Importance of the COVID-19 Vaccine Booster Dose in Protection and Immunity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Demographics
2.3. Measurement of Antibodies
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nabil, A.; Uto, K.; Elshemy, M.M.; Soliman, R.; Hassan, A.A.; Ebara, M.; Shiha, G. Current coronavirus (SARS-CoV-2) epidemiological, diagnostic and therapeutic approaches: An updated review until June 2020. EXCLI J. 2020, 19, 992. [Google Scholar] [PubMed]
- COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 7 July 2022).
- Bloomberg COVID-19 Tracker. Available online: https://www.bloomberg.com/graphics/covid-vaccine-tracker-global-distribution/ (accessed on 7 July 2022).
- Graham, B.S. Rapid COVID-19 vaccine development. Science 2020, 368, 945–946. [Google Scholar] [CrossRef] [PubMed]
- Klasse, P. Neutralization of virus infectivity by antibodies: Old problems in new perspectives. Adv. Biol. 2014, 2014, 157895. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.D.; Laferrière, C.; Ardakani, A. A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic. Front. Pharmacol. 2020, 11, 937. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Li, X.; Peng, C.; Zhang, Y.; Zhang, W.; et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials. JAMA 2020, 324, 951–960. [Google Scholar] [CrossRef]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA vaccine against SARS-CoV-2—Preliminary report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatulin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020, 396, 887–897. [Google Scholar] [CrossRef]
- Fontanet, A.; Cauchemez, S. COVID-19 herd immunity: Where are we? Nat. Rev. Immunol. 2020, 20, 583–584. [Google Scholar] [CrossRef]
- Eguia, R.T.; Crawford, K.H.; Stevens-Ayers, T.; Kelnhofer-Millevolte, L.; Greninger, A.L.; Englund, J.A.; Boeckh, M.J.; Bloom, J.D. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog. 2021, 17, e1009453. [Google Scholar] [CrossRef] [PubMed]
- Pegu, A.; O’Connell, S.E.; Schmidt, S.D.; O’Dell, S.; Talana, C.A.; Lai, L.; Albert, J.; Anderson, E.; Bennett, H.; Corbett, K.S.; et al. Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 2021, 373, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Chaudhry, R.; Rana, F.; Nag, D.S.; Rai, S. Serosurveillance of health care workers in a COVID hospital: Immune response, and its longevity. Cureus 2021, 13, e14020. [Google Scholar] [CrossRef] [PubMed]
- Nag, D.S.; Chaudhry, R.; Mishra, M.; Rai, S.; Gupta, M. A prospective study on rapidly declining SARS-CoV-2 IgG antibodies within one to three months of testing IgG positive: Can it lead to potential reinfections? Cureus 2020, 12, e11845. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. COVID-19: Third vaccine dose boosts immune response but may not be needed, say researchers. Br. Med. J. 2021, 373, n1659. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, R.; Garg, I.; Pal, S.; Kottewar, S.; Sheikh, A.B. COVID-19 Vaccine Booster: To Boost or Not to Boost. Infect. Dis. Rep. 2021, 13, 924–929. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Shrotri, M.; Navaratnam, A.M.; Nguyen, V.; Byrne, T.; Geismar, C.; Fragaszy, E.; Beale, S.; Fong, W.L.E.; Patel, P.; Kovar, J.; et al. Spike-antibody waning after second dose of BNT162b2 or ChAdOx1. Lancet 2021, 398, 385–387. [Google Scholar] [CrossRef]
- Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 COVID-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Richards, N.E.; Workman, L.J.; Patel, J.; Muehling, L.M.; Canderan, G.; Murphy, D.D.; Brovero, S.G.; Ailsworth, S.M.; Eschenbacher, W.H.; McGowan, E.C.; et al. Trajectory of IgG to SARS-CoV-2 after vaccination with BNT162b2 or mRNA-1273 in an employee cohort and comparison with natural infection. Front. Immunol. 2022, 13, 850987. [Google Scholar]
