Impact of Media Use on Chinese Public Behavior towards Vaccination with the COVID-19 Vaccine: A Latent Profile Analysis
Abstract
:1. Introduction
2. Methods
2.1. Research Object
2.2. Survey Method
2.3. Research Instruments
2.3.1. Basic Information Survey
2.3.2. Self-Made Media Usage Scale
2.3.3. Perceived Social Support Scale (PSSS)
2.4. Statistical Methods
3. Results
3.1. LPA of Respondents’ Media Use
3.2. Univariate Analysis of Chinese Respondents’ Media Use
3.3. Media Use and COVID-19 Vaccination Scores of Subjects
3.4. Binary Logistic Regression Analysis of Factors Affecting COVID-19 Vaccination
4. Discussion
5. Highlights and Limitations of Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statemen
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 10 July 2022).
- Agarwal, V.; Ganesh, L.; Sunitha, B. Impact of COVID-19 on the Mental Health among Children in China with Specific Reference to Emotional and Behavioral Disorders. Int. J. Hum. Rights Healthc. 2020, 14, 182–188. [Google Scholar] [CrossRef]
- DeRoo, S.S.; Pudalov, N.J.; Fu, L.Y. Planning for a COVID-19 Vaccination Program. JAMA 2020, 323, 2458–2459. [Google Scholar] [CrossRef] [PubMed]
- Annemans, L.; Beutels, P.; Bloom, D.E.; De Backer, W.; Ethgen, O.; Luyten, J.; Van Wilder, P.; Willem, L.; Simoens, S. Economic Evaluation of Vaccines: Belgian Reflections on the Need for a Broader Perspective. Value Health 2021, 24, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Stead, M.; Ford, A.; Eadie, D.; Biggs, H.; Elliott, C.; Ussher, M.; Bedford, H.; Angus, K.; Hunt, K.; MacKintosh, A.M. A “Step Too Far” or “Perfect Sense”? A Qualitative Study of British Adults’ Views on Mandating COVID-19 Vaccination and Vaccine Passports. Vaccine 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Rawat, K.; Kumari, P.; Saha, L. COVID-19 Vaccine: A Recent Update in Pipeline Vaccines, Their Design and Development Strategies. Eur. J. Pharmacol. 2021, 892, 173751. [Google Scholar] [CrossRef]
- Wan, X.; Huang, H.; Shang, J.; Xie, Z.; Jia, R.; Lu, G.; Chen, C. Willingness and Influential Factors of Parents of 3–6-Year-Old Children to Vaccinate Their Children with the COVID-19 Vaccine in China. Hum. Vaccines Immunother. 2021, 17, 3969–3974. [Google Scholar] [CrossRef]
- Dubé, È.; Ward, J.K.; Verger, P.; MacDonald, N.E. Vaccine Hesitancy, Acceptance, and Anti-Vaccination: Trends and Future Prospects for Public Health. Annu. Rev. Public Health 2021, 42, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; He, Z.; Huang, J.; Yan, N.; Chen, Q.; Huang, F.; Zhang, Y.; Akinwunmi, O.M.; Akinwunmi, B.O.; Zhang, C.J.P.; et al. A comparison of vaccine hesitancy of COVID-19 vaccination in China and the United States. Vaccines 2021, 9, 649. [Google Scholar] [CrossRef] [PubMed]
- Solís Arce, J.S.; Warren, S.S.; Meriggi, N.F.; Scacco, A.; McMurry, N.; Voors, M.; Syunyaev, G.; Malik, A.A.; Aboutajdine, S.; Adeojo, O. COVID-19 Vaccine Acceptance and Hesitancy in Low-and Middle-Income Countries. Nat. Med. 2021, 27, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef]
