Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer
Abstract
:1. Introduction
2. Human Papillomavirus (HPV) and Cervical Cancer
3. Cervical Cancer Vaccines
4. Treatment Strategies
5. Plant Platform for the Production of Affordable Biopharmaceuticals
6. Plant-Made Biopharmaceuticals as Anticancer Therapeutics
HPV Vaccines
7. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: An epigenetic overview. Int. J. Mol. Sci. 2013, 14, 21087–21113. [Google Scholar] [CrossRef] [Green Version]
- Haier, J.; Schaefers, J. Economic Perspective of Cancer Care and Its Consequences for Vulnerable Groups. Cancers 2022, 14, 3158. [Google Scholar] [CrossRef]
- Carrera, P.M.; Kantarjian, H.M.; Blinder, V.S. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J. Clin. 2018, 68, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Small, W., Jr.; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; et al. Cervical cancer: A global health crisis. Cancer 2017, 123, 2404–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: Defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 2137–2150. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.T.; Gottschamel, J.; Hassan, S.W.; Lössl, A.G. Plant-derived vaccines. Hum. Vaccines Immunother. 2012, 8, 403–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankaranarayanan, R.; Budukh, A.M.; Rajkumar, R. Effective screening programmes for cervical cancer in low- and middle-income developing countries. Bull. World Health Organ. 2001, 79, 954–962. [Google Scholar] [PubMed]
- Kundargi, R.S.; Guruprasad, B.; Hanumantappa, N.; Rathod, P.S.; Devi, U.K.; Bafna, U.D. The role of surgery in locally advanced carcinoma of cervix after sub-optimal chemoradiation: Indian scenario. South Asian J. Cancer 2013, 2, 137–139. [Google Scholar] [CrossRef]
- Altun, İ.; Sonkaya, A. The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotherapy. Iran. J. Public Health 2018, 47, 1218–1219. [Google Scholar]
- Canfell, K.; Kim, J.J.; Brisson, M.; Keane, A.; Simms, K.T.; Caruana, M.; Burger, E.A.; Martin, D.; Nguyen, D.T.N.; Bénard, É.; et al. Mortality impact of achieving WHO cervical cancer elimination targets: A comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 2020, 395, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.V. Human papillomavirus: Gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol. 2010, 5, 1493–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Smith, J.S.; Lindsay, L.; Hoots, B.; Keys, J.; Franceschi, S.; Winer, R.; Clifford, G.M. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta-analysis update. Int. J. Cancer 2007, 121, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex. Transm. Dis. 2014, 41, 660–664. [Google Scholar] [CrossRef]
- Johnson, C.A.; James, D.; Marzan, A.; Armaos, M. Cervical Cancer: An Overview of Pathophysiology and Management. Semin. Oncol. Nurs. 2019, 35, 166–174. [Google Scholar] [CrossRef]
- Bosch, F.X.; de Sanjosé, S. Chapter 1: Human Papillomavirus and Cervical Cancer—Burden and Assessment of Causality. JNCI Monogr. 2003, 2003, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Moscicki, A.B. Management of adolescents who have abnormal cytology and histology. Obstet. Gynecol. Clin. N. Am. 2008, 35, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Bosch, X.; Harper, D. Prevention strategies of cervical cancer in the HPV vaccine era. Gynecol. Oncol. 2006, 103, 21–24. [Google Scholar] [CrossRef]
- Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 2003, 348, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Münger, K.; Baldwin, A.; Edwards, K.M.; Hayakawa, H.; Nguyen, C.L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of human papillomavirus-induced oncogenesis. J. Virol. 2004, 78, 11451–11460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffman, M.; Wentzensen, N.; Wacholder, S.; Kinney, W.; Gage, J.C.; Castle, P.E. Human papillomavirus testing in the prevention of cervical cancer. J. Natl. Cancer Inst. 2011, 103, 368–383. [Google Scholar] [CrossRef] [Green Version]
- Kamolratanakul, S.; Pitisuttithum, P. Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer. Vaccines 2021, 9, 1413. [Google Scholar] [CrossRef]
