Safety of Global SARS-CoV-2 Vaccines, a Meta-Analysis
Abstract
:1. Background
2. Materials and Methods
2.1. Literature Retrieval
2.2. Literature Screening
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Literature Retrieval Results
3.2. Literature Quality Evaluation
3.3. Basic Information
3.4. Safety Analysis of SARS-CoV-2 Vaccines
3.4.1. Overall Situation
3.4.2. Comparison with the Unvaccinated Population
3.4.3. Comparison among Different Types of Vaccines
3.4.4. Comparison between Different Doses
3.4.5. Comparison between Different Age Groups
3.4.6. Comparison between Different Genders
3.5. Sensitivity and Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Study ID | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 0 | 0 | u | 0 | u | 1 | 1 | 6 |
2 | 1 | 1 | 1 | 1 | 0 | 0 | u | u | u | 1 | 1 | 6 |
3 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 9 |
5 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 7 |
7 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 8 |
9 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 8 |
10 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 6 |
13 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 6 |
14 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 8 |
15 | 1 | 1 | 1 | 1 | 0 | 0 | u | 0 | u | 1 | 1 | 6 |
16 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 7 |
17 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | u | 0 | 1 | 1 | 6 |
18 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 6 |
19 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 9 |
21 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 7 |
22 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | u | 1 | 1 | 6 |
23 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | u | u | 1 | 1 | 5 |
25 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | u | 1 | 1 | 8 |
26 | 1 | 1 | 1 | 1 | 0 | 0 | u | 0 | 0 | 1 | 1 | 6 |
27 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 6 |
33 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | u | 1 | 1 | 9 |
36 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 8 |
37 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | u | 0 | 1 | 4 |
38 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
39 | 1 | 0 | 1 | 1 | 0 | 0 | u | 0 | u | 1 | 1 | 5 |
40 | 1 | u | 1 | 1 | 0 | 1 | 0 | 1 | u | 1 | 1 | 7 |
41 | 1 | u | 1 | u | 0 | 1 | u | u | 0 | 1 | 1 | 5 |
42 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 |
43 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 5 |
44 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 6 |
45 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 9 |
47 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 6 |
48 | 1 | 1 | 1 | u | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 6 |
49 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | u | 8 |
50 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | u | 0 | u | 5 |
51 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | u | 6 |
52 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 7 |
53 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 |
Study ID | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | Total |
---|---|---|---|---|---|---|---|---|---|
6 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 |
8 | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 7 |
24 | 0 | 1 | 1 | 1 | 1 | u | 1 | 1 | 6 |
28 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
29 | 1 | 1 | u | 1 | 1 | 1 | 1 | 0 | 6 |
32 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 9 |
34 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 6 |
35 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | u | 6 |
46 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
Study ID | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
4 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
11 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
12 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
20 | 1 | 1 | 1 | 0 | 1 | 1 | u |
30 | u | u | 1 | 0 | 1 | 1 | u |
31 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Omitted Study ID | Pooled Rate (per 100,000 Doses) | 95%CI of Pooled Rate (per 100,000 Doses) |
---|---|---|
10 | 35.05 | 20.19–49.91 |
39 | 35.05 | 20.19–49.91 |
43 | 50.62 | −18.96–120.21 |
Combined | 35.05 | 20.19–49.91 |
Omitted Study ID | Pooled Rate (per 100,000 Doses) | 95%CI of Pooled Rate (per 100,000 Doses) |
---|---|---|
13 | 2.73 | 1.74–3.73 |
14 | 2.73 | 1.74–3.73 |
27 (mRNA-1273) | 2.55 | 1.53–3.57 |
27 (BNT162b2) | 2.73 | 1.74–3.73 |
44 (mRNA-1273) | 1.13 | 0.44–1.82 |
44 (BNT162b2) | 5.06 | 2.01–8.11 |
Combined | 2.73 | 1.74–3.73 |
References
- Atzrodt, C.L.; Maknojia, I.; McCarthy, R.D.P.; Oldfield, T.M.; Po, J.; Ta, K.T.L.; Stepp, H.E.; Clements, T.P. A Guide to COVID-19: A global pandemic caused by the novel coronavirus SARS-CoV-2. FEBS J. 2020, 287, 3633–3650. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 11 March 2022).
- WHO. Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Statement on the Second Meeting of the International Health Regulations. 2005. Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 27 November 2021).
- UNICEF. COVID-19 Vaccine Market Dashboard. Available online: https://www.unicef.org/supply/covid-19-vaccine-market-dashboard (accessed on 30 November 2021).
- Huan, Y.; Bi, Y. Research progress and prospect of vaccines for the coronavirus disease 2019 (COVID-19). Sci. Sin. Vitae 2022, 52, 237–248. [Google Scholar] [CrossRef]
- Wang, K. Current Status and Prospect of Viral Vaccine Research and Development. J. Shandong Univ. Health Sci. 2021, 59, 2–7. [Google Scholar] [CrossRef]
- Edwards, I.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. What Is a Serious Adverse Event? Available online: https://www.fda.gov/safety/reporting-serious-problems-fda/what-serious-adverse-event (accessed on 9 March 2022).
