BNT162b2 (Pfizer/BioNTech) COVID-19 Vaccination Was Not Associated with the Progression of Activity of the Exudative Form of Age-Related Macular Degeneration during Anti-VEGF Therapy
Abstract
:1. Background
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Study Design
2.3. Statistical Analysis
3. Results
3.1. Visual Acuity Outcomes
3.2. OCT Quantitative Parameters
3.3. OCT Qualitative Parameters
3.4. Analysis of Time Interval since Vaccination, Dose Number, and Type of Anti-VEGF Agent
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Babicki, M.; Mastalerz-Migas, A. Attitudes toward Vaccination against COVID-19 in Poland. A Longitudinal Study Performed before and Two Months after the Commencement of the Population Vaccination Programme in Poland. Vaccines 2021, 9, 503. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention Control. COVID-19 Vaccine Tracker, 2021. European Centre for Disease Prevention Control Website. Available online: https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#distribution-tab (accessed on 18 September 2022).
- ElSheikh, R.H.; Haseeb, A.; Eleiwa, T.K.; Elhusseiny, A.M. Acute Uveitis following COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 1207–1209. [Google Scholar] [CrossRef] [PubMed]
- Mudie, L.I.; Zick, J.D.; Dacey, M.S.; Palestine, A.G. Panuveitis following Vaccination for COVID-19. Ocul. Immunol. Inflamm. 2021, 29, 741–742. [Google Scholar] [CrossRef]
- Goyal, M.; Murthy, S.I.; Annum, S. Bilateral multifocal choroiditis following COVID-19 vaccination. Ocul. Immunol. Inflamm. 2021, 29, 753–757. [Google Scholar] [CrossRef]
- Fowler, N.; Martinez, N.R.M.; Pallares, B.V.; Maldonado, R.S. Acute-onset central serous retinopathy after immunization with COVID-19 mRNA vaccine. Am. J. Ophthalmol. Case Rep. 2021, 23, 101136. [Google Scholar] [CrossRef]
- Crnej, A.; Khoueir, Z.; Cherfan, G.; Saad, A. Acute corneal endothelial graft rejection following COVID-19 vaccination. J. Français D’Ophtalmol. 2021, 44, e445–e447. [Google Scholar] [CrossRef]
- Mambretti, M.; Huemer, J.; Torregrossa, G.; Ullrich, M.; Findl, O.; Casalino, G. Acute Macular Neuroretinopathy following Coronavirus Disease 2019 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 730–733. [Google Scholar] [CrossRef]
- Michel, T.; Stolowy, N.; Gascon, P.; Dupessey, F.; Comet, A.; Attia, R.; Denis, D.; David, T. Acute macular neuroretinopathy after COVID-19 vaccine. J. Fr. Ophtalmol. 2022, 45, e299–e302. [Google Scholar] [CrossRef]
- Venkatesh, R.; Reddy, N.G.; Agrawal, S.; Pereira, A. COVID-19-associated central retinal vein occlusion treated with oral aspirin. BMJ Case Rep. CP 2021, 14, e242987. [Google Scholar] [CrossRef]
- Raval, N.; Djougarian, A.; Lin, J. Central retinal vein occlusion in the setting of COVID-19 infection. J. Ophthalmic Inflamm. Infect. 2021, 11, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Yahalomi, T.; Pikkel, J.; Arnon, R.; Pessach, Y. Central retinal vein occlusion in a young healthy COVID-19 patient: A case report. Am. J. Ophthalmol. Case Rep. 2020, 20, 100992. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Byun, Y.; Byeon, S.H.; Kim, S.S.; Kim, Y.J.; Lee, C.S. Retinal Hemorrhage after SARS-CoV-2 Vaccination. J. Clin. Med. 2021, 10, 5705. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Welchowski, T.; Schmid, M.; Mauschitz, M.M.; Holz, F.G.; Finger, R.P. Prevalence and incidence of age-related macular degeneration in Europe: A systematic review and meta-analysis. Br. J. Ophthalmol. 2020, 104, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Michels, M.; Kaiser, P.; Heier, J.S.; Sy, J.P.; Ianchulev, T. Ranibizumab versus Verteporfin Photodynamic Therapy for Neovascular Age-Related Macular Degeneration: Two-Year Results of the ANCHOR Study. Ophthalmology 2009, 116, 57–65.e5. [Google Scholar] [CrossRef]