- Bruni, L.; Diaz, M.; Barrionuevo-Rosas, L.; Herrero, R.; Bray, F.; Bosch, F.X.; de Sanjosé, S.; Castellsagué, X. Global estimates of human papillomavirus vaccination coverage by region and income level: A pooled analysis. Lancet Glob. Health 2016, 4, e453–e463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugaraj, B.; Priya, L.B.; Mahalakshmi, B.; Subbiah, S.; Hu, R.-M.; Velmurugan, B.K.; Baskaran, R. Bacterial and viral vectors as vaccine delivery vehicles for breast cancer therapy. Life Sci. 2020, 250, 117550. [Google Scholar] [CrossRef] [PubMed]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 2018, 11, 39. [Google Scholar] [CrossRef]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830.e814. [Google Scholar] [CrossRef] [Green Version]
- Duranti, S.; Pietragalla, A.; Daniele, G.; Nero, C.; Ciccarone, F.; Scambia, G.; Lorusso, D. Role of Immune Checkpoint Inhibitors in Cervical Cancer: From Preclinical to Clinical Data. Cancers 2021, 13, 2089. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, G.; Li, Y.; Pan, Y. Immune checkpoint: The novel target for antitumor therapy. Genes Dis. 2021, 8, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. Adv. Exp. Med. Biol. 2020, 1248, 201–226. [Google Scholar] [CrossRef]
- Yang, W.; Lu, Y.P.; Yang, Y.Z.; Kang, J.R.; Jin, Y.D.; Wang, H.W. Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status. J. Obstet. Gynaecol. Res. 2017, 43, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Reddy, O.L.; Shintaku, P.I.; Moatamed, N.A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol. 2017, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Mezache, L.; Paniccia, B.; Nyinawabera, A.; Nuovo, G.J. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol. 2015, 28, 1594–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wu, L.; Tong, R.; Yang, F.; Yin, L.; Li, M.; You, L.; Xue, J.; Lu, Y. PD-1/PD-L1 Inhibitors in Cervical Cancer. Front. Pharmacol. 2019, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Naumann, R.W.; Hollebecque, A.; Meyer, T.; Devlin, M.J.; Oaknin, A.; Kerger, J.; López-Picazo, J.M.; Machiels, J.P.; Delord, J.P.; Evans, T.R.J.; et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2825–2834. [Google Scholar] [CrossRef]
- Randall, L.M.; Monk, B.J.; Darcy, K.M.; Tian, C.; Burger, R.A.; Liao, S.Y.; Peters, W.A.; Stock, R.J.; Fruehauf, J.P. Markers of angiogenesis in high-risk, early-stage cervical cancer: A Gynecologic Oncology Group study. Gynecol. Oncol. 2009, 112, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, H.S.; Jung, J.J.; Lee, M.C.; Park, C.S. Expression of Vascular Endothelial Growth Factor in Adenocarcinomas of the Uterine Cervix and Its Relation to Angiogenesis and p53 and c-erbB-2 Protein Expression. Gynecol. Oncol. 2002, 85, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, H.S.; Park, J.T.; Lee, M.C.; Park, C.S. Expression of vascular endothelial growth factor in the progression of cervical neoplasia and its relation to angiogenesis and p53 status. Anal. Quant. Cytol. Histol. 2003, 25, 303–311. [Google Scholar] [PubMed]
- López-Ocejo, O.; Viloria-Petit, A.; Bequet-Romero, M.; Mukhopadhyay, D.; Rak, J.; Kerbel, R.S. Oncogenes and tumor angiogenesis: The HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 2000, 19, 4611–4620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toussaint-Smith, E.; Donner, D.B.; Roman, A. Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 2004, 23, 2988–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuemmel, S.; Thomas, A.; Landt, S.; Fuger, A.; Schmid, P.; Kriner, M.; Blohmer, J.U.; Sehouli, J.; Schaller, G.; Lichtenegger, W.; et al. Circulating vascular endothelial growth factors and their soluble receptors in pre-invasive, invasive and recurrent cervical cancer. Anticancer Res. 2009, 29, 641–645. [Google Scholar] [PubMed]
- Loncaster, J.A.; Cooper, R.A.; Logue, J.P.; Davidson, S.E.; Hunter, R.D.; West, C.M. Vascular endothelial growth factor (VEGF) expression is a prognostic factor for radiotherapy outcome in advanced carcinoma of the cervix. Br. J. Cancer 2000, 83, 620–625. [Google Scholar] [CrossRef]