- Good Clinical Practice. 1.GLOSSARY: 1.2 Adverse Event (AE). Available online: https://ichgcp.net/1-glossary (accessed on 9 March 2022).
- Cui, F.Q.; Yang, H. Post Market Clinical Research and Evaluation of Vaccines; Peking University Medical Press: Beijing, China, 2020; pp. 98–99. ISBN 978-756-592-189-6. [Google Scholar]
- Rostom, A.; Dubé, C.; Cranney, A.; Saloojee, N.; Sy, R.; Garritty, C.; Sampson, M.; Zhang, L.; Yazdi, F.; Mamaladze, V.; et al. Celiac Disease. Evidence Report/Technology Assessment No. 104. Available online: https://www.ncbi.nlm.nih.gov/books/NBK35156/ (accessed on 11 March 2022).
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 14 December 2021).
- Cochrane Training. Cochrane Handbook for Systematic Reviews of Interventions: Section-10-10-4 Incorporating Heterogeneity into Ran-Dom-Effects Models. Available online: https://training.cochrane.org/handbook/current/chapter-10#section-10-10 (accessed on 9 March 2022).
- Pilishvili, T.; Fleming-Dutra, K.E.; Farrar, J.L.; Gierke, R.; Mohr, N.M.; Talan, D.A.; Krishnadasan, A.; Harland, K.K.; Smithline, H.A.; Hou, P.C.; et al. Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines among Health Care Personnel—33 U.S. Sites, January–March 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 753–758. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Ou, M.T.; Greenberg, R.S.; Teles, A.T.; Werbel, W.A.; Avery, R.K.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Safety of the First Dose of SARS-CoV-2 Vaccination in Solid Organ Transplant Recipients. Transplantation 2021, 105, e56–e57. [Google Scholar] [CrossRef]
- Menni, C.; Klaser, K.; May, A.; Polidori, L.; Capdevila, J.; Louca, P.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Merino, J.; et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: A prospective observational study. Lancet Infect. Dis. 2021, 21, 939–949. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Song, J.Y.; Cheong, H.J.; Kim, S.R.; Lee, S.E.; Kim, S.H.; Noh, J.Y.; Yoon, Y.K.; Choi, W.S.; Park, D.W.; Sohn, J.W.; et al. Early Safety Monitoring of COVID-19 Vaccines in Healthcare Workers. J. Korean Med. Sci. 2021, 36, e110. [Google Scholar] [CrossRef]
- Achiron, A.; Dolev, M.; Menascu, S.; Zohar, D.N.; Dreyer-Alster, S.; Miron, S.; Shirbint, E.; Magalashvili, D.; Flechter, S.; Givon, U.; et al. COVID-19 vaccination in patients with multiple sclerosis: What we have learnt by February 2021. Mult. Scler. 2021, 27, 864–870. [Google Scholar] [CrossRef]
- Kim, S.H.; Wi, Y.M.; Yun, S.Y.; Ryu, J.S.; Shin, J.M.; Lee, E.H.; Seo, K.H.; Lee, S.H.; Peck, K.R. Adverse Events in Healthcare Workers after the First Dose of ChAdOx1 nCoV-19 or BNT162b2 mRNA COVID-19 Vaccination: A Single Center Experience. J. Korean Med. Sci. 2021, 36, e107. [Google Scholar] [CrossRef] [PubMed]
- Waissengrin, B.; Agbarya, A.; Safadi, E.; Padova, H.; Wolf, I. Short-term safety of the BNT162b2 mRNA COVID-19 vaccine in patients with cancer treated with immune checkpoint inhibitors. Lancet Oncol. 2021, 22, 581–583. [Google Scholar] [CrossRef]
- Rojas-Pérez-Ezquerra, P.; Crespo Quirós, J.; Tornero Molina, P.; Baeza Ochoa de Ocáriz, M.L.; Zubeldia Ortuño, J.M. Safety of New mRNA Vaccines Against COVID-19 in Severely Allergic Patients. J. Investig. Allergol. Clin. Immunol. 2021, 31, 180–181. [Google Scholar] [CrossRef] [PubMed]
- Gee, J.; Marquez, P.; Su, J.; Calvert, G.M.; Liu, R.; Myers, T.; Nair, N.; Martin, S.; Clark, T.; Markowitz, L.; et al. First Month of COVID-19 Vaccine Safety Monitoring—United States, December 14, 2020–January 13, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Costa Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomised trials. Lancet 2021, 397, 881–891. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef]