- Heier, J.S.; Brown, D.M.; Chong, V.; Korobelnik, J.-F.; Kaiser, P.K.; Nguyen, Q.D.; Kirchhof, B.; Ho, A.; Ogura, Y.; Yancopoulos, G.D.; et al. Intravitreal Aflibercept (VEGF Trap-Eye) in Wet Age-related Macular Degeneration. Ophthalmology 2012, 119, 2537–2548. [Google Scholar] [CrossRef]
- Ali, Z.; Bhaskar, S.B. Basic statistical tools in research and data analysis. Indian J. Anaesth. 2016, 60, 662–669. [Google Scholar] [CrossRef]
- Lee, S.W. Methods for testing statistical differences between groups in medical research: Statistical standard and guideline of Life Cycle Committee. Life Cycle 2022, 2, e1. [Google Scholar] [CrossRef]
- Liu, B.; Wei, L.; Meyerle, C.; Tuo, J.; Sen, H.N.; Li, Z.; Chakrabarty, S.; Agron, E.; Chan, C.-C.; Klein, M.L.; et al. Complement component C5a Promotes Expression of IL-22 and IL-17 from Human T cells and its Implication in Age-related Macular Degeneration. J. Transl. Med. 2011, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Seddon, J.M.; George, S.; Rosner, B.; Rifai, N. Progression of age-related macular degeneration: Prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch. Ophthalmol. 2005, 123, 774–782. [Google Scholar] [CrossRef]
- Ardeljan, D.; Wang, Y.; Park, S.; Shen, D.; Chu, X.K.; Yu, C.-R.; Abu-Asab, M.; Tuo, J.; Eberhart, C.G.; Olsen, T.W.; et al. Interleukin-17 Retinotoxicity Is Prevented by Gene Transfer of a Soluble Interleukin-17 Receptor Acting as a Cytokine Blocker: Implications for Age-Related Macular Degeneration. PLoS ONE 2014, 9, e95900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein., R.; Myers, C.E.; Cruickshanks, K.J.; Gangnon, R.E.; Danforth, L.G.; Sivakumaran, T.A.; Iyengar, S.K.; Tsai, M.Y.; Klein, B.E. Markers of inflammation, oxidative stress, and endothelial dysfunction and the 20-year cumulative incidence of early age-related macular degeneration: The Beaver Dam Eye Study. JAMA Ophthalmol. 2014, 132, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagineni, C.N.; Kommineni, V.K.; William, A.; Detrick, B.; Hooks, J.J. Regulation of VEGF expression in human retinal cells by cytokines: Implications for the role of inflammation in age-related macular degeneration. J. Cell Physiol. 2012, 227, 116–126. [Google Scholar] [CrossRef]
- Johnson, L.V.; Leitner, W.P.; Staples, M.K.; Anderson, D.H. Complement Activation and Inflammatory Processes in Drusen Formation and Age Related Macular Degeneration. Exp. Eye Res. 2001, 73, 887–896. [Google Scholar] [CrossRef]
- Mullins, R.; Aptsiauri, N.; Hageman, G.S. Structure and composition of drusen associated with glomerulonephritis: Implications for the role of complement activation in drusen biogenesis. Eye 2001, 15, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.W.; Barnstable, C.J.; Tombran-Tink, J. Bacterial endotoxin activates retinal pigment epithelial cells and induces their degeneration through IL-6 and IL-8 autocrine signaling. Mol. Immunol. 2009, 46, 1374–1386. [Google Scholar] [CrossRef]