- Zeballos Rivas, D.R.; Lopez Jaldin, M.L.; Nina Canaviri, B.; Portugal Escalante, L.F.; Alanes Fernández, A.M.; Aguilar Ticona, J.P. Social media exposure, risk perception, preventive behaviors and attitudes during the COVID-19 epidemic in La Paz, Bolivia: A cross sectional study. PLoS ONE 2021, 16, e0245859. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Q.; Silver Tarimo, C.; Wang, M.; Gu, J.; Wei, W.; Ma, M.; Zhao, L.; Mu, Z.; Miao, Y. Covid-19 Vaccine Hesitancy among Chinese Population: A Large-Scale National Study. Front. Immunol. 2021, 12, 4833. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.L.; Wiysonge, C. Social media and vaccine hesitancy. BMJ Glob. Health 2020, 5, e004206. [Google Scholar] [CrossRef] [PubMed]
- Bonnevie, E.; Gallegos-Jeffrey, A.; Goldbarg, J.; Byrd, B.; Smyser, J. Quantifying the Rise of Vaccine Opposition on Twitter during the COVID-19 Pandemic. J. Commun. Healthc. 2021, 14, 12–19. [Google Scholar] [CrossRef]
- Del Riccio, M.; Bechini, A.; Buscemi, P.; Bonanni, P.; Working Group DHS; Boccalini, S. Reasons for the Intention to Refuse COVID-19 Vaccination and Their Association with Preferred Sources of Information in a Nationwide, Population-Based Sample in Italy, before COVID-19 Vaccines Roll Out. Vaccines 2022, 10, 913. [Google Scholar] [CrossRef]
- Puri, N.; Coomes, E.A.; Haghbayan, H.; Gunaratne, K. Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Hum. Vaccines Immunother. 2020, 16, 2586–2593. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P.L.; Pennell, M.L.; Katz, M.L. Acceptability of a COVID-19 Vaccine among Adults in the United States: How Many People Would Get Vaccinated? Vaccine 2020, 38, 6500–6507. [Google Scholar] [CrossRef]
- Khubchandani, J.; Sharma, S.; Price, J.H.; Wiblishauser, M.J.; Sharma, M.; Webb, F.J. COVID-19 Vaccination Hesitancy in the United States: A Rapid National Assessment. J. Community Health 2021, 46, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Shao, W. Understanding the Influence of Political Orientation, Social Network, and Economic Recovery on COVID-19 Vaccine Uptake among Americans. Vaccine 2022, 40, 2191–2201. [Google Scholar] [CrossRef]
- Rodríguez-Hidalgo, A.J.; Pantaleón, Y.; Dios, I.; Falla, D. Fear of COVID-19, Stress, and Anxiety in University Undergraduate Students: A Predictive Model for Depression. Front. Psychol. 2020, 11, 591797. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhu, G. Psychological Interventions for People Affected by the COVID-19 Epidemic. Lancet Psychiatry 2020, 7, 300–302. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, N. Generalized Anxiety Disorder, Depressive Symptoms and Sleep Quality During COVID-19 Outbreak in China: A Web-Based Cross-Sectional Survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar] [CrossRef] [PubMed]
- Michaels, J.L.; Hao, F.; Ritenour, N.; Aguilar, N. Belongingness Is a Mediating Factor between Religious Service Attendance and Reduced Psychological Distress During the COVID-19 Pandemic. J. Relig. Health 2022, 61, 1750–1764. [Google Scholar] [CrossRef] [PubMed]
- Ksiazek, T.B.; Malthouse, E.C.; Webster, J.G. News-Seekers and Avoiders: Exploring Patterns of Total News Consumption across Media and the Relationship to Civic Participation. J. Broadcast. Electron. Media 2010, 54, 551–568. [Google Scholar] [CrossRef]
- Edgerly, S.; Vraga, E.K.; Bode, L.; Thorson, K.; Thorson, E. New Media, New Relationship to Participation? A Closer Look at Youth News Repertoires and Political Participation. Journal. Mass Commun. Q. 2018, 95, 192–212. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Yang, J. Political Knowledge Gaps among News Consumers with Different News Media Repertoires across Multiple Platforms. Int. J. Commun. 2014, 8, 21. [Google Scholar]