- CDC COVID-19 Response Team; Food and Drug Administration. Allergic Reactions Including Anaphylaxis after Receipt of the First Dose of Moderna COVID-19 Vaccine—United States, December 21, 2020–January 10, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 125–129. [Google Scholar] [CrossRef]
- CDC COVID-19 Response Team; Food and Drug Administration. Allergic Reactions Including Anaphylaxis after Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine—United States, December 14–23, 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 46–51. [Google Scholar] [CrossRef]
- Bae, S.; Lee, Y.W.; Lim, S.Y.; Lee, J.H.; Lim, J.S.; Lee, S.; Park, S.; Kim, S.K.; Lim, Y.J.; Kim, E.O.; et al. Adverse Reactions Following the First Dose of ChAdOx1 nCoV-19 Vaccine and BNT162b2 Vaccine for Healthcare Workers in South Korea. J. Korean Med. Sci. 2021, 36, e115. [Google Scholar] [CrossRef]
- Zhang, M.X.; Zhang, T.T.; Shi, G.F.; Cheng, F.M.; Zheng, Y.M.; Tung, T.H.; Chen, H.X. Safety of an inactivated SARS-CoV-2 vaccine among healthcare workers in China. Expert Rev. Vaccines 2021, 20, 891–898. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, L.; Zhu, Y.; Ye, Q.; Yu, X.; Fu, M.; Lu, J.; Li, X.; Huang, Y.; Zhang, J.; et al. Safety survey by clinical pharmacists on COVID-19 vaccination from a single center in China. Hum. Vaccines Immunother. 2021, 17, 2863–2867. [Google Scholar] [CrossRef] [PubMed]
- Kadali, R.A.K.; Janagama, R.; Peruru, S.; Malayala, S.V. Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. Int. J. Infect. Dis. 2021, 106, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Riad, A.; Pokorná, A.; Attia, S.; Klugarová, J.; Koščík, M.; Klugar, M. Prevalence of COVID-19 Vaccine Side Effects among Healthcare Workers in the Czech Republic. J. Clin. Med. 2021, 10, 1428. [Google Scholar] [CrossRef] [PubMed]
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y.; Al Qahtani, M.M.; Abdulrazzaq, N.; Al Nusair, M.; Hassany, M.; Jawad, J.S.; Abdalla, J.; et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef]
- Kadali, R.A.K.; Janagama, R.; Peruru, S.; Gajula, V.; Madathala, R.R.; Chennaiahgari, N.; Malayala, S.V. Non-life-threatening adverse effects with COVID-19 mRNA-1273 vaccine: A randomized, cross-sectional study on healthcare workers with detailed self-reported symptoms. J. Med. Virol. 2021, 93, 4420–4429. [Google Scholar] [CrossRef]
- Jeon, M.; Kim, J.; Oh, C.E.; Lee, J.Y. Adverse Events Following Immunization Associated with Coronavirus Disease 2019 Vaccination Reported in the Mobile Vaccine Adverse Events Reporting System. J. Korean Med. Sci. 2021, 36, e114. [Google Scholar] [CrossRef]
- Wang, J.; Hou, Z.; Liu, J.; Gu, Y.; Wu, Y.; Chen, Z.; Ji, J.; Diao, S.; Qiu, Y.; Zou, S.; et al. Safety and immunogenicity of COVID-19 vaccination in patients with non-alcoholic fatty liver disease (CHESS2101): A multicenter study. J. Hepatol. 2021, 75, 439–441. [Google Scholar] [CrossRef]
- Ou, M.T.; Boyarsky, B.J.; Motter, J.D.; Greenberg, R.S.; Teles, A.T.; Ruddy, J.A.; Krach, M.R.; Jain, V.S.; Werbel, W.A.; Avery, R.K.; et al. Safety and Reactogenicity of 2 Doses of SARS-CoV-2 Vaccination in Solid Organ Transplant Recipients. Transplantation 2021, 105, 2170–2174. [Google Scholar] [CrossRef]
- Botwin, G.J.; Li, D.; Figueiredo, J.; Cheng, S.; Braun, J.; McGovern, D.P.B.; Melmed, G.Y. Adverse Events After SARS-CoV-2 mRNA Vaccination Among Patients with Inflammatory Bowel Disease. Am. J. Gastroenterol. 2021, 116, 1746–1751. [Google Scholar] [CrossRef]
- Connolly, C.M.; Ruddy, J.A.; Boyarsky, B.J.; Avery, R.K.; Werbel, W.A.; Segev, D.L.; Garonzik-Wang, J.; Paik, J.J. Safety of the first dose of mRNA SARS-CoV-2 vaccines in patients with rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 1100. [Google Scholar] [CrossRef]
