Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Setting, and Period
2.2. Data Collection Procedure
2.3. Sample Size and Sampling
2.4. Isolation and Identification of Pathogens
2.5. Antibiotics Susceptibility Testing
2.6. Ethical Considerations
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, A.; Hughes, J.M. Critical importance of a one health approach to antimicrobial resistance. EcoHealth 2019, 16, 404–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PLOS Medicine Editors. Call for Papers: PLOS Medicine Special Issue on Bacterial Antimicrobial Resistance—Surveillance and Prevention. PLoS Med. 2022, 19, e1004014. [Google Scholar]
- Subramanya, S.H.; Czyż, D.M.; Acharya, K.P.; Humphreys, H. The potential impact of the COVID-19 pandemic on antimicrobial resistance and antibiotic stewardship. Virusdisease 2021, 32, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.; Chan, A.N.; Wright, G.D. The antibiotic resistome: A guide for the discovery of natural products as antimicrobial agents. Chem. Rev. 2021, 121, 3464–3494. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 4-2. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.; Webber, M.A. Novel approaches to the treatment of bacterial biofilm infections. Br. J. Pharmacol. 2017, 174, 2237–2246. [Google Scholar] [CrossRef]
- Taleb, M.H.; Abou Elkhair, E.; Abed Timraz, R.; Bilbeisi, E.; Hassan, A.H. Prevalence of Antibiotics Resistance among Patients Undergoing Bronchoscopy in Chest Department at Al-Shifa medical complex in Gaza Strip, Palestine. Bull. Pharm. Sci. Assiut 2022, 45, 811–822. [Google Scholar] [CrossRef]
- Khojah, H.M. Over-the-counter sale of antibiotics during COVID-19 outbreak by community pharmacies in Saudi Arabia: A simulated client study. BMC Health Serv. Res. 2022, 22, 123. [Google Scholar] [CrossRef]
- Alhomoud, F.; Aljamea, Z.; Basalelah, L. “Antibiotics kill things very quickly”—Consumers’ perspectives on non-prescribed antibiotic use in Saudi Arabia. BMC Public Health 2018, 18, 1177. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial resistance in the context of the sustainable development goals: A brief review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82. [Google Scholar] [CrossRef]
- Geta, K. Factors, impacts and possible solutions of antibiotic resistance. World Sci. News 2019, 138, 225–247. [Google Scholar]
- Meawed, T.E.; Ahmed, S.M.; Mowafy, S.M.; Samir, G.M.; Anis, R.H. Bacterial and fungal ventilator associated pneumonia in critically ill COVID-19 patients during the second wave. J. Infect. Public Health 2021, 14, 1375–1380. [Google Scholar] [CrossRef]
- Ansari, S.; Hays, J.P.; Kemp, A.; Okechukwu, R.; Murugaiyan, J.; Ekwanzala, M.D.; Ruiz Alvarez, M.J.; Paul-Satyaseela, M.; Iwu, C.D.; Balleste-Delpierre, C. The potential impact of the COVID-19 pandemic on global antimicrobial and biocide resistance: An AMR Insights global perspective. JAC Antimicrob. Resist. 2021, 3, dlab038. [Google Scholar] [CrossRef]
- Wang, L.; Amin, A.K.; Khanna, P.; Aali, A.; McGregor, A.; Bassett, P.; Gopal Rao, G. An observational cohort study of bacterial co-infectioncoinfection and implications for empirical antibiotic therapy in patients presenting with COVID-19 to hospitals in North West London. J. Antimicrob. Chemother. 2021, 76, 796–803. [Google Scholar] [CrossRef]
