Lactobacillus plantarum Surface-Displayed ASFV (p14.5) Can Stimulate Immune Responses in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics Statement
2.2. Construction of Recombinant L. plantarum
2.3. Preparation of p14.5 Protein
2.4. Western Blot
2.5. Immunization
2.6. Single Cell Suspension Preparation
2.7. Flow Cytometry
2.8. Enzyme-Linked Immunosorbent Assay
2.9. Statistical Analysis
3. Results
3.1. Construction of Plasmids and Expression of Target Genes In Vitro
3.2. Cellular Immune Responses Induced by Recombinant L. plantarum
3.3. Mucosal Immune Responses Induced by Recombinant L. plantarum
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASFV | African Swine Fever Virus |
L. plantarum | Lactobacillus plantarum |
ASF | African Swine Fever |
ORFs | Open reading frames |
FDCs | Follicular dendritic cells |
MLNs | Mesenteric lymph nodes |
PPs | Pey’s collective lymph nodes |
SP | Spleen |
P14.5-IL-33-Mus | p14.5-IL-33-mouse |
References
- Bonnet, S.I.; Bouhsira, E.; De, R.N.; Fite, J.; Etoré, F.; Garigliany, M.M. Role of arthropod vectors in african swine fever virus transmission in relation to their bio-ecological properties. Viruses 2020, 12, 778. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, C.; Wang, S.; Wen, L.; Shi, Z.; Wang, M.; Liu, Z.; Sun, Z.; Wei, L.; Yang, D.; et al. Production and application of mouse monoclonal antibodies targeting linear epitopes in pB602L of African swine fever virus. Arch. Virol. 2022, 167, 415–424. [Google Scholar] [CrossRef]
- Lopera-Madrid, J.; Medina-Magues, L.G.; Gladue, D.P.; Borca, M.V.; Osorio, J.E. Optimization in the expression of ASFV proteins for the development of subunit vaccines using poxviruses as delivery vectors. Sci. Rep. 2021, 11, 23476. [Google Scholar] [CrossRef]
- Xian, Y.; Xiao, C. The Structure of ASFV advances the fight against the disease. Trends Biochem. Sci. 2020, 45, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, D.G.; Helgeby, A.; Schön, K.; Nygren, C.; El-Bakkouri, K.; Fiers, W. A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine 2011, 29, 3951–3961. [Google Scholar] [CrossRef] [PubMed]
- Schussek, S.; Bernasconi, V.; Mattsson, J.; Wenzel, U.A.; Strömberg, A.; Gribonika, I.; Schön, K.; Lycke, N.Y. The CTA1-DD adjuvant strongly potentiates follicular dendritic cell function and germinal center formation, which results in improved neonatal immunization. Mucosal Immunol. 2020, 13, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Ochayon, D.E.; Ali, A.; Alarcon, P.C.; Krishnamurthy, D.; Kottyan, L.C.; Borchers, M.T.; Waggoner, S.N. IL-33 promotes type 1 cytokine expression via p38 MAPKin human NK cells. J. Leukoc. Biol. 2020, 107, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Matta, B.M.; Lott, J.M.; Mathews, L.R.; Liu, Q.; Rosborough, B.R.; Blazar, B.R. Turnquist HR IL-33 is an unconventional Alarmin that stimulates IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+ regulatory T cells. J. Immunol. 2020, 193, 4010–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.W.; Yoo, H.J.; Park, J.H.; Oh, J.E.; Lee, H.K. Exogenous interleukin-33 contributes to protective immunity via cytotoxic T-Cell priming against mucosal influenza viral infection. Viruses 2019, 11, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peirotén, Á.; Landete, J.M. Natural and engineered promoters for gene expression in Lactobacillus species. Appl. Microbiol. Biotechnol. 2020, 104, 3797–3805. [Google Scholar] [CrossRef] [PubMed]
- Klotz, C.; Goh, Y.J.; O’Flaherty, S.; Barrangou, R. S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiol. 2020, 20, 248. [Google Scholar] [CrossRef] [PubMed]
- Turlewicz-Podbielska, H.; Kuriga, A.; Niemyjski, R.; Tarasiuk, G.; Pomorska-Mól, M. African Swine Fever Virus as a Difficult Opponent in the Fight for a Vaccine—Current Data. Viruses 2021, 13, 1212. [Google Scholar] [CrossRef]
- Mojgani, N.; Shahali, Y.; Dadar, M. Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Benef. Microbes 2020, 11, 213–226. [Google Scholar] [CrossRef]
- Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–605. [Google Scholar] [CrossRef]
- Bo, F.; Yang, W.T.; Shonyela, S.M.; Jin, Y.B.; Huang, K.Y.; Shao, L.N.; Wang, C.; Zhou, Y.; Li, Q.Y.; Jiang, Y.L. Immune responses of mice inoculated with recombinant Lactobacillus plantarum NC8 expressing the fusion gene HA2 and 3M2e of the influenza virus and protection against different subtypes of influenza virus. Virus Res. 2019, 263, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-T.; Shonyela, S.-M.; Zhao, L.; Jiang, Y.-L.; Huang, H.-B.; Shi, C.-W.; Wang, J.-Z. Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens. Appl. Microbiol. Biotechnol. 2017, 101, 8475–8484. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, G.; Zhu, Y.; Liu, L.; Chen, E.; Turnquist, H.; Zhang, X.; Finn, O.J.; Chen, X.; Lu, B. IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+T cells. Eur. J. Immunol. 2011, 41, 3351–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Su, Q.; Qiu, F.; Yi, Y.; Shen, L.; Jia, Z.; Liang, P.; Zhou, Y.; Bi, S. Intranasal inoculate of influenza virus vaccine against lethal virus challenge. Vaccine 2018, 36, 4354–4361. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Niu, T.; Zou, B.; Wang, J.; Xin, J.; Niu, H.; Li, N.; Jiang, Y.; Bao, J.; Zhang, D.; et al. Lactobacillus plantarum Surface-Displayed ASFV (p14.5) Can Stimulate Immune Responses in Mice. Vaccines 2022, 10, 355. https://doi.org/10.3390/vaccines10030355
Huang Q, Niu T, Zou B, Wang J, Xin J, Niu H, Li N, Jiang Y, Bao J, Zhang D, et al. Lactobacillus plantarum Surface-Displayed ASFV (p14.5) Can Stimulate Immune Responses in Mice. Vaccines. 2022; 10(3):355. https://doi.org/10.3390/vaccines10030355
Chicago/Turabian StyleHuang, Quntao, Tianming Niu, Boshi Zou, Junhong Wang, Junhong Xin, Hui Niu, Nan Li, Yuxin Jiang, Junfu Bao, Di Zhang, and et al. 2022. "Lactobacillus plantarum Surface-Displayed ASFV (p14.5) Can Stimulate Immune Responses in Mice" Vaccines 10, no. 3: 355. https://doi.org/10.3390/vaccines10030355
APA StyleHuang, Q., Niu, T., Zou, B., Wang, J., Xin, J., Niu, H., Li, N., Jiang, Y., Bao, J., Zhang, D., Feng, X., Sun, T., Wang, X., Yang, K., Wang, Y., Yang, G., Zhao, D., & Wang, C. (2022). Lactobacillus plantarum Surface-Displayed ASFV (p14.5) Can Stimulate Immune Responses in Mice. Vaccines, 10(3), 355. https://doi.org/10.3390/vaccines10030355