- Shimabukuro, T.T.; Cole, M.; Su, J.R. Reports of Anaphylaxis After Receipt of mRNA COVID-19 Vaccines in the US-December 14, 2020–January 18, 2021. JAMA 2021, 325, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Monin, L.; Laing, A.G.; Muñoz-Ruiz, M.; McKenzie, D.R.; Del Molino Del Barrio, I.; Alaguthurai, T.; Domingo-Vila, C.; Hayday, T.S.; Graham, C.; Seow, J.; et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: Interim analysis of a prospective observational study. Lancet Oncol. 2021, 22, 765–778. [Google Scholar] [CrossRef]
- Geisen, U.M.; Berner, D.K.; Tran, F.; Sümbül, M.; Vullriede, L.; Ciripoi, M.; Reid, H.M.; Schaffarzyk, A.; Longardt, A.C.; Franzenburg, J.; et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort. Rheum. Dis. 2021, 80, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Krauthammer, S.H.; Wolf, I.; Even-Sapir, E. Hypermetabolic lymphadenopathy following administration of BNT162b2 mRNA Covid-19 vaccine: Incidence assessed by [(18)F]FDG PET-CT and relevance to study interpretation. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1854–1863. [Google Scholar] [CrossRef]
- El-Shitany, N.A.; Harakeh, S.; Badr-Eldin, S.M.; Bagher, A.M.; Eid, B.; Almukadi, H.; Alghamdi, B.S.; Alahmadi, A.A.; Hassan, N.A.; Sindi, N.; et al. Minor to Moderate Side Effects of Pfizer-BioNTech COVID-19 Vaccine Among Saudi Residents: A Retrospective Cross-Sectional Study. Int. J. Gen. Med. 2021, 14, 1389–1401. [Google Scholar] [CrossRef]
- Sørvoll, I.H.; Horvei, K.D.; Ernstsen, S.L.; Laegreid, I.J.; Lund, S.; Grønli, R.H.; Olsen, M.K.; Jacobsen, H.K.; Eriksson, A.; Halstensen, A.M.; et al. An observational study to identify the prevalence of thrombocytopenia and anti-PF4/polyanion antibodies in Norwegian health care workers after COVID-19 vaccination. J. Thromb. Haemost. 2021, 19, 1813–1818. [Google Scholar] [CrossRef]
- Cohen, D.; Hazut Krauthammer, S.; Cohen, Y.C.; Perry, C.; Avivi, I.; Herishanu, Y.; Even-Sapir, E. Correlation between BNT162b2 mRNA Covid-19 vaccine-associated hypermetabolic lymphadenopathy and humoral immunity in patients with hematologic malignancy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3540–3549. [Google Scholar] [CrossRef]
- Pottegård, A.; Lund, L.C.; Karlstad, Ø.; Dahl, J.; Andersen, M.; Hallas, J.; Lidegaard, Ø.; Tapia, G.; Gulseth, H.L.; Ruiz, P.L.-D.; et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: Population based cohort study. BMJ 2021, 373, n1114. [Google Scholar] [CrossRef]
- China CDC; National Center for Adverse Drug Event Monitoring, China. Overview of Surveillance Information on Adverse Effects of Novel Coronavirus Vaccine Vaccination in China (Up to 30 April 2021). Available online: https://www.chinacdc.cn/jkzt/ymyjz/ymyjjz_6758/202105/t20210528_230911.html (accessed on 2 November 2021).
- Hatmal, M.M.; Al-Hatamleh, M.A.I.; Olaimat, A.N.; Hatmal, M.; Alhaj-Qasem, D.M.; Olaimat, T.M.; Mohamud, R. Side Effects and Perceptions Following COVID-19 Vaccination in Jordan: A Randomized, Cross-Sectional Study Implementing Machine Learning for Predicting Severity of Side Effects. Vaccines 2021, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Gras-Champel, V.; Liabeuf, S.; Baud, M.; Albucher, J.F.; Benkebil, M.; Boulay, C.; Bron, A.; El Kaddissi, A.; Gautier, S.; Geeraerts, T.; et al. Atypical thrombosis associated with VaxZevria® (AstraZeneca) vaccine: Data from the French Network of Regional Pharmacovigilance Centres. Therapie 2021, 76, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.R.; Shi, T.; Vasileiou, E.; Katikireddi, S.V.; Kerr, S.; Moore, E.; McCowan, C.; Agrawal, U.; Shah, S.A.; Ritchie, L.D.; et al. First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland. Nat. Med. 2021, 27, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Huh, K.; Na, Y.; Kim, Y.E.; Radnaabaatar, M.; Peck, K.R.; Jung, J. Predicted and Observed Incidence of Thromboembolic Events among Koreans Vaccinated with ChAdOx1 nCoV-19 Vaccine. J. Korean Med. Sci. 2021, 36, e197. [Google Scholar] [CrossRef]
