Immunogenicity of Catch-Up Immunization with Conventional Inactivated Polio Vaccine among Japanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Vaccines
2.3. Immunogenicity Evaluation and Serological Analysis
2.4. Safety
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Immunogenicity
3.3. Safety
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Polio Eradication Initiative. Wild Poliovirus List. Available online: https://polioeradication.org/polio-today/polio-now/wild-poliovirus-list/ (accessed on 25 October 2022).
- World Health Organization. WHO Statement on the Meeting of the International Health Regulations Emergency Committee Concerning the International Spread of Wild Poliovirus. 2014. Available online: https://www.who.int/news/item/05-05-2014-who-statement-on-the-meeting-of-the-international-health-regulations-emergency-committee-concerning-the-international-spread-of-wild-poliovirus (accessed on 30 November 2022).
- World Health Organization. Statement of the Thirty-Third Polio IHR Emergency Committee. 2022. Available online: https://www.who.int/news/item/01-11-2022-statement-of-the-thirty-third-polio-ihr-emergency-committee (accessed on 30 November 2022).
- Patel, M.; Zipursky, S.; Orenstein, W.; Garon, J.; Zaffran, M. Polio endgame: The global introduction of inactivated polio vaccine. Expert Rev. Vaccines 2015, 14, 749–762. [Google Scholar] [CrossRef]
- Greene, S.A.; Ahmed, J.; Datta, S.D.; Burns, C.C.; Quddus, A.; Vertefeuille, J.F.; Wassilak, S.G.F. Progress toward polio eradication–worldwide, January 2017–March 2019. Morb. Mortal. Wkly. Rep. 2019, 68, 458–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorba, J.; Diop, O.M.; Iber, J.; Henderson, E.; Zhao, K.; Quddus, A.; Sutter, R.; Vertefeuille, J.F.; Wenger, J.; Wassilak, S.G.; et al. Update on vaccine-derived poliovirus outbreaks—Worldwide, January 2018–June 2019. Morb. Mortal. Wkly. Rep. 2019, 68, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Modlin, J.F.; Chumakov, K. Sabin strain inactivated polio vaccine for the polio endgame. J. Infect. Dis. 2020, 221, 504–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabin, A.B. Oral poliovirus vaccine: The history of its development and use and current challenge to eliminate poliomyelitis from the world. J. Infect. Dis. 1985, 151, 420. [Google Scholar] [CrossRef]
- Salk, J.E. Studies in human subjects on active immunization against poliomyelitis. I. A preliminary report of experiments in progress. J. Am. Med. Assoc. 1953, 151, 1081. [Google Scholar] [CrossRef] [PubMed]
- Platt, L.R.; Estivariz, C.F.; Sutter, R.W. Vaccine-associated paralytic poliomyelitis: A review of the epidemiology and estimation of the global burden. J. Infect. Dis. 2014, 210, S380–S389. [Google Scholar] [CrossRef]
- Minor, P. Vaccine-derived poliovirus (VDPV): Impact on poliomyelitis eradication. Vaccine 2009, 27, 2649–2652. [Google Scholar] [CrossRef]
- Epidemiology Subcommittee, The Japan Live Poliovaccine Research Commission. Evaluation of Sabin live poliovirus vaccine in Japan. VI. Large scale use of vaccine during the type 1 poliomyelitis epidemic, 1961. Jpn. J. Med. Sci. Biol. 1967, 20, 303–314. [Google Scholar]
- Shimizu, H. Development and introduction of inactivated poliovirus vaccines derived from Sabin strains in Japan. Vaccine 2016, 34, 1975–1985. [Google Scholar] [CrossRef]
- Nakano, T. Japanese vaccinations and practices, with particular attention to polio and pertussis. Travel Med. Infect. Dis. 2011, 9, 169–175. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO) Global Polio Eradication Initiative (GPEI). Classification and Reporting of Vaccine-Derived Polioviruses (VDPV), GPEI Guidelines. Available online: https://polioeradication.org/wp-content/uploads/2016/09/Reporting-and-Classification-of-VDPVs_Aug2016_EN.pdf (accessed on 30 November 2022).