- Ghosh, S.; Bornman, C.; Zafer, M.M. Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand? J. Infect. Public Health 2021, 14, 555–560. [Google Scholar] [CrossRef]
- Alhazzani, W.; Al-Suwaidan, F.A.; Al Aseri, Z.A.; Al Mutair, A.; Alghamdi, G.; Rabaan, A.A.; Algamdi, M.; Alohali, A.F.; Asiri, A.Y.; Alshahrani, M.S. The Saudi critical care society clinical practice guidelines on the management of COVID-19 patients in the intensive care unit. Saudi Crit. Care J. 2020, 4, 27. [Google Scholar] [CrossRef]
- Khamis, F.; Al-Zakwani, I.; Al Naamani, H.; Al Lawati, S.; Pandak, N.; Omar, M.B.; Al Bahrani, M.; Bulushi, Z.A.; Al Khalili, H.; Al Salmi, I. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: An experience from Oman. J. Infect. Public Health 2020, 13, 906–913. [Google Scholar] [CrossRef]
- Bahçe, Y.G.; Acer, Ö.; Özüdoğru, O. Evaluation of bacterial agents isolated from endotracheal aspirate cultures of COVID-19 general intensive care patients and their antibiotic resistance profiles compared to pre-pandemic conditions. Microb. Pathog. 2022, 164, 105409. [Google Scholar] [CrossRef]
- Founou, R.C.; Blocker, A.J.; Noubom, M.; Tsayem, C.; Choukem, S.P.; Dongen, M.V.; Founou, L.L. The COVID-19 pandemic: A threat to antimicrobial resistance containment. Future Sci. OA 2021, 7, FSO736. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Bert, F.; Nicolas-Chanoine, M.-H. The challenges of multi-drug-resistance in hepatology. J. Hepatol. 2016, 65, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Kernéis, S.; Lucet, J.-C. Controlling the diffusion of multidrug-resistant organisms in intensive care units. Proc. Semin. Respir. Crit. Care Med. 2019, 40, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, H.; Hahn, A.; Ehrenstein, B.; Geiger, K.; Just, H.; Daschner, F.D. Detection of cross-transmission of multiresistant Gram-negative bacilli and Staphylococcus aureus in adult intensive care units by routine typing of clinical isolates. Clin. Microbiol. Infect. 1999, 5, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetchotisakd, P.; Phelps, C.L.; Hartstein, A.I. Assessment of bacterial cross-transmission as a cause of infections in patients in intensive care units. Clin. Infect. Dis. 1994, 18, 929–937. [Google Scholar] [CrossRef]
- Boyce, J.M.; Pittet, D. Guideline for hand hygiene in health-care settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infect. Control. Hosp. Epidemiol. 2002, 23, S3–S40. [Google Scholar] [CrossRef] [Green Version]
- Osterholm, M.T. Preparing for the next pandemic. In Global Health; Routledge: London, UK, 2017; pp. 225–238. [Google Scholar]
- Nieuwlaat, R.; Mbuagbaw, L.; Mertz, D.; Burrows, L.L.; Bowdish, D.M.; Moja, L.; Wright, G.D.; Schünemann, H.J. Coronavirus disease 2019 and antimicrobial resistance: Parallel and interacting health emergencies. Clin. Infect. Dis. 2021, 72, 1657–1659. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Coronavirus disease 2019, superinfections, and antimicrobial development: What can we expect? Clin. Infect. Dis. 2020, 71, 2736–2743. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.; Castro-Sanchez, E.; Charani, E.; Davies, F.; Satta, G.; Ellington, M.J.; Holmes, A.H. COVID-19 and the potential long-term impact on antimicrobial resistance. J. Antimicrob. Chemother. 2020, 75, 1681–1684. [Google Scholar] [CrossRef]