- Bikdeli, B.; Chatterjee, S.; Arora, S.; Monreal, M.; Jimenez, D.; Krumholz, H.M.; Goldhaber, S.Z.; Elkind, M.S.V.; Piazza, G. Cerebral Venous Sinus Thrombosis in the U.S. Population, After Adenovirus-Based SARS-CoV-2 Vaccination, and After COVID-19. J. Am. Coll. Cardiol. 2021, 78, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Cari, L.; Fiore, P.; Naghavi Alhosseini, M.; Sava, G.; Nocentini, G. Blood clots and bleeding events following BNT162b2 and ChAdOx1 nCoV-19 vaccine: An analysis of European data. J. Autoimmun. 2021, 122, 102685. [Google Scholar] [CrossRef] [PubMed]
- McMurry, R.; Lenehan, P.; Awasthi, S.; Silvert, E.; Puranik, A.; Pawlowski, C.; Venkatakrishnan, A.J.; Anand, P.; Agarwal, V.; O’Horo, J.C.; et al. Real-time analysis of a mass vaccination effort confirms the safety of FDA-authorized mRNA COVID-19 vaccines. MedRxiv 2021, 2, 965–978.e965. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Patone, M.; Mei, X.W.; Saatci, D.; Dixon, S.; Khunti, K.; Zaccardi, F.; Watkinson, P.; Shankar-Hari, M.; Doidge, J.; et al. Risk of thrombocytopenia and thromboembolism after Covid-19 vaccination and SARS-CoV-2 positive testing: Self-controlled case series study. BMJ 2021, 374, n1931. [Google Scholar] [CrossRef]
- Cugno, M.; Consonni, D.; Lombardi, A.; Bono, P.; Oggioni, M.; Uceda Renteria, S.; Pesatori, A.C.; Castaldi, S.; Riboldi, L.; Bordini, L.; et al. Increased Risk of Urticaria/Angioedema after BNT162b2 mRNA COVID-19 Vaccine in Health Care Workers Taking ACE Inhibitors. Vaccines 2021, 9, 1011. [Google Scholar] [CrossRef]
- Baldolli, A.; Michon, J.; Appia, F.; Galimard, C.; Verdon, R.; Parienti, J.J. Tolerance of BNT162b2 mRNA COVI-19 vaccine in patients with a medical history of COVID-19 disease: A case control study. Vaccine 2021, 39, 4410–4413. [Google Scholar] [CrossRef]
- Chevallier, P.; Coste-Burel, M.; Le Bourgeois, A.; Peterlin, P.; Garnier, A.; Béné, M.C.; Imbert, B.M.; Drumel, T.; Le Gouill, S.; Moreau, P.; et al. Safety and immunogenicity of a first dose of SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem-cells recipients. EJHaem 2021, 2, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.; Eviatar, T.; Zisman, D.; Peleg, H.; Paran, D.; Levartovsky, D.; Zisapel, M.; Elalouf, O.; Kaufman, I.; Meidan, R.; et al. Immunogenicity and safety of the BNT162B2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and general population: A multicenter study. Ann. Rheum. Dis. 2021, 80, 200–201. [Google Scholar] [CrossRef]
- Quiroga, B.; Sánchez-Álvarez, E.; Goicoechea, M.; de Sequera, P. COVID-19 vaccination among Spanish nephrologists: Acceptance and side effects. J. Healthc. Qual. Res. 2021, 36, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Riad, A.; Pokorná, A.; Mekhemar, M.; Conrad, J.; Klugarová, J.; Koščík, M.; Klugar, M.; Attia, S. Safety of ChAdOx1 nCoV-19 Vaccine: Independent Evidence from Two EU States. Vaccines 2021, 9, 673. [Google Scholar] [CrossRef]
- Riad, A.; Sağıroğlu, D.; Üstün, B.; Pokorná, A.; Klugarová, J.; Attia, S.; Klugar, M. Prevalence and Risk Factors of CoronaVac Side Effects: An Independent Cross-Sectional Study among Healthcare Workers in Turkey. J. Clin. Med. 2021, 10, 2629. [Google Scholar] [CrossRef]
- Vallée, A.; Chan-Hew-Wai, A.; Bonan, B.; Lesprit, P.; Parquin, F.; Catherinot, É.; Choucair, J.; Billard, D.; Amiel-Taieb, C.; Camps, È.; et al. Oxford-AstraZeneca COVID-19 vaccine: Need of a reasoned and effective vaccine campaign. Public Health 2021, 196, 135–137. [Google Scholar] [CrossRef]
- WHO Media Inquiries. WHO Issues Emergency Use Listing for Eighth COVID-19 Vaccine. Available online: https://www.who.int/news/item/03-11-2021-who-issues-emergency-use-listing-for-eighth-covid-19-vaccine (accessed on 2 November 2021).
- C-Tap, R&D Blue Print. WHO Target Product Profiles for COVID-19 Vaccines. Available online: https://www.who.int/publications/m/item/who-target-product-profiles-for-covid-19-vaccines (accessed on 2 November 2021).