- Hagenaars, J.A.; McCutcheon, A.L. Applied Latent Class Analysis; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Den Hamer, A.; Konijn, E.A.; Plaisier, X.S.; Keijer, M.G.; Krabbendam, L.; Bushman, B.J. The Content-Based Media Exposure Scale (C-Me): Development and Validation. Comput. Hum. Behav. 2017, 72, 549–557. [Google Scholar] [CrossRef]
- Frederick, D.A.; Daniels, E.A.; Bates, M.E.; Tylka, T.L. Exposure to Thin-Ideal Media Affect Most, but Not All, Women: Results from the Perceived Effects of Media Exposure Scale and Open-Ended Responses. Body Image 2017, 23, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Zimet, G.D.; Powell, S.S.; Farley, G.K.; Werkman, S.; Berkoff, K.A. Psychometric Characteristics of the Multidimensional Scale of Perceived Social Support. J. Personal. Assess. 1990, 55, 610–617. [Google Scholar] [CrossRef]
- Di Mauro, A.; Di Mauro, F.; De Nitto, S.; Rizzo, L.; Greco, C.; Stefanizzi, P.; Tafuri, S.; Baldassarre, M.E.; Laforgia, N. Social Media Interventions Strengthened COVID-19 Immunization Campaign. Front. Pediatr. 2022, 10, 869893. [Google Scholar] [CrossRef] [PubMed]
- Jamison, A.M.; Broniatowski, D.A.; Dredze, M.; Sangraula, A.; Smith, M.C.; Quinn, S.C. Not Just Conspiracy Theories: Vaccine Opponents and Proponents Add to the COVID-19 ‘Infodemic’ on Twitter. Harv. Kennedy Sch. Misinform. Rev. 2020, 1. Available online: https://misinforeview.hks.harvard.edu/article/not-just-conspiracy-theories-vaccine-opponents-and-proponents-add-to-the-covid-19-infodemic-on-twitter/ (accessed on 15 July 2022). [CrossRef] [PubMed]
- Ahmed, N.; Quinn, S.C.; Hancock, G.R.; Freimuth, V.S.; Jamison, A. Social Media Use and Influenza Vaccine Uptake among White and African American Adults. Vaccine 2018, 36, 7556–7561. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Dababseh, D.; Eid, H.; Al-Mahzoum, K.; Al-Haidar, A.; Taim, D.; Yaseen, A.; Ababneh, N.A.; Bakri, F.G.; Mahafzah, A. High Rates of COVID-19 Vaccine Hesitancy and Its Association with Conspiracy Beliefs: A Study in Jordan and Kuwait among Other Arab Countries. Vaccines 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Benis, A.; Khodos, A.; Ran, S.; Levner, E.; Ashkenazi, S. Social Media Engagement and Influenza Vaccination During the COVID-19 Pandemic: Cross-Sectional Survey Study. J. Med. Internet Res. 2021, 23, e25977. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Hu, W.; Zheng, S.; Wen, X.; Wu, K. Cognition and Behavior of COVID-19 Vaccination Based on the Health Belief Model: A Cross-Sectional Study. Vaccines 2022, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Chen, A.; Cui, B.; Liao, W. Exploring Public Perceptions of the COVID-19 Vaccine Online from a Cultural Perspective: Semantic Network Analysis of Two Social Media Platforms in the United States and China. Telemat. Inform. 2021, 65, 101712. [Google Scholar] [CrossRef]
- Okubo, R.; Yoshioka, T.; Ohfuji, S.; Matsuo, T.; Tabuchi, T. COVID-19 Vaccine Hesitancy and Its Associated Factors in Japan. Vaccines 2021, 9, 662. [Google Scholar] [CrossRef]
- Rueter, J.; Brandstetter, S.; Curbach, J.; Lindacher, V.; Warrelmann, B.; Loss, J. How Older Citizens in Germany Perceive and Handle Their Food Environment—A Qualitative Exploratory Study. Int. J. Environ. Res. Public Health 2020, 17, 6940. [Google Scholar] [CrossRef]