- Sturdy, A.; Basarab, M.; Cotter, M.; Hager, K.; Shakespeare, D.; Shah, N.; Randall, P.; Spray, D.; Arnold, A. Severe COVID-19 and healthcare-associated infections on the ICU: Time to remember the basics? J. Hosp. Infect. 2020, 105, 593–595. [Google Scholar] [CrossRef]
- Contou, D.; Claudinon, A.; Pajot, O.; Micaëlo, M.; Longuet Flandre, P.; Dubert, M.; Cally, R.; Logre, E.; Fraissé, M.; Mentec, H. Bacterial and viral co-infectionscoinfections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann. Intensive Care 2020, 10, 119. [Google Scholar] [CrossRef]
- Van Duin, D.; Barlow, G.; Nathwani, D. The impact of the COVID-19 pandemic on antimicrobial resistance: A debate. JAC Antimicrob. Resist. 2020, 2, dlaa053. [Google Scholar] [CrossRef]
- Ranney, M.L.; Griffeth, V.; Jha, A.K. Critical supply shortages—The need for ventilators and personal protective equipment during the COVID-19 pandemic. N. Engl. J. Med. 2020, 382, e41. [Google Scholar] [CrossRef]
- Murray, A.K. The novel coronavirus COVID-19 outbreak: Global implications for antimicrobial resistance. Front. Microbiol. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Aurilio, C.; Sansone, P.; Paladini, A.; Barbarisi, M.; Coppolino, F.; Pota, V.; Pace, M.C. Multidrug resistence prevalence in COVID Area. Life 2021, 11, 601. [Google Scholar] [CrossRef]
- Chatzopoulou, M.; Reynolds, L. Role of antimicrobial restrictions in bacterial resistance control: A systematic literature review. J. Hosp. Infect. 2020, 104, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and fungal co-infectioncoinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar]
- Ramadan, H.K.-A.; Mahmoud, M.A.; Aburahma, M.Z.; Elkhawaga, A.A.; El-Mokhtar, M.A.; Sayed, I.M.; Hosni, A.; Hassany, S.M.; Medhat, M.A. Predictors of severity and co-infectioncoinfection resistance profile in COVID-19 patients: First report from upper Egypt. Infect. Drug Resist. 2020, 13, 3409. [Google Scholar] [CrossRef]
- Vincent, J.-L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; Bihari, D.J.; Suter, P.M.; Bruining, H.A.; White, J.; Nicolas-Chanoin, M.-H.; Wolff, M.; Spencer, R.C.; Hemmer, M. The prevalence of nosocomial infection in intensive care units in Europe: Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. JAMA 1995, 274, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Hanberger, H.; Garcia-Rodriguez, J.-A.; Gobernado, M.; Goossens, H.; Nilsson, L.E.; Struelens, M.J. Antibiotic susceptibility among aerobic gram-negative bacilli in intensive care units in 5 European countries. JAMA 1999, 281, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, I.; Van Boeckel, T.P.; Pires, J.; Craig, J.; Laxminarayan, R. Global geographic trends in antimicrobial resistance: The role of international travel. J. Travel Med. 2019, 26, taz036. [Google Scholar] [CrossRef] [PubMed]