- Rotshild, V.; Hirsh-Raccah, B.; Miskin, I.; Muszkat, M.; Matok, I. Comparing the clinical efficacy of COVID-19 vaccines: A systematic review and network meta-analysis. Sci. Rep. 2021, 11, 22777. [Google Scholar] [CrossRef]
- Turner, P.J.; Ansotegui, I.J.; Campbell, D.E.; Cardona, V.; Ebisawa, M.; El-Gamal, Y.; Fineman, S.; Geller, M.; Gonzalez-Estrada, A.; Greenberger, P.A.; et al. COVID-19 vaccine-associated anaphylaxis: A statement of the World Allergy Organization Anaphylaxis Committee. World Allergy Organ. J. 2021, 14, 100517. [Google Scholar] [CrossRef]
- Kim, M.A.; Lee, Y.W.; Kim, S.R.; Kim, J.H.; Min, T.K.; Park, H.S.; Shin, M.; Ye, Y.M.; Lee, S.; Lee, J.; et al. COVID-19 Vaccine-associated Anaphylaxis and Allergic Reactions: Consensus Statements of the KAAACI Urticaria/Angioedema/Anaphylaxis Working Group. Allergy Asthma Immunol. Res. 2021, 13, 526–544. [Google Scholar] [CrossRef]
- Zhu, N.W.; Zhang, X.; Huo, D.D.; Wu, D.; Nie, W.M.; Huang, L. Possible mechanism and research progress of vaccine-induced immune thrombotic thrombocytopenia. Infect. Dis. Inf. 2021, 34, 296–300. [Google Scholar] [CrossRef]
- Greinacher, A.; Selleng, K.; Palankar, R.; Wesche, J.; Handtke, S.; Wolff, M.; Aurich, K.; Lalk, M.; Methling, K.; Völker, U.; et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood 2021, 138, 2256–2268. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.Y.; Yu, X.N.; Qu, Z.Y.; Zhang, A.A.; Xing, Y.L.; Jiang, L.X.; Shang, L.; Wang, Y.C. Adenovirus type 3 induces platelet activation in vitro. Mol. Med. Rep. 2014, 9, 370–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, Y.; Wang, X.; Yang, L.; Li, H.; Wang, Y.; Liu, M.; Zhao, X.; Xie, Y.; Yang, Y.; et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 2020, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.H.; Shaikh, T.G.; Waseem, S.; Qadir, N.A.; Yousaf, Z.; Ullah, I. Vaccine-induced thrombotic thrombocytopenia following coronavirus vaccine: A narrative review. Ann. Med. Surg. 2022, 73, 102988. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Xiao, Y.J. Research strategy and progress of the new coronavirus (SARS-CoV-2) vaccine. Biol. Teach. 2021, 46, 8–10. [Google Scholar]
- Wei, J.; Pouwels, K.B.; Stoesser, N.; Matthews, P.C.; Diamond, I.; Studley, R.; Rourke, E.; Cook, D.; Bell, J.I.; Newton, J.N.; et al. Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nat. Med. 2022, 1–11. [Google Scholar] [CrossRef]
- Gustafson, C.E.; Kim, C.; Weyand, C.M.; Goronzy, J.J. Influence of immune aging on vaccine responses. J. Allergy Clin. Immunol. 2020, 145, 1309–1321. [Google Scholar] [CrossRef]
- Xiong, X.; Yuan, J.; Li, M.; Jiang, B.; Lu, Z.K. Age and Gender Disparities in Adverse Events Following COVID-19 Vaccination: Real-World Evidence Based on Big Data for Risk Management. Front. Med. 2021, 8, 700014. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, C.; Liu, M.; Liu, J. Effectiveness and safety of SARS-CoV-2 vaccine in real-world studies: A systematic review and meta-analysis. Infect. Dis. Poverty 2021, 10, 132. [Google Scholar] [CrossRef]
- WHO. Module 3: Adverse Events Following Immunization, Classification of AEFIs. Available online: https://vaccine-safety-training.org/classification-of-aefis.html (accessed on 10 March 2022).
- Media Team WHO. WHO, UN Set Out Steps to Meet World COVID Vaccination Targets. Available online: https://www.who.int/news/item/07-10-2021-who-un-set-out-steps-to-meet-world-covid-vaccination-targets (accessed on 6 November 2021).
ID | Author | Study Type | Study Site | Vaccination | People Origin | Population |
---|---|---|---|---|---|---|
1 | Shay et al. [14] | Surveillance | the USA | Ad26.COV2.S | General population | 338,765 |
2 | Boyarsky et al. [15] | Cross-sectional study | the USA | BNT162b2 or mRNA-1273 | Solid Organ Transplant Recipients | 187 |
3 | Menni et al. [16] | Surveillance | the UK | BNT162b2 | General population | 282,103 |
ChAdOx1 | General population | 345,280 | ||||
4 | Sadoff et al. [17] | RCT | Argentina, Brazil, Chile, etc. | Ad26.COV2.S | General population | 3356 |