- Monk, B.J.; Sill, M.W.; Burger, R.A.; Gray, H.J.; Buekers, T.E.; Roman, L.D. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: A gynecologic oncology group study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 1069–1074. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.D.; Hagemann, A.; Rader, J.S.; Viviano, D.; Gibb, R.K.; Norris, L.; Mutch, D.G.; Powell, M.A. Bevacizumab combination therapy in recurrent, platinum-refractory, epithelial ovarian carcinoma: A retrospective analysis. Cancer 2006, 107, 83–89. [Google Scholar] [CrossRef]
- Bellati, F.; Napoletano, C.; Gasparri, M.L.; Visconti, V.; Zizzari, I.G.; Ruscito, I.; Caccetta, J.; Rughetti, A.; Benedetti-Panici, P.; Nuti, M. Monoclonal antibodies in gynecological cancer: A critical point of view. Clin. Dev. Immunol. 2011, 2011, 890758. [Google Scholar] [CrossRef] [Green Version]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Turinetto, M.; Valsecchi, A.A.; Tuninetti, V.; Scotto, G.; Borella, F.; Valabrega, G. Immunotherapy for Cervical Cancer: Are We Ready for Prime Time? Int. J. Mol. Sci. 2022, 23, 3559. [Google Scholar] [CrossRef] [PubMed]
- Kousar, K.; Ahmad, T.; Naseer, F.; Kakar, S.; Anjum, S. Review Article: Immune Landscape and Immunotherapy Options in Cervical Carcinoma. Cancers 2022, 14, 4458. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.; Battista, M.J.; Schmidt, M.; Garcia, M.; Siepmann, T.; Hasenburg, A.; Anic, K. Efficacy and Safety of Immunotherapy for Cervical Cancer-A Systematic Review of Clinical Trials. Cancers 2022, 14, 441. [Google Scholar] [CrossRef] [PubMed]
- Sherer, M.V.; Kotha, N.V.; Williamson, C.; Mayadev, J. Advances in immunotherapy for cervical cancer: Recent developments and future directions. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2022, 32, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.K.; Shrivastava, A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front. Bioeng. Biotechnol. 2019, 7, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugaraj, B.; Rattanapisit, K.; Manopwisedjaroen, S.; Thitithanyanont, A.; Phoolcharoen, W. Monoclonal Antibodies B38 and H4 Produced in Nicotiana benthamiana Neutralize SARS-CoV-2 in vitro. Front. Plant Sci. 2020, 11, 589995. [Google Scholar] [CrossRef]
- Siriwattananon, K.; Manopwisedjaroen, S.; Shanmugaraj, B.; Rattanapisit, K.; Phumiamorn, S.; Sapsutthipas, S.; Trisiriwanich, S.; Prompetchara, E.; Ketloy, C.; Buranapraditkun, S.; et al. Plant-Produced Receptor-Binding Domain of SARS-CoV-2 Elicits Potent Neutralizing Responses in Mice and Non-human Primates. Front. Plant Sci. 2021, 12, 682953. [Google Scholar] [CrossRef]
- Moore, C.M.; Grandits, M.; Grünwald-Gruber, C.; Altmann, F.; Kotouckova, M.; Teh, A.Y.H.; Ma, J.K.C. Characterisation of a highly potent and near pan-neutralising anti-HIV monoclonal antibody expressed in tobacco plants. Retrovirology 2021, 18, 17. [Google Scholar] [CrossRef]
- Ward, B.J.; Séguin, A.; Couillard, J.; Trépanier, S.; Landry, N. Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18-49 years of age. Vaccine 2021, 39, 1528–1533. [Google Scholar] [CrossRef]
- Shanmugaraj, B.; Khorattanakulchai, N.; Panapitakkul, C.; Malla, A.; Im-erbsin, R.; Inthawong, M.; Sunyakumthorn, P.; Hunsawong, T.; Klungthong, C.; Reed, M.C.; et al. Preclinical evaluation of a plant-derived SARS-CoV-2 subunit vaccine: Protective efficacy, immunogenicity, safety, and toxicity. Vaccine 2022, 40, 4440–4452. [Google Scholar] [CrossRef]
- Kumar, M.; Kumari, N.; Thakur, N.; Bhatia, S.K.; Saratale, G.D.; Ghodake, G.; Mistry, B.M.; Alavilli, H.; Kishor, D.S.; Du, X.; et al. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Plants 2021, 10, 1213. [Google Scholar] [CrossRef]
- Hager, K.J.; Pérez Marc, G.; Gobeil, P.; Diaz, R.S.; Heizer, G.; Llapur, C.; Makarkov, A.I.; Vasconcellos, E.; Pillet, S.; Riera, F.; et al. Efficacy and Safety of a Recombinant Plant-Based Adjuvanted COVID-19 Vaccine. N. Engl. J. Med. 2022, 386, 2084–2096. [Google Scholar] [CrossRef]
- Kurokawa, N.; Robinson, M.K.; Bernard, C.; Kawaguchi, Y.; Koujin, Y.; Koen, A.; Madhi, S.; Polasek, T.M.; McNeal, M.; Dargis, M.; et al. Safety and immunogenicity of a plant-derived rotavirus-like particle vaccine in adults, toddlers and infants. Vaccine 2021, 39, 5513–5523. [Google Scholar] [CrossRef]