- Al-Maani, A.; Al Wahaibi, A.; Al-Zadjali, N.; Al-Sooti, J.; AlHinai, M.; Al Badawi, A.; Al Saidi, A.; AlZadjali, N.; Elshoubary, W.; Al-Harthi, K. The impact of the hand hygiene role model project on improving health-care workers’ compliance: A quasi-experimental observational study. J. Infect. Public Health 2022, 15, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Surachat, K.; Deachamag, P.; Kantachote, D.; Wonglapsuwan, M.; Jeenkeawpiam, K.; Chukamnerd, A. In silico comparative genomics analysis of Lactiplantibacillus plantarum DW12, a potential gamma-aminobutyric acid (GABA)-producing strain. Microbiol. Res. 2021, 251, 126833. [Google Scholar] [CrossRef]
- Belguesmia, Y.; Spano, G.; Drider, D. Potentiating effects of leaderless enterocin DD14 in combination with methicillin on clinical methicillin-resistant Staphylococcus aureus S1 strain. Microbiol. Res. 2021, 252, 126864. [Google Scholar] [CrossRef]
- Hei, Y.; Zhang, H.; Tan, N.; Zhou, Y.; Wei, X.; Hu, C.; Liu, Y.; Wang, L.; Qi, J.; Gao, J.M. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau. Microbiol. Res. 2021, 244, 126652. [Google Scholar] [CrossRef]
- Huang, S.; Wang, S.; Li, Y.; Fang, M.; Kou, Z.; Chen, B.; Xu, L.; Bi, Z.; Xu, H.; Chi, X.; et al. Prevalence and transmission of mobilized colistin resistance (mcr-1) gene positive Escherichia coli in healthy rural residents in Shandong province, China. Microbiol. Res. 2021, 253, 126881. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control. 2022, 11, 45. [Google Scholar] [CrossRef]
- Shesha, N.; Melebari, S.; Alghamdi, S.; Refaat, B.; Naffadi, H.; Alquthami, K. Associations of Clinical Factors and Blood Groups with the Severity of COVID-19 Infection in Makkah City, Saudi Arabia. Front. Cell. Infect. Microbiol. 2022, 12, 870096. [Google Scholar] [CrossRef]
Variables | Total: n = 42 (%) | Male: n = 16 (%) | Female: n = 26 (%) | p Value |
---|---|---|---|---|
Age (years) | ||||
Mean ± SD | 59.35 ± 18 | 66.62 ± 15 | 54.88 ± 20 | 0.037 |
Blood group | ||||
A− | 2 (4.8) | 2 (100) | 0.0 (0.0) | 0.031 |
A+ | 9 (21.4) | 2 (22.2) | 7 (77.8) | |
AB+ | 2 (4.8) | 2 (100) | 0.0 (0.0) | |
B− | 2 (4.8) | 2 (100) | 0.0 (0.0) | |
B+ | 3 (7.1) | 2 (66.7) | 1 (33.3) | |
O− | 9 (21.4) | 3 (33.3) | 6 (66.7) | |
O+ | 15 (35.7) | 3 (20.0) | 12 (80.0) | |
Diagnosis | ||||
Acute myocardial infarction | 2 (4.8) | 2 (100) | 0.0 (0.0) | 0.085 |
Acute pain | 4 (9.5) | 0.0 (0.0) | 4 (100) | |
Chronic kidney disease | 1 (2.4) | 0.0 (0.0) | 1 (100) | |
Dyspnea | 1 (2.4) | 0.0 (0.0) | 1 (100) | |
Heart attack | 4 (9.5) | 3 (75.0) | 1 (25.0) | |
Pneumonia | 4 (9.5) | 1 (25.0) | 3 (75.0) | |
Stroke | 3 (7.1) | 3 (100) | 0.0 (0.0) | |
Sepsis | 13 (30.9) | 5 (38.5) | 8 (61.5) | |
Weakness | 1 (2.4) | 0.0 (0.0) | 1 (100) | |
Unknown fever | 7 (16.7) | 2 (28.6) | 5 (71.4) | |
Viral infection | 2 (4.8) | 0.0 (0.0) | 2 (100) | |
Outcome | ||||
Discharge | 23 (54.8) | 6 (26.1) | 17 (73.9) | 0.074 |
Passed away | 19 (45.2) | 10 (52.6) | 9 (47.4) |
Variables | Total: n = 42 (%) | Male: n = 16 (%) | Female: n = 26 (%) | p Value |
---|---|---|---|---|
Source of samples | ||||
Abscess | 1 (2.4) | 0.0 (0.0) | 1 (100) | 0.581 |
Ascites fluid | 1 (2.4) | 0.0 (0.0) | 1 (100) | |
Blood | 12 (28.6) | 7 (58.3) | 5 (41.7) | |