- Albrecht, T.L.; Adelman, M.B. Communicating Social Support; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1987. [Google Scholar]
- Gu, C.; Chan, C.W.; He, G.-P.; Choi, K.; Yang, S.-B. Chinese Women’s Motivation to Receive Future Screening: The Role of Social-Demographic Factors, Knowledge and Risk Perception of Cervical Cancer. Eur. J. Oncol. Nurs. 2013, 17, 154–161. [Google Scholar] [CrossRef]
- Jung, M.; Lin, L.; Viswanath, K. Associations between Health Communication Behaviors, Neighborhood Social Capital, Vaccine Knowledge, and Parents’ H1n1 Vaccination of Their Children. Vaccine 2013, 31, 4860–4866. [Google Scholar] [CrossRef]
- Baumgaertner, B.; Ridenhour, B.J.; Justwan, F.; Carlisle, J.E.; Miller, C.R. Risk of Disease and Willingness to Vaccinate in the United States: A Population-Based Survey. PLoS Med. 2020, 17, e1003354. [Google Scholar] [CrossRef] [PubMed]
Model | K | AIC | BIC | aBIC | Entropy | pLMR | pBLRT | Class Probability (%) |
---|---|---|---|---|---|---|---|---|
1 | 14 | 246,944.918 | 247,047.237 | 247,002.746 | 1 | |||
2 | 22 | 230,380.614 | 230,541.400 | 230,471.487 | 0.919 | <0.001 | <0.001 | 0.744/0.256 |
3 | 30 | 221,958.644 | 222,177.898 | 222,082.562 | 0.948 | <0.001 | <0.001 | 0.097/0.672/0.231 |
4 | 38 | 216,424.795 | 216,702.517 | 216,581.758 | 0.959 | <0.001 | <0.001 | 0.089/0.115/0.668/0.128 |
5 | 46 | 208,110.241 | 208,446.430 | 208,300.248 | 0.943 | <0.001 | <0.001 | 0.298/0.207/0.262/0.134/0.098 |
6 | 54 | 207,582.155 | 207,976.812 | 207,805.207 | 0.985 | 0.9944 | 1.0000 | 0.449/0.080/0.080/0.239/0.055/0.098 |
Categories | All (N = 11,031, 100.0%) | Media Use Low Frequency (N = 1067, 9.7%) | Media Use General (N = 7415, 67.1%) | Media Use High Frequency (N = 2549, 23.2%) | χ2 | p |
---|---|---|---|---|---|---|
Gender | 96.5 | p < 0.001 | ||||
Female | 5998 (54.4) | 538 (50.4) | 4268 (57.6) | 1192 (46.8) | ||
Male | 5033 (45.6) | 529 (49.6) | 3147 (42.4) | 1357 (53.2) | ||
Age | 1437.2 | p < 0.001 | ||||
≤18 | 1065 (9.7) | 109 (10.2) | 772 (10.4) | 184 (7.2) | ||
19–40 | 5332 (48.3) | 257 (24.1) | 3829 (51.6) | 1246 (48.9) | ||
41–65 | 3759 (34.1) | 318 (29.8) | 2570 (34.7) | 871 (34.2) | ||
≥66 | 875 (7.9) | 383 (35.9) | 244 (3.3) | 248 (9.7) | ||
Nationality | 3.7 | p = 0.160 | ||||
The Han nationality | 10,386 (94.2) | 1001 (93.8) | 7003 (94.4) | 2382 (93.5) | ||
Ethnic minorities | 645 (5.8) | 66 (6.2) | 412 (5.6) | 167 (6.5) | ||
r\Religious belief | 6.0 | p = 0.049 | ||||
Yes | 10,709 (97.1) | 1035 (97.0) | 7181 (96.8) | 2493 (97.8) | ||
No | 321 (2.9) | 32 (3.0) | 233 (3.1) | 56 (6.6) | ||
Permanent residence | 217.6 | p < 0.001 | ||||
Town | 8008 (72.6) | 571 (53.5) | 5558 (75) | 670 (26.3) | ||
County | 3023 (27.4) | 496 (46.5) | 1857 (25) | 1879 (73.7) | ||
Education level | 19.0 | p = 0.004 | ||||
Elementary school and above | 1127 (10.2)) | 89 (8.3) | 767 (10.3) | 271 (10.6) | ||
Junior middle school | 1439 (13.0) | 164 (15.4) | 984 (13.3) | 291 (11.4) | ||
Technical secondary school/junior high school | 1978 (17.9) | 185 (17.3) | 1360 (18.3) | 433 (17.0) | ||
Junior college and above | 6487 (58.8) | 629 (59.0) | 4304 (58.0) | 1554 (61.0) | ||
Marital status | 665.3 | p < 0.001 | ||||
Unmarried | 4363 (39.6) | 263 (24.6) | 3115 (42.1) | 985 (38.7) | ||
Married | 6226 (56.4) | 658 (61.7) | 4089 (55.1) | 1479 (58.0) | ||
Divorced | 207 (1.9) | 14 (1.3) | 142 (1.9) | 51 (2.0) | ||