- Burns, C.C.; Shaw, J.; Jorba, J.; Bukbuk, D.; Adu, F.; Gumede, N.; Pate, M.A.; Abanida, E.A.; Gasasira, A.; Iber, J.; et al. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. J. Virol. 2013, 87, 4907–4922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, K.; Shimizu, H. Outbreaks of Circulating Vaccine-Derived Poliovirus in the World Health Organization Western Pacific Region, 2000–2021. Jpn. J. Infect. Dis. 2022, 75, 431–444. [Google Scholar] [CrossRef]
- Kitamura, K.; Shimizu, H. The Molecular Evolution of Type 2 Vaccine-Derived Polioviruses in Individuals with Primary Immunodeficiency Diseases. Viruses 2021, 13, 1407. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Polio Vaccination Recommendations for Specific Groups. 2018. Available online: https://www.cdc.gov/vaccines/vpd/polio/hcp/recommendations.html (accessed on 30 November 2022).
- Cassimos, D.C.; Effraimidou, E.; Medic, S.; Konstantinidis, T.; Theodoridou, M.; Maltezou, H.C. Vaccination programs for adults in Europe, 2019. Vaccines 2020, 8, E34. [Google Scholar] [CrossRef] [Green Version]
- VanderEnde, K.; Gacic-Dobo, M.; Diallo, M.S.; Conklin, L.M.; Wallace, A.S. Global routine vaccination coverage–2017. Morb. Mortal. Wkly. Rep. 2018, 67, 1261–1264. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Infectious Diseases. Prevalence of Poliovirus-Neutralizing Antibody and Vaccination Status—A Report from National Epidemiological Surveillance of Vaccine-Preventable Diseases. 2019. Available online: https://www.niid.go.jp/niid//images/epi/yosoku/2018/Seroprevalence/p2018serum-e.pdf (accessed on 30 November 2022).
- Satoh, H.; Tanaka-Taya, K.; Shimizu, H.; Goto, A.; Tanaka, S.; Nakano, T.; Hotta, C.; Okazaki, T.; Itamochi, M.; Ito, M.; et al. Polio vaccination coverage and seroprevalence of poliovirus antibodies after the introduction of inactivated poliovirus vaccines for routine immunization in Japan. Vaccine 2019, 37, 1964–1971. [Google Scholar] [CrossRef]
- Maldonado, Y.A.; Pena-Cruz, V.; de la Luz Sanchez, M.; Logan, L.; Blandon, S.; Cantwell, M.F.; Matsui, S.M.; Millan-Velasco, F.; Valdespino, J.L.; Sepulveda, J. Host and viral factors affecting the decreased immunogenicity of Sabin type 3 vaccine after administration of trivalent oral polio vaccine to rural Mayan children. J. Infect. Dis. 1997, 175, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Kaliappan, S.P.; Venugopal, S.; Giri, S.; Praharaj, I.; Karthikeyan, A.S.; Babji, S.; John, J.; Muliyil, J.; Grassly, N.; Kang, G. Factors determining anti-poliovirus type 3 antibodies among orally immunised Indian infants. Vaccine 2016, 34, 4979–4984. [Google Scholar] [CrossRef] [PubMed]
- Larocca, A.M.V.; Bianchi, F.P.; Bozzi, A.; Tafuri, S.; Stefanizzi, P.; Germinario, C.A. Long-Term Immunogenicity of Inactivated and Oral Polio Vaccines: An Italian Retrospective Cohort Study. Vaccines 2022, 10, 1329. [Google Scholar] [CrossRef] [PubMed]
- Hendry, A.J.; Beard, F.H.; Dey, A.; Quinn, H.; Hueston, L.; Dwyer, D.E.; McIntyre, P.B. Lower immunity to poliomyelitis viruses in Australian young adults not eligible for inactivated polio vaccine. Vaccine 2020, 38, 2572–2577. [Google Scholar] [CrossRef] [PubMed]