- Shanmugaraj, B.; Khorattanakulchai, N.; Phoolcharoen, W. Chapter 12—SARS-CoV-2 vaccines: Current trends and prospects of developing plant-derived vaccines. In Biomedical Innovations to Combat COVID-19; Rosales-Mendoza, S., Comas-Garcia, M., Gonzalez-Ortega, O., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 213–229. [Google Scholar]
- Shanmugaraj, B.; Bulaon, C.J.I.; Phoolcharoen, W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. Plants 2020, 9, 842. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Govea-Alonso, D.O. The potential of plants for the production and delivery of human papillomavirus vaccines. Expert Rev. Vaccines 2015, 14, 1031–1041. [Google Scholar] [CrossRef]
- Wong-Arce, A.; González-Ortega, O.; Rosales-Mendoza, S. Plant-Made Vaccines in the Fight Against Cancer. Trends Biotechnol. 2017, 35, 241–256. [Google Scholar] [CrossRef]
- Hanumantha Rao, N.; Baji Babu, P.; Rajendra, L.; Sriraman, R.; Pang, Y.Y.; Schiller, J.T.; Srinivasan, V.A. Expression of codon optimized major capsid protein (L1) of human papillomavirus type 16 and 18 in Pichia pastoris; purification and characterization of the virus-like particles. Vaccine 2011, 29, 7326–7334. [Google Scholar] [CrossRef] [Green Version]
- Franconi, R.; Di Bonito, P.; Dibello, F.; Accardi, L.; Muller, A.; Cirilli, A.; Simeone, P.; Donà, M.G.; Venuti, A.; Giorgi, C. Plant-derived Human Papillomavirus 16 E7 Oncoprotein Induces Immune Response and Specific Tumor Protection1. Cancer Res. 2002, 62, 3654–3658. [Google Scholar]
- Franconi, R.; Massa, S.; Illiano, E.; Muller, A.; Cirilli, A.; Accardd, L.; Bonito, P.D.; Giorgi, C.; Venuti, A. Exploiting the Plant Secretory Pathway to Improve the Anticancer Activity of a Plant-Derived HPV16 E7 Vaccine. Int. J. Immunopathol. Pharmacol. 2006, 19, 205873920601900119. [Google Scholar] [CrossRef] [Green Version]
- Di Bonito, P.; Grasso, F.; Mangino, G.; Massa, S.; Illiano, E.; Franconi, R.; Fanales-Belasio, E.; Falchi, M.; Affabris, E.; Giorgi, C. Immunomodulatory activity of a plant extract containing human papillomavirus 16-E7 protein in human monocyte-derived dendritic cells. Int. J. Immunopathol. Pharmacol. 2009, 22, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Morgenfeld, M.; Segretin, M.E.; Wirth, S.; Lentz, E.; Zelada, A.; Mentaberry, A.; Gissmann, L.; Bravo-Almonacid, F. Potato Virus X Coat Protein Fusion to Human Papillomavirus 16 E7 Oncoprotein Enhance Antigen Stability and Accumulation in Tobacco Chloroplast. Mol. Biotechnol. 2009, 43, 243. [Google Scholar] [CrossRef]
- Massa, S.; Franconi, R.; Brandi, R.; Muller, A.; Mett, V.; Yusibov, V.; Venuti, A. Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 2007, 25, 3018–3021. [Google Scholar] [CrossRef]
- Venuti, A.; Massa, S.; Mett, V.; Vedova, L.D.; Paolini, F.; Franconi, R.; Yusibov, V. An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine 2009, 27, 3395–3397. [Google Scholar] [CrossRef]
- Buyel, J.F.; Bautista, J.A.; Fischer, R.; Yusibov, V.M. Extraction, purification and characterization of the plant-produced HPV16 subunit vaccine candidate E7 GGG. J. Chromatogr. B 2012, 880, 19–26. [Google Scholar] [CrossRef]
- Whitehead, M.; Öhlschläger, P.; Almajhdi, F.N.; Alloza, L.; Marzábal, P.; Meyers, A.E.; Hitzeroth, I.I.; Rybicki, E.P. Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer 2014, 14, 367. [Google Scholar] [CrossRef] [Green Version]
- Yanez, R.J.R.; Lamprecht, R.; Granadillo, M.; Weber, B.; Torrens, I.; Rybicki, E.P.; Hitzeroth, I.I. Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS ONE 2017, 12, e0183177. [Google Scholar] [CrossRef] [Green Version]
- Yanez, R.J.R.; Lamprecht, R.; Granadillo, M.; Torrens, I.; Arcalís, E.; Stöger, E.; Rybicki, E.P.; Hitzeroth, I.I. LALF32-51-E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves. Plant Biotechnol. J. 2018, 16, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Massa, S.; Paolini, F.; Marino, C.; Franconi, R.; Venuti, A. Bioproduction of a Therapeutic Vaccine Against Human Papillomavirus in Tomato Hairy Root Cultures. Front. Plant Sci. 2019, 10, 452. [Google Scholar] [CrossRef]