- Al-Qerem, W.; Al Bawab, A.Q.; Hammad, A.; Ling, J.; Alasmari, F. Willingness of the Jordanian Population to Receive a COVID-19 Booster Dose: A Cross-Sectional Study. Vaccines 2022, 10, 410. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Poniedziałek, B.; Fal, A. Willingness to Receive the Booster COVID-19 Vaccine Dose in Poland. Vaccines 2021, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
- Galanis, P.; Vraka, I.; Katsiroumpa, A.; Siskou, O.; Konstantakopoulou, O.; Katsoulas, T.; Mariolis-Sapsakos, T.; Kaitelidou, D. First COVID-19 Booster Dose in the General Population: A Systematic Review and Meta-Analysis of Willingness and Its Predictors. Vaccines 2022, 10, 1097. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Xue, M.; Zheng, P.; Lyu, J.; Zhan, Z.; Hu, H.; Zhang, Y.; Zhang, X.D.; Sun, B. Factors affecting the antibody immunogenicity of vaccines against SARS-CoV-2: A focused review. Vaccines 2021, 9, 869. [Google Scholar] [CrossRef]
- Hamady, A.; Lee, J.; Loboda, Z.A. Waning antibody responses in COVID-19: What can we learn from the analysis of other coronaviruses? Infection 2021, 50, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaxman, A.; Marchevsky, N.G.; Jenkin, D.; Aboagye, J.; Aley, P.K.; Angus, B.; Belij-Rammerstorfer, S.; Bibi, S.; Bittaye, M.; Cappuccini, F.; et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: A substudy of two randomised controlled trials (COV001 and COV002). Lancet 2021, 398, 981–990. [Google Scholar] [CrossRef]
- Falsey, A.R.; Frenck Jr, R.W.; Walsh, E.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Bailey, R.; Swanson, K.A.; Xu, X.; et al. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N. Engl. J. Med. 2021, 385, 1627–1629. [Google Scholar] [CrossRef]
- Kherabi, Y.; Fiolet, T.; Rozencwajg, S.; Salaün, J.P.; Peiffer-Smadja, N. COVID-19 vaccine boosters: What do we know so far? Anaesth. Crit. Care Pain Med. 2021, 40, 100959. [Google Scholar] [CrossRef]
- Dassarma, B.; Tripathy, S.; Chabalala, M.; Matsabisa, M.G. Challenges in Establishing Vaccine Induced Herd Immunity through Age Specific Community Vaccinations. Aging Dis. 2022, 13, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Uysal, E.B.; Gümüş, S.; Bektöre, B.; Bozkurt, H.; Gözalan, A. Evaluation of antibody response after COVID-19 vaccination of healthcare workers. J. Med. Virol. 2022, 94, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients. JAMA 2021, 325, 1784–1786. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA 2021, 325, 2204–2206. [Google Scholar] [CrossRef]
- Benotmane, I.; Gautier, G.; Perrin, P.; Olagne, J.; Cognard, N.; Fafi-Kremer, S.; Caillard, S. Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses. JAMA 2021, 326, 1063–1065. [Google Scholar] [CrossRef] [PubMed]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; Del Bello, A. Three doses of an mRNA COVID-19 vaccine in solid-organ transplant recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef] [PubMed]
- Balsby, D.; Nilsson, A.C.; Möller, S.; Lindvig, S.O.; Davidsen, J.R.; Abazi, R.; Poulsen, M.K.; Holden, I.K.; Justesen, U.S.; Bistrup, C.; et al. Determinants of Antibody Response to a Third SARS-CoV-2 mRNA Vaccine Dose in Solid Organ Transplant Recipients: Results from the Prospective Cohort Study COVAC-Tx. Vaccines 2022, 10, 565. [Google Scholar] [CrossRef]
- Patalon, T.; Gazit, S.; Pitzer, V.E.; Prunas, O.; Warren, J.L.; Weinberger, D.M. Odds of Testing Positive for SARS-CoV-2 Following Receipt of 3 vs. 2 Doses of the BNT162b2 mRNA Vaccine. JAMA Intern. Med. 2022, 182, 179–184. [Google Scholar] [CrossRef]
- Westheim, A.J.; Bitorina, A.V.; Theys, J.; Shiri-Sverdlov, R. COVID-19 infection, progression, and vaccination: Focus on obesity and related metabolic disturbances. Obes. Rev. 2021, 22, e13313. [Google Scholar] [CrossRef]
Whole Sample N = 176 | Receiving Two Doses N = 112 | Receiving Three Doses N = 64 | p-Value | |
---|---|---|---|---|