- Segal, Y.; Shoenfeld, Y. Vaccine-induced autoimmunity: The role of molecular mimicry and immune crossreaction. Cell. Mol. Immunol. 2018, 15, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef]
- Machado, P.M.; Lawson-Tovey, S.; Strangfeld, A.; Mateus, E.F.; Hyrich, K.L.; Gossec, L.; Carmona, L.; Rodrigues, A.; Raffeiner, B.; Duarte, C.; et al. Safety of vaccination against SARS-CoV-2 in people with rheumatic and musculoskeletal diseases: Results from the EULAR Coronavirus Vaccine (COVAX) physician-reported registry. Ann. Rheum. Dis. 2022, 81, 695–709. [Google Scholar] [CrossRef]
- Bindoli, S.; Giollo, A.; Galozzi, P.; Doria, A.; Sfriso, P. Hyperinflammation after anti-SARS-CoV-2 mRNA/DNA vaccines successfully treated with anakinra: Case series and literature review. Exp. Biol. Med. 2022, 247, 338–344. [Google Scholar] [CrossRef]
- Leone, F.; Cerasuolo, P.G.; Bosello, S.L.; Verardi, L.; Fiori, E.; Cocciolillo, F.; Merlino, B.; Zoli, A.; D’Agostino, M.A. Adult-onset Still’s disease following COVID-19 vaccination. Lancet Rheumatol. 2021, 3, e678–e680. [Google Scholar] [CrossRef]
- Salzman, M.B.; Huang, C.W.; O’Brien, C.M.; Castillo, R.D. Multisystem inflammatory syndrome after SARS-CoV-2 infection and COVID-19 vaccination. Emerg. Infect. Dis. 2021, 27, 1944–1948. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Nishimura, K.; Yo, K.; Waki, D.; Murabe, H.; Yokota, T. Flare-up of adult-onset Still’s disease after receiving a second dose of BNT162b2 COVID-19 mRNA vaccine. Clin. Exp. Rheumatol. 2021, 39, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, D.; Narayan, S.; Ue, F.; Boulougoura, A.; Badlissi, F. Adult-onset Still’s disease after mRNA COVID-19 vaccine. Lancet Rheumatol. 2021, 3, e680–e682. [Google Scholar] [CrossRef]
- Au, L.; Fendler, A.; Shepherd, S.T.; Rzeniewicz, K.; Cerrone, M.; Byrne, F.; Carlyle, E.; Edmonds, K.; Del Rosario, L.; Shon, J.; et al. Cytokine release syndrome in a patient with colorectal cancer after vaccination with BNT162b2. Nat. Med. 2021, 3, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Watad, A.; De Marco, G.; Mahajna, H.; Druyan, A.; Eltity, M.; Hijazi, N.; Haddad, A.; Elias, M.; Zisman, D.; Naffaa, M.E.; et al. Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination. Vaccines 2021, 9, 435. [Google Scholar] [CrossRef] [PubMed]
- Ishay, Y.; Kenig, A.; Tsemach-Toren, T.; Amer, R.; Rubin, L.; Hershkovitz, Y.; Kharouf, F. Autoimmune phenomena following SARS-CoV-2 vaccination. Int. Immunopharmacol. 2021, 99, 107970. [Google Scholar] [CrossRef] [PubMed]
- Khayat-Khoei, M.; Bhattacharyya, S.; Katz, J.; Harrison, D.; Tauhid, S.; Bruso, P.; Houtchens, M.K.; Edwards, K.R.; Bakshi, R. COVID-19 mRNA vaccination leading to CNS inflammation: A case series. J. Neurol. 2021, 269, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- İremli, B.G.; Şendur, S.N.; Ünlütürk, U. Three cases of subacute thyroiditis following SARS-CoV-2 vaccine: Postvaccination ASIA syndrome. J. Clin. Endocrinol. Metab. 2021, 106, 2600–2605. [Google Scholar] [CrossRef]
- Rocco, A.; Sgamato, C.; Compare, D.; Nardone, G. Autoimmune hepatitis following SARS-CoV-2 vaccine: May not be a casualty. J. Hepatol. 2021, 75, 728–729. [Google Scholar] [CrossRef]