Widowed | 235 (2.1) | 132 (12.4) | 69 (0.9) | 34 (1.3) | ||
Monthly per capita Household earning | 214.2 | p < 0.001 | ||||
≤3000 | 3246 (29.4) | 486 (45.5) | 2099 (28.3) | 661 (25.9) | ||
3001–7500 | 5325 (48.3) | 453 (42.5) | 3682 (49.7) | 1190 (46.7) | ||
7501–12,000 | 1968 (15.4) | 84 (7.9) | 1166 (15.7) | 448 (17.6) | ||
≥12,001 | 762 (6.9) | 44 (4.1) | 468 (6.3) | 250 (9.8) | ||
Whether to have children | 1.7 | p = 0.418 | ||||
Without | 5062 (45.9) | 510 (47.8) | 3385 (45.7) | 1176 (45.8) | ||
With | 5969 (54.1) | 557 (52.2) | 4030 (54.3) | 1382 (54.2) | ||
Whether to have medical insurance | 4.32 | p = 0.109 | ||||
Without | 2299 (20.8) | 224 (21) | 1507 (20.3) | 568 (22.3) | ||
With | 8732 (79.2) | 843 (79) | 5908 (79.7) | 1981 (77.7) | ||
Depression | 1006.3 | p < 0.001 | ||||
No depression | 5031 (45.6) | 496 (46.5) | 3671 (49.5) | 864 (33.9) | ||
Mild depression | 3801 (34.5) | 384 (36) | 2722 (36.7) | 695 (27.3) | ||
Moderate depression | 1148 (10.4) | 116 (10.9) | 672 (9.1) | 360 (14.1) | ||
Moderate to severe Depression | 803 (7.3) | 56 (5.2) | 273 (3.7) | 474 (18.6) | ||
Major depression | 248 (2.2) | 15 (1.4) | 77 (1.0) | 156 (6.1) | ||
Anxiety | 982.9 | p < 0.001 | ||||
No anxiety | 6170 (55.9) | 571 (53.5) | 4542 (61.3) | 1057 (41.4) | ||
Mild anxiety | 3364 (30.5) | 358 (33.6) | 2324 (31.3) | 682 (26.8) | ||
Moderate anxiety | 1198 (10.9) | 116 (10.9) | 434 (5.9) | 648 (25.4) | ||
Major anxiety | 299 (2.7) | 22 (2.1) | 115 (1.6) | 162 (6.4) | ||
Pressure | 282.4 | p < 0.001 | ||||
Mild pressure | 2719 (24.6) | 251 (23.5) | 1946 (26.2) | 522 (20.5) | ||
Moderate pressure | 7653 (69.4) | 704 (66.0) | 5217 (70.4) | 1732 (67.9) | ||
Major pressure | 659 (6.0) | 112 (10.5) | 252 (3.4) | 295 (11.6) |
Categories | Items | The Range of Scores | M ± SD |
---|---|---|---|
Newspaper | 1 | 1–5 | 1.86 ± 1.08 |
Magazines | 1 | 1–5 | 1.91 ± 1.05 |
Books | 1 | 1–5 | 2.73 ± 1.26 |
Broadcast | 1 | 1–5 | 2.10 ± 1.19 |
Television | 1 | 1–5 | 3.24 ± 1.28 |
Personal computer | 1 | 1–5 | 3.17 ± 1.44 |
Smart phone | 1 | 1–5 | 4.33 ± 1.13 |
COVID-19 vaccination | 1 | 0–1 | 0.89 ± 0.32 |
Model | β | SE | Wald | p | Exp(β) | EXP(β) 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
LLCI | ULCI | |||||||
Independent variable | Media (Ref: General) | |||||||
Occlusion | −0.608 | 0.099 | 37.374 | <0.001 | 0.545 | 0.448 | 0.662 | |
High frequency | 0.057 | 0.085 | 0.450 | 0.502 | 1.059 | 0.896 | 1.252 | |
Control variable | Gender (Ref: Male) | |||||||
Female | 0.033 | 0.065 | 0.257 | 0.612 | 1.034 | 0.910 | 1.174 | |
Age (Ref: ≤8) | ||||||||
19–40 | −0.480 | 0.150 | 10.256 | 0.001 | 0.619 | 0.461 | 0.830 | |
41–65 | 1.384 | 0.119 | 134.877 | <0.001 | 3.992 | 3.160 | 5.042 | |
≥66 | 1.430 | 0.110 | 170.408 | <0.001 | 4.179 | 3.372 | 5.180 | |
Religious belief (Ref: No) | ||||||||
Yes | 0.303 | 0.171 | 3.117 | 0.077 | 1.354 | 0.967 | 1.894 | |
Permanent residence (Ref: Rural) | ||||||||
Urban | −0.183 | 0.085 | 4.568 | 0.033 | 0.833 | 0.705 | 0.985 | |
Marital status (Ref: Unmarried) | ||||||||
Married | 0.533 | 0.193 | 7.608 | 0.006 | 1.704 | 1.167 | 2.488 | |
Divorced | 0.254 | 0.167 | 2.314 | 0.128 | 1.289 | 0.929 | 1.789 | |
Widowed | 0.122 | 0.286 | 0.181 | 0.671 | 1.130 | 0.644 | 1.980 | |
Per capita monthly household income (Ref: ≤3000) | ||||||||
3001–7500 | 0.184 | 0.139 | 1.749 | 0.186 | 1.202 | 0.915 | 1.579 | |
7501–12,000 | 0.249 | 0.132 | 3.555 | 0.059 | 1.282 | 0.990 | 1.660 | |