- Warzecha, H.; Mason Hugh, S.; Lane, C.; Tryggvesson, A.; Rybicki, E.; Williamson, A.-L.; Clements John, D.; Rose Robert, C. Oral Immunogenicity of Human Papillomavirus-Like Particles Expressed in Potato. J. Virol. 2003, 77, 8702–8711. [Google Scholar] [CrossRef] [Green Version]
- Kohl, T.O.; Hitzeroth, I.I.; Christensen, N.D.; Rybicki, E.P. Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol. 2007, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Kohl, T.; Hitzeroth, I.I.; Stewart, D.; Varsani, A.; Govan, V.A.; Christensen, N.D.; Williamson, A.L.; Rybicki, E.P. Plant-Produced Cottontail Rabbit Papillomavirus L1 Protein Protects against Tumor Challenge: A Proof-of-Concept Study. Clin. Vaccine Immunol. 2006, 13, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Biemelt, S.; Sonnewald, U.; Galmbacher, P.; Willmitzer, L.; Müller, M. Production of Human Papillomavirus Type 16 Virus-Like Particles in Transgenic Plants. J. Virol. 2003, 77, 9211–9220. [Google Scholar] [CrossRef]
- Varsani, A.; Williamson, A.L.; Rose, R.C.; Jaffer, M.; Rybicki, E.P. Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch. Virol. 2003, 148, 1771–1786. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Li, W.-S.; Lei, T.; Zheng, J.; Zhang, Z.; Yan, X.-F.; Wang, Z.-Z.; Wang, Y.-L.; Si, L.-S. Expression of Human Papillomavirus Type 16 L1 Protein in Transgenic Tobacco Plants. Acta Biochim. et Biophys. Sin. 2005, 37, 153–158. [Google Scholar] [CrossRef]
- Varsani, A.; Williamson, A.-L.; Stewart, D.; Rybicki, E.P. Transient expression of Human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector. Virus Res. 2006, 120, 91–96. [Google Scholar] [CrossRef]
- Maclean, J.; Koekemoer, M.; Olivier, A.J.; Stewart, D.; Hitzeroth, I.I.; Rademacher, T.; Fischer, R.; Williamson, A.L.; Rybicki, E.P. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: Comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J. Gen. Virol. 2007, 88, 1460–1469. [Google Scholar] [CrossRef]
- Lenzi, P.; Scotti, N.; Alagna, F.; Tornesello, M.L.; Pompa, A.; Vitale, A.; De Stradis, A.; Monti, L.; Grillo, S.; Buonaguro, F.M.; et al. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res. 2008, 17, 1091–1102. [Google Scholar] [CrossRef]
- Fernández-San Millán, A.; Ortigosa, S.M.; Hervás-Stubbs, S.; Corral-Martínez, P.; Seguí-Simarro, J.M.; Gaétan, J.; Coursaget, P.; Veramendi, J. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol. J. 2008, 6, 427–441. [Google Scholar] [CrossRef]
- Regnard, G.L.; Halley-Stott, R.P.; Tanzer, F.L.; Hitzeroth, I.I.; Rybicki, E.P. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol. J. 2010, 8, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Zahin, M.; Joh, J.; Khanal, S.; Husk, A.; Mason, H.; Warzecha, H.; Ghim, S.J.; Miller, D.M.; Matoba, N.; Jenson, A.B. Scalable Production of HPV16 L1 Protein and VLPs from Tobacco Leaves. PLoS ONE 2016, 11, e0160995. [Google Scholar] [CrossRef] [Green Version]
- Paz De la Rosa, G.; Monroy-García, A.; Mora-García Mde, L.; Peña, C.G.; Hernández-Montes, J.; Weiss-Steider, B.; Gómez-Lim, M.A. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol. J. 2009, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monroy-García, A.; Gómez-Lim, M.A.; Weiss-Steider, B.; Hernández-Montes, J.; Huerta-Yepez, S.; Rangel-Santiago, J.F.; Santiago-Osorio, E.; Mora García, M.d.L. Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch. Virol. 2014, 159, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Cerovská, N.; Hoffmeisterová, H.; Pecenková, T.; Moravec, T.; Synková, H.; Plchová, H.; Velemínský, J. Transient expression of HPV16 E7 peptide (aa 44–60) and HPV16 L2 peptide (aa 108–120) on chimeric potyvirus-like particles using Potato virus X-based vector. Protein Expr. Purif. 2008, 58, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.T.; Thönes, N.; Müller, M.; Hassan, S.W.; Razavi, N.M.; Lössl, E.; Kaul, H.P.; Lössl, A.G. Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: A step towards cost-effective second-generation vaccines. Transgenic Res. 2011, 20, 271–282. [Google Scholar] [CrossRef]