- Solange, G.; Lethellier, G.; Imbert, P.; Dekeister, C.; Caron, P. Orbital inflammatory disease following mrna SARS-CoV-2 vaccine: A case report. Endocr. Abstr. 2022, 81, P136. [Google Scholar] [CrossRef]
- Chandra, S.; Rasheed, R.; Menon, D.; Patrao, N.; Lamin, A.; Gurudas, S.; Balaskas, K.; Patel, P.J.; Ali, N.; Sivaprasad, S. Impact of injection frequency on 5-year real-world visual acuity outcomes of aflibercept therapy for neovascular age-related macular degeneration. Eye 2020, 35, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Downey, L.; Mehta, H.; Mushtaq, B.; Narendran, N.; Patel, N.; Patel, P.J.; Ayan, F.; Gibson, K.; Igwe, F.; et al. Resource Use and Real-World Outcomes for Ranibizumab Treat and Extend for Neovascular Age-Related Macular Degeneration in the UK: Interim Results from TERRA. Ophthalmol. Ther. 2017, 6, 175–186. [Google Scholar] [CrossRef] [PubMed]
Number of Injections | Currently Administered Preparation | Total |
---|---|---|
Average | 9.5 | 13.7 |
Minimum | 4 | 4 |
Maximum | 21 | 32 |
Treatment | Time of Examination | p-Value | |||
---|---|---|---|---|---|
V-2 | V-1 | V1 | V2 | ||
Aflibercept (X ± SD) (n = 41) | 59.36 ± 12 | 60.25 ± 12.75 | 61.16 ± 10.46 | 68.4 ± 45.98 | 0.7542 |
Ranibizumab (X ± SD) (n = 22) | 57.38 ± 7.68 | 58.81 ± 8.5 | 56.43 ± 5.95 | 55.1 ± 7.92 | 0.1376 |
Overall (X ± SD) (n = 63) | 58.71 ± 10.75 | 59.78 ± 11.48 | 59.61 ± 9.44 | 64.03 ± 38.33 | 0.3705 |
Treatment | Time of Examination | p-Value | |||
---|---|---|---|---|---|
V-2 | V-1 | V1 | V2 | ||
Aflibercept (X ± SD) (n = 41) | 276.27 ± 19.21 | 274.83 ± 19.35 | 278.2 ± 28.39 | 269.24 ± 27.64 | 0.0009 |
Ranibizumab (X ± SD) (n = 22) | 266.14 ± 20.57 | 262.86 ± 22.9 | 260.68 ± 21.81 | 252.82 ± 32.53 | 0.1629 |
Overall (X ± SD) (n = 63) | 272.73 ± 20.12 | 270.65 ± 21.27 | 272.08 ± 27.42 | 263.51 ± 30/22 | <0.0001 |
V-2 | V-1 | V1 | V2 | |
---|---|---|---|---|
V-2 | 0.3442 | 0.8560 | 0.004 | |
V-1 | 0.3442 | 0.3365 | 0.0045 | |
V1 | 0.8560 | 0.3365 | 0.0001 | |
V2 | 0.004 | 0.0045 | 0.0001 |
V-2 | V-1 | V1 | V2 | |
---|---|---|---|---|
V-2 | 0.2891 | 0.0766 | 0.0074 | |
V-1 | 0.2891 | 0.7369 | 0.0702 | |
V1 | 0.0766 | 0.7369 | 0.0716 | |
V2 | 0.0074 | 0.0702 | 0.0716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płatkowska-Adamska, B.; Bociek, A.; Krupińska, J.; Kal, M.; Biskup, M.; Zarębska-Michaluk, D.; Odrobina, D. BNT162b2 (Pfizer/BioNTech) COVID-19 Vaccination Was Not Associated with the Progression of Activity of the Exudative Form of Age-Related Macular Degeneration during Anti-VEGF Therapy. Vaccines 2022, 10, 1878. https://doi.org/10.3390/vaccines10111878
Płatkowska-Adamska B, Bociek A, Krupińska J, Kal M, Biskup M, Zarębska-Michaluk D, Odrobina D. BNT162b2 (Pfizer/BioNTech) COVID-19 Vaccination Was Not Associated with the Progression of Activity of the Exudative Form of Age-Related Macular Degeneration during Anti-VEGF Therapy. Vaccines. 2022; 10(11):1878. https://doi.org/10.3390/vaccines10111878
Chicago/Turabian StylePłatkowska-Adamska, Bernadetta, Agnieszka Bociek, Joanna Krupińska, Magdalena Kal, Michał Biskup, Dorota Zarębska-Michaluk, and Dominik Odrobina. 2022. "BNT162b2 (Pfizer/BioNTech) COVID-19 Vaccination Was Not Associated with the Progression of Activity of the Exudative Form of Age-Related Macular Degeneration during Anti-VEGF Therapy" Vaccines 10, no. 11: 1878. https://doi.org/10.3390/vaccines10111878