.; Dunbar, P.R. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study. J. Hepatol. 2019, 71, 900–907. [Google Scholar] [CrossRef]
- Al-Mahtab, M.; Bazinet, M.; Vaillant, A. Safety and Efficacy of Nucleic Acid Polymers in Monotherapy and Combined with Immu-notherapy in Treatment-Naive Bangladeshi Patients with HBeAg+ Chronic Hepatitis B Infection. PLoS ONE 2016, 11, e0156667. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, M.; Pântea, V.; Placinta, G.; Iurie, M.; Valentin, C.; Lilia, C.; Pavlina, J.; Liviu, I.; Valentina, S.; Tatiana, M.; et al. Safety and Efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon alfa-2a in patients with chronic HBV infection naive to nucleos(t)ide therapy. Gastroenterology 2020, 158, 2180–2194. [Google Scholar] [CrossRef]
- Bazinet, M.; Pântea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Albrecht, J.; Schmid, P.; Le Gal, F.; Gordien, E.; Krawczyk, A.; et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): A non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 877–889. [Google Scholar] [CrossRef]
- Bertoletti, A.; Le Bert, N. Immunotherapy for Chronic Hepatitis B Virus Infection. Gut Liver 2018, 12, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Gehring, A.J.; Xue, S.A.; Ho, Z.Z.; Teoh, D.; Ruedl, C.; Chia, A.; Koh, S.; Lim, S.G.; Maini, M.K.; Stauss, H.; et al. Engineering vi-rus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J. Hepatol. 2011, 55, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Krebs, K.; Böttinger, N.; Huang, L.R.; Chmielewski, M.; Arzberger, S.; Gasteiger, G.; Jäger, C.; Schmitt, E.; Bohne, F.; Aichler, M.; et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology 2013, 145, 456–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Cao, Q.; Xiong, Y.; Zhang, E.; Lu, M. Interaction between Hepatitis B Virus and Toll-Like Receptors: Current Status and Potential Therapeutic Use for Chronic Hepatitis, B. Vaccines 2018, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, H.L.; Brunetto, M.R.; Kim, Y.J.; Ferrari, C.; Massetto, B.; Nguyen, A.H.; Joshi, A.; Woo, J.; Lau, A.H.; Gaggar, A.; et al. Safety, efficacy and pharmacodynamics of vesatolimod (GS-9620) in virally suppressed patients with chronic hepatitis, B. J. Hepatol. 2018, 68, 431–440. [Google Scholar] [CrossRef]
Variables | Areas of Interference |
---|---|
1. Entry of HBV into hepatocytes | A. Entry inhibitor |
2. cccDNA formation in the nucleus of hepatocytes | B. Inhibitor of cccDNA |
3. Formation of proteins of the virus | C. RNA interference |
4. Role of HBV polymerase regarding HBV replication | D. Nucleoside/Nucleotide analogs |
5. Nucleocapsid assembling and pgRNA packaging | E. Core protein allosteric modulators |
Agent | Reference |
---|---|
Interleukin-2 | [30,31] |
Interleukin-12 | [32] |
Granulocyte-macrophage colony-stimulating factor | [33] |
Levamisole | [34] |
Thymus humoral factor gamma-2 | [35] |
Alpha-galactosylceramide | [36] |
Thymosine-alpha-1 | [37] |
Levamisole plus Interferon alpha | [38] |
Agent | References |
---|---|
HBsAg-antigen-based vaccine therapy | [47,48,49,50,51] |
HBsAg antigen plus anti-HBs | [52,53,54] |
HBV DNA-based vaccine | [59,60] |
Agents | Nature of Action | References |
---|---|---|
1. Checkpoints inhibitor | Blocks PD1-PDL1 to overcome chronic exhaustion of CD8-positive T cells | [76,77,78] |
2. Regulator of HBsAg production | Regulating the production of HBsAg with the assumption of overcoming the negative impact of excess HBsAg | [79,80,81] |
3. Engineered T cells | Elimination of infected hepatocytes by engineered T cells | [82,83,84] |
4. Toll-like receptor agonists | Suppression of HBV replication and restoration of HBV-specific immunity | [85,86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, S.M.F.; Al Mahtab, M.; Khan, S.; Yoshida, O.; Aguilar, J.C.; Gerardo, G.N.; Hiasa, Y. Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside. Vaccines 2022, 10, 746. https://doi.org/10.3390/vaccines10050746
Akbar SMF, Al Mahtab M, Khan S, Yoshida O, Aguilar JC, Gerardo GN, Hiasa Y. Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside. Vaccines. 2022; 10(5):746. https://doi.org/10.3390/vaccines10050746
Chicago/Turabian StyleAkbar, Sheikh Mohammad Fazle, Mamun Al Mahtab, Sakirul Khan, Osamu Yoshida, Julio Cesar Aguilar, Guillen Nieto Gerardo, and Yoichi Hiasa. 2022. "Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside" Vaccines 10, no. 5: 746. https://doi.org/10.3390/vaccines10050746
APA StyleAkbar, S. M. F., Al Mahtab, M., Khan, S., Yoshida, O., Aguilar, J. C., Gerardo, G. N., & Hiasa, Y. (2022). Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside. Vaccines, 10(5), 746. https://doi.org/10.3390/vaccines10050746