≥12,001 | 0.170 | 0.149 | 1.303 | 0.254 | 1.185 | 0.885 | 1.586 | |
Education level (Ref: Primary and below) | ||||||||
Junior | −0.150 | 0.107 | 1.974 | 0.160 | 0.860 | 0.697 | 1.061 | |
Secondary, High School | −0.057 | 0.097 | 0.345 | 0.557 | 0.944 | 0.781 | 1.143 | |
Tertiary and above | −0.138 | 0.084 | 2.692 | 0.101 | 0.871 | 0.738 | 1.027 | |
Depression (Ref: No depression) | ||||||||
Mild depression | 0.943 | 0.289 | 10.679 | 0.001 | 2.568 | 1.458 | 4.520 | |
Moderate depression | 0.920 | 0.282 | 10.644 | 0.001 | 2.510 | 1.444 | 4.362 | |
Moderate to severe depression | 1.015 | 0.280 | 13.158 | <0.001 | 2.760 | 1.595 | 4.778 | |
Severe depression | 0.538 | 0.267 | 4.071 | 0.044 | 1.713 | 1.015 | 2.890 | |
Anxiety (Ref: No anxiety) | ||||||||
Mild anxiety | 0.417 | 0.272 | 2.345 | 0.126 | 1.517 | 0.890 | 2.587 | |
Moderate level | 0.257 | 0.266 | 0.938 | 0.333 | 1.293 | 0.768 | 2.176 | |
Severe anxiety | 0.110 | 0.253 | 0.190 | 0.663 | 1.117 | 0.679 | 1.835 | |
Pressure (Ref: Mild stress) | ||||||||
Moderate stress | −0.095 | 0.150 | 0.400 | 0.527 | 0.910 | 0.678 | 1.220 | |
Severe stress | 0.047 | 0.134 | 0.124 | 0.724 | 1.048 | 0.806 | 1.363 | |
Social support | ||||||||
Family support | 0.000 | 0.012 | 0.001 | 0.977 | 1.000 | 0.976 | 1.024 | |
Friends support | 0.042 | 0.012 | 12.605 | < 0.001 | 1.043 | 1.019 | 1.068 | |
Other support | −0.034 | 0.015 | 5.398 | 0.020 | 0.967 | 0.939 | 0.995 |
Model | β | SE | Wald | p | Exp(β) | EXP(β) 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
LLCI | ULCI | ||||||
Age (Ref: ≤ 18) | |||||||
19–40 | −1.029 | 0.240 | 18.380 | <0.001 | 0.357 | 0.223 | 0.572 |
41–65 | 1.784 | 0.276 | 41.715 | <0.001 | 5.954 | 3.465 | 10.232 |
≥ 66 | 1.629 | 0.224 | 53.053 | <0.001 | 5.099 | 3.289 | 7.904 |
Gender (Ref: Male) | |||||||
Female | 0.073 | 0.165 | 0.195 | 0.659 | 1.076 | 0.778 | 1.486 |
Religious belief (Ref: No) | |||||||
Yes | 0.923 | 0.443 | 4.348 | 0.037 | 2.517 | 1.057 | 5.994 |
Permanent residence (Ref: Rural) | |||||||
Urban | −0.066 | 0.213 | 0.096 | 0.757 | 0.936 | 0.617 | 1.421 |
Marital status (Ref: Unmarried) | |||||||
Married | 0.096 | 0.379 | 0.065 | 0.799 | 1.101 | 0.524 | 2.316 |
Divorced | 0.069 | 0.879 | 0.006 | 0.937 | 1.072 | 0.192 | 5.999 |
Widowed | −0.161 | 0.435 | 0.136 | 0.712 | 0.852 | 0.363 | 1.997 |
Per capita monthly household income (Ref: ≤ 3000) | |||||||
3001–7500 | −0.226 | 0.549 | 0.170 | 0.680 | 0.797 | 0.272 | 2.339 |
7501–12,000 | −0.094 | 0.545 | 0.030 | 0.862 | 0.910 | 0.313 | 2.646 |
≥ 12,001 | −0.315 | 0.600 | 0.276 | 0.599 | 0.730 | 0.225 | 2.363 |
Education level (Ref: Primary and below) | |||||||
Junior | −0.129 | 0.301 | 0.184 | 0.668 | 0.879 | 0.487 | 1.587 |
Secondary, High School | −0.178 | 0.230 | 0.603 | 0.437 | 0.837 | 0.533 | 1.312 |
Tertiary and above | −0.114 | 0.213 | 0.288 | 0.592 | 0.892 | 0.588 | 1.354 |
Depression (Ref: No depression) | |||||||
Mild depression | −0.261 | 0.969 | 0.073 | 0.787 | 0.770 | 0.115 | 5.145 |
Moderate depression | −0.421 | 0.964 | 0.191 | 0.662 | 0.656 | 0.099 | 4.343 |
Moderate to severe depression | −0.337 | 0.973 | 0.120 | 0.729 | 0.714 | 0.106 | 4.811 |
Severe depression | −1.164 | 0.953 | 1.492 | 0.222 | 0.312 | 0.048 | 2.021 |
Anxiety (Ref: No anxiety) | |||||||
Mild anxiety | 1.172 | 0.774 | 2.291 | 0.130 | 3.229 | 0.708 | 14.732 |
Moderate level | 0.581 | 0.766 | 0.575 | 0.448 | 1.788 | 0.398 | 8.026 |