5 | Song et al. [18] | Cross-sectional study | Korea | ChAdOx1 | HCW | 2426 |
BNT162b2 | HCW | 52 | ||||
6 | Achiron et al. [19] | Cohort Study | Israel | BNT162b2 | Patients with multiple sclerosis | 555 |
7 | Kim et al. [20] | Cross-sectional study | Korea | ChAdOx1 | HCW | 1431 |
BNT162b2 | HCW | 80 | ||||
8 | Waissengrin et al. [21] | Cohort Study | Israel | BNT162b2 | Patients with cancer | 137 |
9 | Rojas et al. [22] | Cross-sectional study | Spain | BNT162b2 | HCW with previous severe allergic diseases | 26 |
mRNA-1273 | HCW with previous severe allergic diseases | 104 | ||||
10 | Gee et al. [23] | Surveillance | the USA | BNT162b2 or mRNA-1273 | General population | 1,602,065 |
11 | Voysey et al. [24] | RCT | the UK, Brazil, South Africa | ChAdOx1 | General population | 12,282 |
12 | Logunov et al. [25] | RCT | Russia | Sputnik V | General population | 16,427 |
13 | CDC COVID-19 Response Team [26] | Surveillance | the USA | mRNA-1273 | General population | 4,041,396 |
14 | CDC COVID-19 Response Team [27] | Surveillance | the USA | BNT162b2 | General population | 1,893,360 |
15 | Bae et al. [28] | Cross-sectional study | Korea | ChAdOx1 | HCW | 5589 |
BNT162b2 | HCW | 277 | ||||
16 | Zhang et al. [29] | Cross-sectional study | China | CoronaVac | HCW | 1526 |
17 | Wang et al. [30] | Cross-sectional study | China | BIBP/WIBP | HCW | 4458 |
18 | Kadali et al. [31] | Cross-sectional study | the USA | BNT162b2 | HCW | 803 |
19 | Riad et al. [32] | Cross-sectional study | Czech Republic | BNT162b2 | HCW | 877 |
20 | Al Kaabi et al. [33] | RCT | United Arab Emirates | WIBP | General population | 13,478 |
BIBP | General population | 13,465 | ||||
21 | Kadali et al. [34] | Cross-sectional study | the USA | mRNA-1273 | HCW | 432 |
22 | Jeon et al. [35] | Cross-sectional study | Korea | ChAdOx1 | HCW | 994 |
23 | Wang et al. [36] | Cross-sectional study | China | BIBP/WIBP | patients with non-alcoholic fatty liver disease | 381 |
24 | Ou et al. [37] | Cohort Study | the USA | BNT162b2 or mRNA-1273 | Solid Organ Transplant Recipients | 741 |
25 | Botwin et al. [38] | Cross-sectional study | the USA | BNT162b2 or mRNA-1273 | Patients with Inflammatory Bowel Disease | 246 |
26 | Connolly et al. [39] | Cross-sectional study | the USA | BNT162b2 or mRNA-1273 | Patients with rheumatic and musculoskeletal diseases | 325 |
27 | Shimabukuro et al. [40] | Surveillance | the USA | BNT162b2 | General population | 9,943,247 |
mRNA-1273 | General population | 7,581,429 | ||||
28 | Monin et al. [41] | Cohort Study | the UK | BNT162b2 | Patients with cancer | 140 |
BNT162b2 | Healthy population | 40 | ||||
29 | Geisen et al. [42] | Cohort Study | Germany | BNT162b2 or mRNA-1273 | patients with chronic inflammatory conditions | 26 |
30 | Polack et al. [43] | RCT | Argentina, Brazil, South Africa, etc. | BNT162b2 | General population | 21,621 |
31 | Baden et al. [44] | RCT | the USA | mRNA-1273 | General population | 15,181 |
32 | Cohen et al. [45] | Cohort Study | Israel | BNT162b2 | Patients with cancer | 728 |
33 | El-Shitany et al. [46] | Cross-sectional study | Saudi Arabia | BNT162b2 | General population | 237 |
34 | Sørvoll et al. [47] | Cohort Study | Norway | ChAdOx1 | HCW | 492 |
35 | Cohen et al. [48] | Cohort Study | Israel | BNT162b2 | Patients with cancer | 137 |
36 | Pottegård et al. [49] | Surveillance | Denmark, Norway | ChAdOx1 | General population | 281,264 |
37 | China CDC, National Center for Adverse Drug Event Monitoring, China [50] | Surveillance | China | Chinese SARS-CoV-2 vaccine | General population | 265,000,000 |
38 | Hatmal et al. [51] | Cross-sectional study | Jordan | BIBP | General population | 845 |
BNT162b2 | General population | 605 | ||||
ChAdOx1 | General population | 686 | ||||
39 | Gras-Champel et al. [52] | Surveillance | France | ChAdOx1 | HCW and patients | 3,263,188 |
40 | Simpson et al. [53] | Surveillance | the UK | ChAdOx1 or BNT162b2 | General population | 2,529,014 |
41 | Huh et al. [54] | Surveillance | Korea | ChAdOx1 | General population | 8,548,231 |