- Matić, S.; Rinaldi, R.; Masenga, V.; Noris, E. Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol. 2011, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Cerovska, N.; Hoffmeisterova, H.; Moravec, T.; Plchova, H.; Folwarczna, J.; Synkova, H.; Ryslava, H.; Ludvikova, V.; Smahel, M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J. Biosci. 2012, 37, 125–133. [Google Scholar] [CrossRef]
- Pineo, C.B.; Hitzeroth, I.I.; Rybicki, E.P. Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras. Plant Biotechnol. J. 2013, 11, 964–975. [Google Scholar] [CrossRef]
- Chabeda, A.; van Zyl, A.R.; Rybicki, E.P.; Hitzeroth, I.I. Substitution of Human Papillomavirus Type 16 L2 Neutralizing Epitopes Into L1 Surface Loops: The Effect on Virus-Like Particle Assembly and Immunogenicity. Front. Plant Sci. 2019, 10, 779. [Google Scholar] [CrossRef] [Green Version]
- Naupu, P.N.; van Zyl, A.R.; Rybicki, E.P.; Hitzeroth, I.I. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs). Vaccines 2020, 8, 740. [Google Scholar] [CrossRef]
HPV Vaccines | |||
---|---|---|---|
Trade Name | Gardasil | Cervarix | Gardasil 9 |
Approval | 2006 | 2009 | 2014 |
Manufacturer | Merck & Co | GlaxoSmithKline | Merck & Co |
HPV types | 6, 11, 16, and 18 | 16 and 18 | 6, 11, 16, 18, 31, 33, 45, 52, 58 |
Expression system | Yeast (Saccharomyces cerevisiae CANADE 3C-5 (Strain 1895) | Baculovirus expression system (Hi-5 Rix4446 cells derived from Trichoplusia ni) | Yeast (Saccharomyces cerevisiae CANADE 3C-5 (Strain 1895) |
Adjuvant | Aluminium hydroxyphosphate sulfate | MPL and aluminum hydroxide (AS04) | Aluminium hydroxyphosphate sulfate |
Excipients | Sodium chloride, Histidine, Polysorbate 80, Borax, Water for injections | Sodium chloride, sodium dihydrogen phosphate dihydrate, water for injections | Sodium chloride, Histidine, Polysorbate 80, Borax, Water for injections |
Dose | 0.5 mL/dose | 0.5 mL/dose | 0.5 mL/dose |
Administration schedule | 0, 2 and 6 months | 0, 1 and 6 months | 0, 2 and 6 months |
Routes of administration | Intramuscular injection deltoid area of the upper arm or in the higher anterolateral area of the thigh | Intramuscular injection in the deltoid region | Intramuscular injection in the deltoid or anterolateral area of the thigh |
Storage | 2 °C to 8 °C | 2 °C to 8 °C | 2 °C to 8 °C |
Efficacy | 70–75% | 70% | 90% |
Antigen | Plant System | Transformation Method | Expression Level | Immunization Route | Outcome | Reference |
---|---|---|---|---|---|---|
HPV-16 E7 protein | Nicotiana benthamiana (Tobacco) | Plant virus infection (Transient expression) | 3–4 μg/g fresh weight | Subcutaneously injected in mice | E7-specific CD8+ cytotoxic T cells were stimulated in mice; Both humoral and cell-mediated responses were induced; about 40% of mice were protected after C3 tumor cells challenge | [69] |
Nicotiana benthamiana (Tobacco) | Plant virus infection (Transient expression) | 15 μg/g of fresh weight | Subcutaneously injected in mice | Strong cell-mediated immune response was induced; Increased tumor protection in about 80% of mice after tumor challenge | [70] | |
Nicotiana benthamiana (Tobacco) | Plant virus infection (Transient expression) | NA | NA | Dendritic cells pulsed with plant extract containing E7 were able to prime human blood-derived lymphocytes from healthy individuals to induce HPV16 E7-specific cytotoxic response | [71] | |
Nicotiana tabacum cv. Petit Havana (Tobacco) | Biolistic method (Transplastomic expression/Chloroplast) | 0.1% total soluble protein | NA | NA | [72] | |
HPV-16 E7CP protein | Nicotiana tabacum cv. Petit Havana (Tobacco) | Biolistic method (Transplastomic expression/Chloroplast) | 0.5% total soluble protein | NA | NA | [72] |
HPV-16 LicKM-E7GGG fusion protein | Nicotiana benthamiana (Tobacco) | Plant virus infection (TMV) (Transient expression) | 400 mg/kg fresh weight | Subcutaneously injected in mice | Strong humoral and cell-mediated immune responses was induced in mice; Tumor protection in 100% of animals after tumor challenge | [73] |