Severe anxiety | 0.898 | 0.760 | 1.397 | 0.237 | 2.454 | 0.554 | 10.876 |
Pressure (Ref: Mild stress) | |||||||
Moderate stress | −0.345 | 0.368 | 0.880 | 0.348 | 0.708 | 0.344 | 1.457 |
Severe stress | −0.064 | 0.324 | 0.039 | 0.843 | 0.938 | 0.497 | 1.770 |
Social support | |||||||
Family support | −0.038 | 0.032 | 1.424 | 0.233 | 0.962 | 0.903 | 1.025 |
Friends support | 0.075 | 0.029 | 6.422 | 0.011 | 1.077 | 1.017 | 1.142 |
Other support | −0.051 | 0.037 | 1.927 | 0.165 | 0.950 | 0.883 | 1.021 |
Model | β | SE | Wald | p | Exp(β) | EXP(β) 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
LLCI | ULCI | ||||||
Age (Ref: ≤18) | |||||||
19–40 | −0.251 | 0.216 | 1.352 | 0.245 | 0.778 | 0.510 | 1.188 |
41–65 | 1.682 | 0.180 | 87.020 | <0.001 | 5.379 | 3.777 | 7.659 |
≥66 | 1.844 | 0.172 | 115.282 | <0.001 | 6.325 | 4.517 | 8.857 |
Gender (Ref: Male) | |||||||
Female | 0.107 | 0.086 | 1.535 | 0.215 | 1.113 | 0.940 | 1.318 |
Religious belief (Ref: No) | |||||||
Yes | 0.110 | 0.226 | 0.234 | 0.628 | 1.116 | 0.716 | 1.738 |
Permanent residence (Ref: No) | |||||||
Urban | −0.300 | 0.115 | 6.863 | 0.009 | 0.741 | 0.592 | 0.927 |
Marital status (Ref: Unmarried) | |||||||
Married | 0.679 | 0.349 | 3.774 | 0.052 | 1.972 | 0.994 | 3.911 |
Divorced | 0.279 | 0.325 | 0.735 | 0.391 | 1.322 | 0.699 | 2.502 |
Widowed | 0.253 | 0.455 | 0.308 | 0.579 | 1.287 | 0.527 | 3.144 |
Per capita monthly household income (Ref: ≤3000) | |||||||
3001–7500 | 0.349 | 0.179 | 3.793 | 0.051 | 1.417 | 0.998 | 2.013 |
7501–12,000 | 0.352 | 0.167 | 4.438 | 0.035 | 1.422 | 1.025 | 1.973 |
≥12,001 | 0.463 | 0.191 | 5.880 | 0.015 | 1.589 | 1.093 | 2.312 |
Education level (Ref: Primary and below) | |||||||
Junior | −0.151 | 0.137 | 1.208 | 0.272 | 0.860 | 0.657 | 1.126 |
Secondary, High School | 0.008 | 0.128 | 0.004 | 0.952 | 1.008 | 0.784 | 1.296 |
Tertiary and above | −0.091 | 0.110 | 0.673 | 0.412 | 0.913 | 0.735 | 1.134 |
Depression (Ref: No depression) | |||||||
Mild depression | 0.895 | 0.455 | 3.874 | 0.049 | 2.447 | 1.004 | 5.966 |
Moderate depression | 0.794 | 0.446 | 3.165 | 0.075 | 2.211 | 0.923 | 5.300 |
Moderate to severe depression | 0.951 | 0.446 | 4.547 | 0.033 | 2.587 | 1.080 | 6.199 |
Severe depression | 0.648 | 0.445 | 2.128 | 0.145 | 1.913 | 0.800 | 4.572 |
Anxiety (Ref: No anxiety) | |||||||
Mild anxiety | −0.099 | 0.429 | 0.053 | 0.818 | 0.906 | 0.391 | 2.099 |
Moderate level | −0.093 | 0.420 | 0.049 | 0.825 | 0.911 | 0.400 | 2.077 |
Severe anxiety | −0.186 | 0.413 | 0.204 | 0.652 | 0.830 | 0.370 | 1.864 |
Pressure (Ref: Mild stress) | |||||||
Moderate stress | −0.086 | 0.246 | 0.121 | 0.728 | 0.918 | 0.566 | 1.488 |
Severe stress | 0.076 | 0.232 | 0.107 | 0.744 | 1.079 | 0.685 | 1.700 |
Social support | |||||||
Family support | 0.020 | 0.015 | 1.717 | 0.190 | 1.020 | 0.990 | 1.050 |
Friends support | 0.048 | 0.015 | 10.256 | 0.001 | 1.049 | 1.019 | 1.080 |
Other support | −0.027 | 0.018 | 2.189 | 0.139 | 0.973 | 0.939 | 1.009 |
Model | β | SE | Wald | p | Exp(β) | EXP(β) 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
LLCI | ULCI | ||||||
Age (Ref: ≤18) | |||||||
19–40 | −0.256 | 0.301 | 0.724 | 0.395 | 0.774 | 0.430 | 1.396 |
41–65 | 1.010 | 0.221 | 2.947 | <0.001 | 2.746 | 1.782 | 4.233 |
≥66 | 0.841 | 0.212 | 15.779 | <0.001 | 2.319 | 1.531 | 3.512 |
Gender (Ref: male) | |||||||