Pleural fluid | 1 (2.4) | 0.0 (0.0) | 1 (100) | |
Nasal swabs | 2 (4.8) | 1 (50.0) | 1 (50.0) | |
Sputum | 10 (23.8) | 3 (30.0) | 7 (70.0) | |
Urine culture | 9 (21.4) | 4 (44.4) | 5 (55.6) | |
Wound | 6 (14.2) | 1 (16.7) | 5 (83.3) | |
Types of bacteria | ||||
Acinetobacter Baumannii Complex/Hemolyticus | 3 (7.1) | 2 (66.7) | 1 (33.3) | 0.277 |
Escherichia coli | 2 (4.8) | 0.0 (0.0) | 2 (100) | |
Escherichia coli ESBL | 2 (4.8) | 1 (50.0) | 1 (50.0) | |
Klebsiella pneumoniae | 18 (42.7) | 5 (27.8) | 13 (72.2) | |
Methicillin-Resistant Staphylococcus Aureus | 4 (9.5) | 2 (50.0) | 2 (50.0) | |
Proteus Mirabilis | 2 (4.8) | 0.0 (0.0) | 2 (100) | |
Pseudomonas Aeruginosa | 3 (7.1) | 0.0 (0.0) | 3 (100) | |
Staphylococcus Aureus | 2 (4.8) | 1 (50.0) | 1 (50.0) | |
Staphylococcus Epidermidis | 2 (4.8) | 1 (50.0) | 1 (50.0) | |
Staphylococcus Hemolyticus | 1 (2.4) | 1 (100) | 0.0 (0.0) | |
Staphylococcus Hominis subspecies Hominis | 2 (4.8) | 2 (100) | 0.0 (0.0) | |
Streptococcus agalactiae | 1 (2.4) | 1 (100) | 0.0 (0.0) |
Types of Bacteria | Abscess | Ascites Fluid | Blood | Fluid | Nasal Swap | Sputum | Urine Culture | Wound | Total: n (%) |
---|---|---|---|---|---|---|---|---|---|
Acinetobacter Baumannii Complex/Hemolyticus | - | - | 1 (8.3) | - | - | 1 (10) | 1 (11.1) | - | 3 (7.1) |
Escherichia coli | - | - | - | - | - | - | 2 (22.2) | - | 2 (4.8) |
Escherichia coli ESBL | - | - | 1 (8.3) | - | - | 1 (10) | - | - | 2 (4.8) |
Klebsiella Pneumoniae | 1 (100) | 1 (100) | 3 (25.1) | 1 (100) | - | 6 (60) | 4 (44.5) | 2 (33.3) | 18 (42.7) |
Methicillin-Resistant Staphylococcus Aureus | - | - | - | - | 2 (100) | - | - | 2 (33.3) | 4 (9.5) |
Proteus Mirabilis | - | - | 1 (8.3) | - | - | - | 1 (11.1) | - | 2 (4.8) |
Pseudomonas Aeruginosa | - | - | - | - | - | 2 (20) | - | 1 (16.7) | 3 (7.1) |
Staphylococcus Aureus | - | - | 1 (8.3) | - | - | - | - | 1 (16.7) | 2 (4.8) |
Staphylococcus Epidermidis | - | - | 2 (16.7) | - | - | - | - | - | 2 (4.8) |
Staphylococcus Hemolyticus | - | - | 1 (8.3) | - | - | - | - | - | 1 (2.4) |
Staphylococcus Hominis subspecies Hominis | - | - | 2 (16.7) | - | - | - | - | - | 2 (4.8) |
Streptococcus agalactiae | - | - | - | - | - | - | 1 (11.1) | - | 1 (2.4) |
Total: | 1 (2.4) | 1 (2.4) | 12 (28.6) | 1 (2.4) | 2 (4.8) | 10 (23.8) | 9 (21.4) | 6 (14.2) | 42 (100) |
Types of Bacteria | Amikacin | Amoxicillin/Clavulanate | Sulbactam | Ampicillin | Aztreonam | Cefazolin | Cefepime | Cefotaxime | Cefoxitin | Ceftazidime | Ciprofloxacin | Cefuroxime | Colistin | Ertapenem | Gentamicin | Imipenem | Levofloxacin | Meropenem | Moxifloxacin | Piperacillin/Tazobactam | Tigecycline | Tobramycin | Trimethoprim/Sulfamethoxazole | Azithromycin | Clindamycin | Daptomycin | Erythromycin | Fosfomycin | Fusidic Acid | Linezolid | Mupirocin | Oxacillin | Penicillin | Rifampin | Synercid | Teicoplanin | Tetracycline | Vancomycin | Nitrofurantoin | Norfloxacin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acinetobacter Baumannii Complex/Hemolyticus: n = 3 | 3 | - | 3 | 3 | - | - | 3 | 3 | - | 3 | 3 | - | - | - | 3 | 3 | 3 | 3 | - | - | - | 3 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Escherichia Coli: n = 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Escherichia