- Resik, S.; Tejeda, A.; Fonseca, M.; Sein, C.; Hung, L.H.; Martinez, Y.; Diaz, M.; Okayasu, H.; Sutter, R.W. Decay of Sabin inactivated poliovirus vaccine (IPV)-boosted poliovirus antibodies. Trials Vaccinol. 2015, 4, 71–74. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N (%) | |
---|---|---|
Sex | ||
Female | 35 (57) | |
Male | 26 (43) | |
Age (years) | ||
20–29 | 13 (21) | |
30–39 | 33 (54) | |
40–49 | 11 (18) | |
50–59 | 4 (7) | |
Doses of primary trivalent oral polio vaccine (tOPV) in childhood | ||
0 | 1 (2) | |
1 | 2 (3) | |
2 | 37 (61) | |
unknown | 21 (34) |
Poliovirus Strain | Visit 1 | Visit 2 | Visit 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n/N | % | (95%CI) | n/N | % | (95%CI) | n/N | % | (95%CI) | ||
Sabin | Sabin 1 | 54/61 | 88.5 | (77.8–95.3) | 60/61 | 98.4 | (91.2–100) | 61/61 | 100 | (94.1–100) |
Sabin 2 | 58/61 | 95.1 | (86.3–99.0) | 61/61 | 100 | (94.1–100) | 61/61 | 100 | (94.1–100) | |
Sabin 3 | 32/61 | 52.5 | (39.3–65.4) | 60/61 | 98.4 | (91.2–100) | 61/61 | 100 | (94.1–100) | |
Virulent | Mahoney (type 1) | 44/61 | 72.1 | (59.2–82.9) | 60/61 | 98.4 | (91.2–100) | 61/61 | 100 | (94.1–100) |
MEF-1 (type 2) | 57/61 | 93.4 | (84.1–98.2) | 61/61 | 100 | (94.1–100) | 61/61 | 100 | (94.1–100) | |
Saukett (type 3) | 19/61 | 31.1 | (19.9–44.3) | 60/61 | 98.4 | (91.2–100) | 61/61 | 100 | (94.1–100) | |
Type 2 vaccine-derived polioviruses (VDPV) | SV3128 | 57/61 | 93.4 | (84.1–98.2) | 61/61 | 100 | (94.1–100) | 61/61 | 100 | (94.1–100) |
SV3130 | 57/61 | 93.4 | (84.1–98.3) | 61/61 | 100 | (94.1–100) | 61/61 | 100 | (94.1–100) | |
11196 | 57/61 | 93.4 | (84.1–98.4) | 61/61 | 100 | (94.1–100) | 61/61 | 100 | (94.1–100) | |
11198 | 54/61 | 88.5 | (77.8–95.3) | 61/61 | 100 | (94.1–100) | 61/61 | 100 | (94.1–100) |
Poliovirus Strain | GMT (95%CI) | GMFR | GMFR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Visit 1 | Visit 2 | Visit 3 | Visit 2/Visit 1 | Visit 3/Visit 2 | |||||||
Sabin | Sabin 1 | 42.0 | (28.6–60.8) | 745 | (582–944) | 737 | (603–912) | 17.7 | (p < 0.01) | 1.0 | (p = 0.83) |
Sabin 2 | 44.5 | (32.7–61.1) | 914 | (805–1033) | 883 | (778–1021) | 20.5 | (p < 0.01) | 1.0 | (p = 0.233) | |
Sabin 3 | 10.4 | (7.57–14.5) | 561 | (411–769) | 536 | (409–705) | 53.9 | (p < 0.01) | 1.0 | (p = 0.148) | |
Virulent | Mahoney (type 1) | 14.9 | (10.9–20.0) | 643 | (486–818) | 621 | (495–767) | 43.1 | (p < 0.01) | 1.0 | (p = 0.193) |
MEF-1 (type 2) | 40.2 | (30.2–52.5) | 924 | (834–1045) | 914 | (824–1009) | 23.0 | (p < 0.01) | 1.0 | (p = 0.85) | |
Saukett (type 3) | 6.90 | (5.40–8.87) | 495 | (352–681) | 478 | (356–643) | 71.7 | (p < 0.01) | 1.0 | (p = 0.606) | |
Type 2 VDPV | SV3128 | 55.2 | (40.9–73.8) | 957 | (843–1081) | 957 | (869–1050) | 17.3 | (p < 0.01) | 1.0 | (p = 1.000) |
SV3130 | 37.5 | (27.7–49.9) | 935 | (824–1057) | 946 | (849–1074) | 24.9 | (p < 0.01) | 1.0 | (p = 0.773) | |
11196 | 42.0 | (31.0–56.0) | 904 | (802–1038) | 957 | (851–1072) | 21.5 | (p < 0.01) | 1.1 | (p = 0.037) | |