Age (mean ± SD) | 36.3 ± 11.7 | 36.8 ± 12.1 | 35.6 ± 11.0 | 0.504 |
Gender | 0.212 | |||
Female | 119 (67.6) | 72 (64.3) | 47 (73.4) | |
Male | 57 (32.4) | 40 (35.7) | 17 (26.6) | |
BMI (mean ± SD) | 25.0 ± 7.7 | 24.6 ± 2.8 | 25.6 ± 11.9 | 0.428 |
<25 | 91 (56.5) | 54 (55.1) | 37 (58.7) | 0.650 |
≥25 | 70 (43.5) | 44 (44.9) | 26 (41.3) | |
Comorbidities | ||||
Mental health problems | 2 (1.1) | 0 | 2 (3.1) | 0.131 |
Cardiovascular diseases | 4 (2.3) | 3 (2.6) | 1 (1.5) | 1.000 |
Respiratory disorders | 2 (1.1) | 1 (0.8) | 1 (1.5) | 1.000 |
Autoimmune diseases | 3 (1.7) | 0 | 3 (4.6) | 0.047 |
Anemia | 29 (16.5) | 19 (16.9) | 10 (15.6) | 0.798 |
Medications | ||||
Iron | 29 (16.5) | 18 (16.0) | 11 (17.1) | 0.848 |
Folic acid | 25 (14.2) | 16 (14.2) | 9 (14.0) | 0.967 |
Supplements | 28 (16.1) | 16 (14.2) | 12 (18.7) | 0.467 |
Anti-hypertensive | 12 (6.9) | 11 (9.8) | 1 (1.5) | 0.058 |
Past medical history of measles | 13 (7.6) | 8 (7.1) | 5 | 0.850 |
Past medical history of influenza | 29 (16.8) | 16 (14.2) | 13 (20.3) | 0.302 |
Past medical history of chicken pox | 54 (31.2) | 26 (23.2) | 28 (43.7) | 0.004 |
History of COVID-19 infection | 99 (56.3) | 59 (52.7) | 40 (62.5) | 0.207 |
COVID-19 infection frequency | 0.368 | |||
Once | 75 (76.5) | 47 (81.0) | 28 (70.0) | |
Twice | 18 (18.4) | 8 (13.8) | 10 (25.0) | |
Three times | 5 (5.1) | 3 (5.2) | 2 (5.0) | |
Receiving influenza vaccine in the past year | 45 (25.9) | 18 (16.0) | 27 (42.1) | <0.001 |
Whole Sample N = 176 | Receiving Two Doses N = 112 | Receiving Three Doses N = 64 | OR (95% CI) | p-Value | |
---|---|---|---|---|---|
SARS-CoV-2 spike IgG | 3.37 (0.72–15.62) | 0.137 | |||
Positive | 163 (92.6) | 101 (90.2) | 62 (96.9) | ||
Negative | 13 (7.4) | 11 (9.8) | 2 (3.1) | ||
SARS-CoV-2 RBD IgG | 7.46 (2.16–25.64) | <0.001 | |||
Positive | 143 (81.3) | 82 (73.2) | 61 (95.3) | ||
Negative | 33 (18.8) | 30 (26.8) | 3 (4.7) | ||
SARS-CoV-2 NAB | 8.33 (2.81–24.39) | <0.001 | |||
Positive | 132 (75.0) | 72 (64.3) | 60 (93.8) | ||
Negative | 44 (25.0) | 40 (35.7) | 4 (6.3) |
Whole Sample N = 176 | Receiving Two Doses N = 112 | Receiving Three Doses N = 64 | p-Value | |
---|---|---|---|---|
SARS-CoV-2 spike IgG (RU/mL) | 68.5 ± 32.5 | 60.4 ± 33.8 | 82.8 ± 24.2 | <0.001 |
SARS-CoV-2 RBD IgG (RU/mL) | 36.5 ± 29.2 | 28.2 ± 25.6 | 51.0 ± 29.7 | <0.001 |
SARS-CoV-2 NAB (µg/mL) | 33.9 ± 29.4 | 23.9 ± 27.5 | 51.3 ± 24.1 | <0.001 |
Type of Antibody | Variables | B | S.E. | OR | p-Value | 95% CI for OR | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
SARS-CoV-2 spike IgG | Number of dosages * | 1.98 | 1.08 | 7.69 | 0.066 | 0.87 | 100.00 |
Age | 0.08 | 0.02 | 1.08 | 0.005 | 1.02 | 1.14 | |
BMI *** | −1.84 | 0.85 | 0.15 | 0.031 | 0.02 | 0.84 | |
SARS-CoV-2 RBD IgG | Number of dosages * | 3.11 | 1.03 | 2.27 | 0.003 | 2.95 | 166.66 |
Autoimmune disease ** | −3.36 | 1.58 | 0.03 | 0.034 | 0.00 | 0.77 | |
SARS-CoV-2 NAB | Number of dosages * | 2.80 | 0.75 | 16.66 | 0.000 | 3.84 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdollahi, A.; Afsharyzad, Y.; Vaezi, A.; Meysamie, A. Importance of the COVID-19 Vaccine Booster Dose in Protection and Immunity. Vaccines 2022, 10, 1708. https://doi.org/10.3390/vaccines10101708
Abdollahi A, Afsharyzad Y, Vaezi A, Meysamie A. Importance of the COVID-19 Vaccine Booster Dose in Protection and Immunity. Vaccines. 2022; 10(10):1708. https://doi.org/10.3390/vaccines10101708
Chicago/Turabian StyleAbdollahi, Alireza, Yeganeh Afsharyzad, Atefeh Vaezi, and Alipasha Meysamie. 2022. "Importance of the COVID-19 Vaccine Booster Dose in Protection and Immunity" Vaccines 10, no. 10: 1708. https://doi.org/10.3390/vaccines10101708
APA StyleAbdollahi, A., Afsharyzad, Y., Vaezi, A., & Meysamie, A. (2022). Importance of the COVID-19 Vaccine Booster Dose in Protection and Immunity. Vaccines, 10(10), 1708. https://doi.org/10.3390/vaccines10101708