Coli ESBL: n = 2 | - | - | - | 2 | - | 2 | 2 | - | - | 2 | 1 | 2 | - | - | - | - | 1 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Klebsiella Pneumoniae: n = 18 | 14 | 13 | 14 | 17 | 13 | 1 | 14 | 14 | 13 | 13 | 15 | 14 | - | 13 | 14 | 11 | 14 | 13 | 15 | 13 | 2 | 14 | 15 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Methicillin Resistant Staphylococcus Aureus: n = 4 | - | 4 | - | 4 | - | - | - | - | - | - | 3 | - | - | - | - | 4 | 3 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 4 | 4 | - | - | - | - | - | - | - |
Proteus Mirabilis: n = 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 2 |
Pseudomonas Aeruginosa: n = 3 | - | - | - | - | 1 | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Staphylococcus Aureus: n = 2 | 2 | - | - | 2 | - | - | - | - | - | - | 2 | - | - | - | - | 2 | 2 | - | - | - | - | - | - | 2 | 1 | - | 2 | - | 1 | - | - | 2 | 2 | - | - | - | - | - | - | - |
Staphylococcus Epidermidis: n = 2 | 2 | 2 | - | 2 | - | - | - | - | - | - | 2 | - | - | - | 2 | 2 | 2 | - | 2 | - | - | - | - | - | - | - | 2 | - | - | - | - | 2 | 2 | 2 | - | - | - | - | - | - |
Staphylococcus Hemolyticus: n = 1 | 1 | - | - | 1 | - | - | - | - | - | - | 1 | - | - | - | 1 | 1 | 1 | - | 1 | - | - | - | - | 1 | 1 | - | 1 | 1 | 1 | - | - | 1 | 1 | - | - | - | 1 | - | - | - |
Staphylococcus Hominis subspecies Hominis: n = 2 | - | 1 | - | 1 | - | - | - | - | - | - | 1 | - | - | - | 1 | 1 | 1 | - | 1 | - | - | - | - | 1 | 1 | - | 1 | - | 1 | - | - | 1 | 1 | - | - | - | - | - | - | - |
Streptococcus Agalactiae: n = 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - |
Total: 42 (100%) | 22 (52.4%) | 20 (47.6%) | 17 (40.5%) | 32 (76.2%) | 14 (33.3%) | 3 (7.14%) | 19 (45.2%) | 17 (40.5%) | 13 (30.9%) | 18 (42.8%) | 28 (66.7%) | 16 (38.1%) | 1 (2.38%) | 13 (30.9%) | 21 (50.0%) | 24 (57.1%) | 27 (64.3%) | 16 (38.1%) | 24 (57.1%) | 13 (30.9%) | 2 (4.76%) | 17 (40.5%) | 18 (42.8%) | 4 (9.52%) | 3 (7.14%) | 0.0 (0.0%) | 6 (14.28%) | 1 (2.38%) | 3 (7.14%) | 0.0 (0.0%) | 0.0 (0.0%) | 10 (23.8%) | 10 (23.8%) | 2 (4.76%) | 0.0 (0.0%) | 0.0 (0.0%) | 2 (4.76%) | 0.0 (0.0%) | 1 (2.38%) | 2 (4.76%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabrah, A.; Bahwerth, F.; Alghamdi, S.; Alkhotani, A.; Alahmadi, A.; Alhuzali, M.; Aljerary, I.; Alsulami, A. Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia. Vaccines 2022, 10, 2148. https://doi.org/10.3390/vaccines10122148
Kabrah A, Bahwerth F, Alghamdi S, Alkhotani A, Alahmadi A, Alhuzali M, Aljerary I, Alsulami A. Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia. Vaccines. 2022; 10(12):2148. https://doi.org/10.3390/vaccines10122148
Chicago/Turabian StyleKabrah, Ahmed, Fayez Bahwerth, Saad Alghamdi, Alaa Alkhotani, Ahmed Alahmadi, Mashari Alhuzali, Ibrahim Aljerary, and Anwar Alsulami. 2022. "Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia" Vaccines 10, no. 12: 2148. https://doi.org/10.3390/vaccines10122148
APA StyleKabrah, A., Bahwerth, F., Alghamdi, S., Alkhotani, A., Alahmadi, A., Alhuzali, M., Aljerary, I., & Alsulami, A. (2022). Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia. Vaccines, 10(12), 2148. https://doi.org/10.3390/vaccines10122148