42 | Bikdeli et al. [55] | Surveillance | the UK, the USA | ChAdOx1 or Ad26.COV2.S | General population | 21,200,000 |
43 | Cari et al. [56] | Surveillance | Belgium, Denmark, etc. | ChAdOx1 or BNT162b2 | General population | 43,032,170 |
44 | McMurry et al. [57] | Surveillance | the USA | BNT162b2 or mRNA-1273 | General population | 68,250 |
45 | Julia et al. [58] | Surveillance | the UK | ChAdOx1 | General population | 19,608,008 |
BNT162b2 | General population | 9,513,625 | ||||
46 | Cugno et al. [59] | Cohort Study | Italy | mRNA vaccine | HCW | 3586 |
47 | Baldolli et al. [60] | Cross-sectional study | France | BNT162b2 | General population | 2048 |
48 | Chevallier et al. [61] | Cross-sectional study | France | BNT162b2 | Allogeneic hematopoietic stem-cells recipients | 94 |
BNT162b2 | Healthy population | 24 | ||||
49 | Furer et al. [62] | Cross-sectional study | Israel | BNT162b2 | patients with autoimmune inflammatory rheumatic diseases | 673 |
BNT162b2 | Healthy population | 121 | ||||
50 | Quiroga et al. [63] | Cross-sectional study | Spain | BNT162b2 | HCW | 565 |
mRNA-1273 | HCW | 42 | ||||
51 | Riad et al. [64] | Cross-sectional study | Germany, Czech republic | ChAdOx1 | HCW | 92 |
52 | Riad et al. [65] | Cross-sectional study | Turkey | CoronaVac | HCW | 779 |
53 | Vallée et al. [66] | Cross-sectional study | France | ChAdOx1 | HCW | 451 |
Symptoms | Viral Vector Vaccine | mRNA Vaccine | Inactivated Vaccine | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Records | I2 (%) | p | Incidence % (95%CI) | Number of Records | I2 (%) | p | Incidence % (95%CI) | Number of Records | I2 (%) | p | Incidence % (95%CI) | |
AEs | 4 | 95.3 | <0.001 | 94.23 (90.84, 97.61) | 15 | 100 | <0.001 | 65.74 (52.13, 79.34) | 2 | 93.4 | <0.001 | 20.05 (10.91, 29.19) |
SAEs | 1 | - | - | 0.07 (−0.07, 0.21) | 1 | - | - | 1.25 (0.52, 1.99) | 2 | 0 | 0.982 | 0.07 (0.00, 0.13) |
Death | 0 | - | - | - | 6 | 17.8 | 0.298 | 0.03 (−0.02, 0.07) | 0 | - | - | - |
Allergic symptoms | ||||||||||||
Tongue edema | 1 | - | - | 18.04 (17.03, 19.04) | 1 | - | - | 3.61 (1.41, 5.81) | 0 | - | - | - |
Angioedema | 2 | 99.9 | <0.001 | 9.58 (−9.13, 28.28) | 2 | 88.4 | 0.003 | 2.24 (−1.52, 6.00) | 0 | - | - | - |
Body bruises | 1 | - | - | 4.96 (3.33, 6.58) | 1 | - | - | 1.98 (0.87, 3.09) | 1 | - | - | 2.37 (1.34, 3.39) |
Urticaria | 3 | 99.3 | <0.001 | 2.99 (−0.76, 6.73) | 7 | 73.9 | 0.001 | 0.91 (0.40, 1.41) | 0 | - | - | - |
Anaphylaxis | 1 | - | - | 0.95 (0.56, 1.33) | 5 | 0 | 0.674 | 0.24 (−0.07, 0.55) | 0 | - | - | - |
Cardiovascular and cerebrovascular symptoms | ||||||||||||
Palpitation | 1 | - | - | 28.29 (27.11, 29.47) | 5 | 94.4 | <0.001 | 2.99 (1.37, 4.61) | 1 | 100 | <0.001 | 0.09 (0.00, 0.18) |
Irregular heartbeat | 1 | - | - | 23.03 (19.88, 26.18) | 1 | - | - | 11.90 (9.32, 14.48) | 1 | 100 | <0.001 | 7.81 (6.00, 9.62) |
Abnormal blood pressure | 1 | - | - | 13.85 (11.26, 16.43) | 4 | 94.5 | <0.001 | 2.47 (0.66, 4.29) | 1 | 100 | <0.001 | 5.44 (3.91, 6.97) |
Chest discomfort | 2 | 98.7 | <0.001 | 13.21 (−0.46, 26.87) | 6 | 93.9 | <0.001 | 1.68 (0.69, 2.67) | 1 | 100 | <0.001 | 7.10 (5.37, 8.83) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Cai, X.; Zhao, T.; Han, B.; Xie, M.; Cui, J.; Zhang, J.; Wang, C.; Liu, B.; Lu, Q.; et al. Safety of Global SARS-CoV-2 Vaccines, a Meta-Analysis. Vaccines 2022, 10, 596. https://doi.org/10.3390/vaccines10040596
Chen L, Cai X, Zhao T, Han B, Xie M, Cui J, Zhang J, Wang C, Liu B, Lu Q, et al. Safety of Global SARS-CoV-2 Vaccines, a Meta-Analysis. Vaccines. 2022; 10(4):596. https://doi.org/10.3390/vaccines10040596
Chicago/Turabian StyleChen, Linyi, Xianming Cai, Tianshuo Zhao, Bingfeng Han, Mingzhu Xie, Jiahao Cui, Jiayu Zhang, Chao Wang, Bei Liu, Qingbin Lu, and et al. 2022. "Safety of Global SARS-CoV-2 Vaccines, a Meta-Analysis" Vaccines 10, no. 4: 596. https://doi.org/10.3390/vaccines10040596
APA StyleChen, L., Cai, X., Zhao, T., Han, B., Xie, M., Cui, J., Zhang, J., Wang, C., Liu, B., Lu, Q., & Cui, F. (2022). Safety of Global SARS-CoV-2 Vaccines, a Meta-Analysis. Vaccines, 10(4), 596. https://doi.org/10.3390/vaccines10040596