Nicotiana benthamiana (Tobacco) | Plant virus infection (TMV) (Transient expression) | NA | Subcutaneously injected in mice | Inhibition of tumor growth in vaccinated mice after challenge; Increased overall survival of treated mice | [74] | |
Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | 233 mg/kg fresh weight | NA | NA | [75] | |
HPV-16 E7-Zera | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | 150 mg/kg | NA | NA | [76] |
HPV-16 E7SH-Zera fusion protein | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | 1100 mg/kg | Subcutaneously injected in mice | Both humoral and potent cell-mediated immune responses are induced; tumor regression in mice were elicited | |
HPV-16 LALF32–51-E7 fusion protein | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | Up to 0.5% total soluble protein | NA | NA | [77] |
Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | NA | NA | NA | [78] | |
HPV-16 E7 *-SAPKQ fusion protein | Solanum lycopersicum cv. Micro-Tom (Tomato) | Agrobacterium mediated (Hairy root cultures) | 35.5 μg/g fresh weight | Subcutaneously injected in mice | Hairy root extract as boost induced cell-mediated immune response and demonstrated anticancer activities against HPV TC-1 tumor cells | [79] |
HPV-11 L1 capsid protein | Solanum tuberosum cv. Desiree (Potato) | Agrobacterium mediated (Transgenic expression/Nucleus) | 20 ng/g fresh tuber | Oral ingestion (Feeding of tubers in mice) | Anti-L1 immune response was activated and enhanced after subsequent boosting with insect cell derived VLP | [80] |
Arabidopsis thaliana ecotype Columbia (Thale cress) | Agrobacterium mediated (Transgenic expression/Nucleus) | Up to 12 μg/g fresh weight | Subcutaneously and intramuscularly injected in rabbits | Weak antibody response and antisera were not reactive with native HPV-11 L1 VLPs and not able to neutralize HPV-11 pseudovirion in vitro | [81] | |
Nicotiana tabacum cv. Xanthi (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | Up to 2 μg/g fresh weight | ||||
CRPV L1 capsid protein | Nicotiana tabacum cv. Xanthi (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | Up to 1.0 mg/kg leaf weight | Subcutaneously and intramuscularly injected in rabbits | L1-specific antibodies were elicited from both transiently and transgenically produced CRPV L1 but stronger to those immunized with TMV-derived L1 protein. No neutralization of pseudovirus was observed in vitro; Rabbits were protected against wart development after CPRV challenge | [82] |
Nicotiana benthamiana (Tobacco) | Plant virus infection (TMV) (Transient expression) | Up to 0.4 mg/kg leaf weight | ||||
HPV-16 L1 capsid protein | Nicotiana tabacum cv. Samsun NN (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | 0.5% total soluble protein | Subcutaneously injected in mice | HPV-16 L1-specific antibodies were elicited, and titers were equal to those produced by immunization using insect cell-derived VLP | [83] |
Solanum tuberosum cv. Solara (Potato) | Agrobacterium mediated (Transgenic expression/Nucleus) | 0.2% total soluble protein | Oral ingestion (Feeding of tubers in mice) | Weak but detectable anti-L1 antibody response | ||
Nicotiana tabacum cv. Xanthi (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | 2–4 µg/kg fresh weight | Subcutaneously and intramuscularly injected in rabbits | No adverse effects observed in immunized rabbits; weak anti- L1 immune response elicited with low doses | [84] | |
Nicotiana tabacum cv. Xanthi (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | 0.034–0.076% total soluble protein | NA | Plant-derived L1 induced murine erythrocyte hemagglutination in vitro | [85] | |
Nicotiana benthamiana (Tobacco) | Plant virus infection (TMV) (Transient expression) | 20–37 μg/kg fresh weight | Subcutaneously and intramuscularly injected in rabbits | Weak L1-reactive antibodies were elicited | [86] | |
Nicotiana tabacum L. ‘Petit Havana’ SR1 (Tobacco) | Agrobacterium mediated (Transient expression) | 40 mg/kg fresh weight | Subcutaneously injected in mice | High titres of HPV-16 L1-specific antibodies and strongly neutralizing antibodies were elicited | [87] | |
Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | >17% total soluble protein | NA | NA | ||