11198 | 24.9 | (18.5–34.1) | 924 | (830–1050) | 864 | (760–998) | 37.1 | (p < 0.01) | 0.9 | (p = 0.047) |
Poliovirus Strain | Participant 1 (One Dose with tOPV) | Participant 2 (One Dose with tOPV) | Participant 3 (Unvaccinated with tOPV) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Visit 1 | Visit 2 | Visit 3 | Visit 1 | Visit 2 | Visit 3 | Visit 1 | Visit 2 | Visit 3 | ||
Sabin 1 | 128 | >1024 | >1024 | 8 | >1024 | >1024 | <4 | <4 | 16 | |
Sabin | Sabin 2 | 128 | >1024 | >1024 | 8 | 512 | 512 | <4 | 32 | 32 |
Sabin 3 | <4 | 64 | 128 | 8 | >1024 | >1024 | <4 | <4 | 128 | |
Mahoney (type 1) | 8 | >1024 | >1024 | 4 | 1024 | 1024 | <4 | 4 | 128 | |
Virulent | MEF-1 (type 2) | 64 | >1024 | >1024 | 4 | >1024 | >1024 | <4 | 64 | 128 |
Saukett (type 3) | <4 | 64 | 256 | 4 | >1024 | >1024 | <4 | <4 | 64 | |
Type 2 VDPV | SV3128 | 64 | >1024 | >1024 | 4 | >1024 | 1024 | <4 | 32 | 64 |
SV3130 | 64 | >1024 | >1024 | 4 | >1024 | >1024 | <4 | 32 | 32 | |
11196 | 64 | >1024 | >1024 | 4 | >1024 | 1024 | <4 | 32 | 32 | |
11198 | 64 | >1024 | >1024 | 4 | 512 | 512 | <4 | 32 | 32 |
Symptoms | Grade of Seriousness | n/N (%) |
---|---|---|
Immediate AEs | 0/122 (0.0) | |
Solicited Injection Site Reaction | 42/116 (36.2) | |
Pain | 40/116 (34.5) | |
Grade 1 | 39/116 (33.6) | |
Grade 2 | 1/116 (0.9) | |
Grade 3 | 0/116 (0.0) | |
Swelling | 15/116 (12.9) | |
Grade 1 | 14/116 (12.1) | |
Grade 2 | 1/116 (0.9) | |
Grade 3 | 0/116 (0.0) | |
Erythema | 8/116 (6.9) | |
Grade 1 | 8/116 (6.9) | |
Grade 2 | 0/116 (0.0) | |
Grade 3 | 0/116 (0.0) | |
Solicited Systemic Reaction | 13/116 (11.2) | |
Fever | 0/116 (0.0) | |
Grade 1 | 0/116 (0.0) | |
Grade 2 | 0/116 (0.0) | |
Grade 3 | 0/116 (0.0) | |
Malaise | 9/116 (7.8) | |
Grade 1 | 8/116 (6.9) | |
Grade 2 | 1/116 (0.9) | |
Grade 3 | 0/116 (0.0) | |
Headache | 5/116 (4.3) | |
Grade 1 | 5/116 (4.3) | |
Grade 2 | 0/116 (0.0) | |
Grade 3 | 0/116 (0.0) | |
Myalgia | 2/116 (1.7) | |
Grade 1 | 2/116 (1.7) | |
Grade 2 | 0/116 (0.0) | |
Grade 3 | 0/116 (0.0) | |
Serious AEs | 0/116 (0.0) | |
Death | 0/116 (0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukushima, S.; Nakano, T.; Shimizu, H.; Hamada, A. Immunogenicity of Catch-Up Immunization with Conventional Inactivated Polio Vaccine among Japanese Adults. Vaccines 2022, 10, 2160. https://doi.org/10.3390/vaccines10122160
Fukushima S, Nakano T, Shimizu H, Hamada A. Immunogenicity of Catch-Up Immunization with Conventional Inactivated Polio Vaccine among Japanese Adults. Vaccines. 2022; 10(12):2160. https://doi.org/10.3390/vaccines10122160
Chicago/Turabian StyleFukushima, Shinji, Takashi Nakano, Hiroyuki Shimizu, and Atsuo Hamada. 2022. "Immunogenicity of Catch-Up Immunization with Conventional Inactivated Polio Vaccine among Japanese Adults" Vaccines 10, no. 12: 2160. https://doi.org/10.3390/vaccines10122160
APA StyleFukushima, S., Nakano, T., Shimizu, H., & Hamada, A. (2022). Immunogenicity of Catch-Up Immunization with Conventional Inactivated Polio Vaccine among Japanese Adults. Vaccines, 10(12), 2160. https://doi.org/10.3390/vaccines10122160