Female | −0.150 | 0.134 | 1.268 | 0.260 | 0.860 | 0.662 | 1.118 |
Religious belief (Ref: No) | |||||||
Yes | 0.521 | 0.384 | 1.844 | 0.174 | 1.683 | 0.794 | 3.570 |
Permanent residence (Ref: county) | |||||||
Town | −0.040 | 0.175 | 0.051 | 0.821 | 0.961 | 0.682 | 1.354 |
Marital status (Ref: unmarried) | |||||||
Married | 0.137 | 0.506 | 0.073 | 0.786 | 1.147 | 0.425 | 3.094 |
Divorced | 0.034 | 0.487 | 0.005 | 0.944 | 1.035 | 0.399 | 2.686 |
Widowed | −0.383 | 0.615 | 0.388 | 0.534 | 0.682 | 0.204 | 2.275 |
Monthly per capita household earning (Ref: ≤3000) | |||||||
3001–7500 | 0.065 | 0.257 | 0.063 | 0.801 | 1.067 | 0.645 | 1.764 |
7501–12,000 | 0.136 | 0.239 | 0.322 | 0.570 | 1.146 | 0.716 | 1.832 |
≥12,001 | −0.216 | 0.264 | 0.669 | 0.413 | 0.806 | 0.481 | 1.351 |
Highest education level (Ref: elementary school and below) | |||||||
Junior middle school | −0.106 | 0.219 | 0.235 | 0.628 | 0.899 | 0.585 | 1.382 |
Technical secondary school/junior high school | −0.073 | 0.215 | 0.115 | 0.734 | 0.930 | 0.610 | 1.417 |
Technical college and above | −0.217 | 0.172 | 1.576 | 0.209 | 0.805 | 0.574 | 1.129 |
Depression (Ref: depression) | |||||||
Mild depression | 0.573 | 0.506 | 1.283 | 0.257 | 1.773 | 0.658 | 4.776 |
Moderate depression | 1.003 | 0.484 | 4.288 | 0.038 | 2.726 | 1.055 | 7.041 |
Moderate to severe depression | 0.888 | 0.462 | 3.703 | 0.054 | 2.431 | 0.984 | 6.007 |
Major depression | 0.457 | 0.425 | 1.153 | 0.283 | 1.579 | 0.686 | 3.631 |
Anxiety (Ref: no anxiety) | |||||||
Mild anxiety | 0.715 | 0.492 | 2.107 | 0.147 | 2.044 | 0.778 | 5.366 |
Mild anxiety | 0.270 | 0.469 | 0.331 | 0.565 | 1.310 | 0.522 | 3.286 |
Major anxiety | 0.040 | 0.425 | 0.009 | 0.925 | 1.041 | 0.453 | 2.394 |
Pressure (Ref: mild pressure) | |||||||
Moderate pressure | 0.190 | 0.254 | 0.557 | 0.455 | 1.209 | 0.735 | 1.988 |
Major pressure | 0.127 | 0.196 | 0.418 | 0.518 | 1.135 | 0.773 | 1.668 |
Social support | |||||||
Family support | 0.000 | 0.032 | 0.000 | 1.000 | 1.000 | 0.939 | 1.064 |
Friends support | 0.000 | 0.031 | 0.000 | 0.992 | 1.000 | 0.942 | 1.062 |
Others’ support | −0.027 | 0.036 | 0.570 | 0.450 | 0.973 | 0.906 | 1.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, F.; Gong, Z.; Li, Z.; Min, H.; Zhang, J.; Li, X.; Fu, T.; Fu, X.; He, J.; Wang, Z.; et al. Impact of Media Use on Chinese Public Behavior towards Vaccination with the COVID-19 Vaccine: A Latent Profile Analysis. Vaccines 2022, 10, 1737. https://doi.org/10.3390/vaccines10101737
Gong F, Gong Z, Li Z, Min H, Zhang J, Li X, Fu T, Fu X, He J, Wang Z, et al. Impact of Media Use on Chinese Public Behavior towards Vaccination with the COVID-19 Vaccine: A Latent Profile Analysis. Vaccines. 2022; 10(10):1737. https://doi.org/10.3390/vaccines10101737
Chicago/Turabian StyleGong, Fangmin, Zhuliu Gong, Zhou Li, Hewei Min, Jinzi Zhang, Xialei Li, Tongtong Fu, Xiaomin Fu, Jingbo He, Zhe Wang, and et al. 2022. "Impact of Media Use on Chinese Public Behavior towards Vaccination with the COVID-19 Vaccine: A Latent Profile Analysis" Vaccines 10, no. 10: 1737. https://doi.org/10.3390/vaccines10101737
APA StyleGong, F., Gong, Z., Li, Z., Min, H., Zhang, J., Li, X., Fu, T., Fu, X., He, J., Wang, Z., Wang, Y., & Wu, Y. (2022). Impact of Media Use on Chinese Public Behavior towards Vaccination with the COVID-19 Vaccine: A Latent Profile Analysis. Vaccines, 10(10), 1737. https://doi.org/10.3390/vaccines10101737