Nicotiana tabacum L. ‘Petite Havana’ SR1 (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | Up to 11% total soluble protein | NA | NA | ||
Nicotiana tabacum cv. Petit Havana (Tobacco) | Biolistic method (Transplastomic expression/Chloroplast) | 1.5% total soluble protein | NA | NA | [88] | |
Nicotiana tabacum L. Petite Havana (Tobacco) | Biolistic method (Transplastomic expression/Chloroplast) | 24% total soluble protein | Intraperitoneally injected in mice | HPV-16 L1-VLPs are highly immunogenic and neutralizing antibodies were detected in sera from immunized mice | [89] | |
Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | Up to 550 mg/kg fresh weight | NA | NA | [90] | |
Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | >2.5% total soluble protein | Intraperitoneally injected in mice | High reactivity and antibody titers were detected from immunized sera | [91] | |
HPV-16 L1 and L1-E6/E7 chimera | Lycopersicon esculentum Mill. (Tomato) | Agrobacterium mediated (Transgenic expression/Nucleus) | 0.05–0.1% total soluble protein | Intraperitoneally injected in mice | Neutralizing antibodies and cytotoxic T cell activity to L1, E6/E7 were elicited | [92] |
Lycopersicon esculentum (Tomato) | Agrobacterium mediated (Transgenic expression/Nucleus) | NA | Intraperitoneally injected in mice | Reactive and neutralizing IgG antibodies were persistent for over 12 months; Significant reduction in tumor growth (57%) in treated mice was observed | [93] | |
HPV-16 L2-ACP-E7 fusion protein | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | Up to 0.043 mg/g fresh weight | NA | NA | [94] |
Mutated HPV-16 L1 (L1_2xCysM) | Nicotiana tabacum cv. Petit Havana (Tobacco) | Biolistic method (Transplastomic expression/Chloroplast) | Up to 1.5% of total soluble protein | NA | NA | [95] |
HPV-16 L1 (L1ΔC22 and chimaeras bearing M2e influenza epitope) | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | Up to 3.9% total soluble protein | NA | NA | [96] |
HPV-16 L2- Potato virus X coat protein (PVX CP) fusion protein (N-Terminal) | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | 170 mg/kg fresh weight | Subcutaneously injected in mice or administered into skin by a tattoo device | PVX CP and L2-specific antibodies were elicited in mice sera | [97] |
HPV-16 PVX CP-L2 fusion protein (C-terminal) | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transgenic expression/Nucleus) | 8 mg/kg fresh weight | NA | NA | |
HPV-16 L1/L2 chimeras | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | ~1.2 g/kg plant tissue | Subcutaneously injected in mice | L1/L2 (108–120) elicited anti-L1 and anti-L2 antibody responses which were able to neutralize homologous HPV-16 and heterologous HPV-52 pseudovirions | [98] |
Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | Up to 145 mg/kg fresh weight | Subcutaneously injected in mice | Cross-neutralization for other HPV types (HPV-11, -18, and -58) with antisera specific to chimeras; L1-specific antibodies can neutralize homologous HPV-16 (anti- SAE 65–81 antiserum) | [99] | |
HPV L1 capsid protein | Nicotiana benthamiana (Tobacco) | Agrobacterium mediated (Transient expression) | NA | Subcutaneously injected in mice | L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays | [100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugaraj, B.; Malla, A.; Bulaon, C.J.I.; Phoolcharoen, W.; Phoolcharoen, N. Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines 2022, 10, 2064. https://doi.org/10.3390/vaccines10122064
Shanmugaraj B, Malla A, Bulaon CJI, Phoolcharoen W, Phoolcharoen N. Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines. 2022; 10(12):2064. https://doi.org/10.3390/vaccines10122064
Chicago/Turabian StyleShanmugaraj, Balamurugan, Ashwini Malla, Christine Joy I. Bulaon, Waranyoo Phoolcharoen, and Natacha Phoolcharoen. 2022. "Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer" Vaccines 10, no. 12: 2064. https://doi.org/10.3390/vaccines10122064
APA StyleShanmugaraj, B., Malla, A., Bulaon, C. J. I., Phoolcharoen, W., & Phoolcharoen, N. (2022). Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines, 10(12), 2064. https://doi.org/10.3390/vaccines10122064