Supplementation Effect of a Combination of Olive (Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Data Collection
2.3. Intervention
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Supplementation Initiation
3.3. Supplementation Effect
3.3.1. Effects on Blood Pressures
3.3.2. Effect on Markers of Metabolic Syndrome
3.3.3. Side Effects
3.3.4. Pre-Diabetic and Diabetic Patients
4. Discussion
4.1. Effect on Blood Pressures
4.2. Effects on MetS Markers
4.3. Potential Underlying Mechanisms of Action
4.4. Safety and Side Effects
4.5. Strength and Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C. American Heart Association; National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid. Med. Cell. Long. 2019. [Google Scholar] [CrossRef] [Green Version]
- Monserrat-Mesquida, M.; Quetglas-Llabres, M.; Capo, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic syndrome is associated with oxidative stress and proinflammatory state. Antioxidants 2020, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Prospective studies collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [PubMed]
- Toledo, E.; Hu, F.B.; Estruch, R.; Buil-Cosiales, P.; Corella, D.; Salas-Salvadó, J.; Covas, M.I.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: Results from a randomized controlled trial. BMC Med. 2013. [Google Scholar] [CrossRef] [Green Version]
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and vascular effect of the Mediterranean diet. Int. J. Mol. Sci. 2019, 20, 4716. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean diet: Insights from the PREDIMED Study. Progress Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Fernandez, E.; Rico-Cabanas, L.; Rosgaard, N.; Estruch, R.; Bach-Faig, A. Mediterranean diet and cardiodiabesity: A review. Nutrients 2014, 6, 3474–3500. [Google Scholar] [CrossRef]
- Hoffman, R.; Gerber, M. Food processing and Mediterranean diet. Nutrients 2015, 7, 7925–7964. [Google Scholar] [CrossRef]
- Guash-Ferré, M.; Merino, J.; Sun, Q.; Fito, M.; Salas-Salvado, J. Dietary polyphenols, Mediterranean diet, prediabetes and type 2 diabetes: A narrative review of the evidence. Oxidative Med. Cell. Long. 2017. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Hu, F.B.; Martínez-González, M.A.; Fitó, M.; Bulló, M.; Estruch, R.; Ros, E.; Corella, D.; Recondo, J.; Gómez-Gracia, E.; et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Martínez-Gonzalez, M.A. Olive oil consumption and reduced incidence of hypertension: The SUN study. Lipids 2004, 39, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.S.; Cañizares, J.; Montero, E.; Sánchez-Domínguez, J.M.; Catalá, A.; Ruiz-Gutiérrez, V. Virgin olive oil reduces blood pressure in hypertensive elderly subjects. Clin. Nutr. (Edinb., Scotl.) 2004, 23, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Bondia-Pons, I.; Schröder, H.; Covas, M.I.; Castellote, A.I.; Kaikkonen, J.; Poulsen, H.E.; Gaddi, A.V.; Machowetz, A.; Kiesewetter, H.; López-Sabater, M.C. Moderate consumption of olive oil by healthy European men reduces systolic blood pressure in non-Mediterranean participants. J. Nutr. 2007, 137, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Luna, R.; Muñoz-Hernandez, R.; Miranda, M.L.; Costa, A.F.; Jimenez-Jimenez, L.; Vallejo-Vaz, A.J.; Muriana, F.J.; Villar, J.; Stiefel, P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens. 2012, 25, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Medina-Remón, A.; Tresserra-Rimbau, A.; Pons, A.; Tur, J.A.; Martorell, M.; Ros, E.; Buil-Cosiales, P.; Sacanella, E.; Covas, M.I.; Corella, D.; et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 60–67. [Google Scholar] [CrossRef]
- Ghobadi, S.; Hassanzadeh-Rostami, Z.; Mohammadian, F.; Nikfetrat, A.; Ghasemifard, N.; Dehkordi, R.; Faghih, S. Comparison of blood lipid-lowering effects of olive oil and other plant oils: A systematic review and meta-analysis of 22 randomized placebo-controlled clinical trials. Crit. Rev. Food Sci. Nutr. 2019, 7, 2110–2124. [Google Scholar] [CrossRef]
- Castaner, O.; Fitó, M.; López-Sabater, M.C.; Poulsen, H.E.; Nyyssönen, K.; Schröder, H.; Salonen, J.T.; De la Torre-Carbot, K.; Zunft, H.-F.; De la Torre, R.; et al. The effect of olive oil polyphenols on antibodies against oxidized LDL. A randomized clinical trial. Clin. Nutr. 2011, 30, 490–493. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of olive oil on markers of inflammation and endothelial function-A systematic review and meta-analysis. Nutrients 2015, 7, 7651–7675. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.R.; Hodgson, J.M.; Woodman, R.; Bryan, J.; Wilson, C.; Murphy, K.J. Mediterranean diet lowers blood pressure and improves endothelial function: Results from the MedLey randomized intervention trial. Am. J. Clin. Nutr. 2017, 105, 1305–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covas, M.I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef] [PubMed]
- George, E.S.; Marshall, S.; Mayr, H.L.; Trakman, G.L.; Tatucu-Babet, O.A.; Lassemillante, A.M.; Bramley, A.; Reddy, A.J.; Forsyth, A.; Tierney, A.C.; et al. The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 2772–2795. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Lampousi, A.M.; Portillo, M.P.; Romaguera, D.; Hoffmann, G.; Boeing, H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutr. Diabetes 2017. [Google Scholar] [CrossRef] [Green Version]
- Omar, S.H. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [Green Version]
- Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. J. Transl. Med. 2014, 12, 219. [Google Scholar] [CrossRef] [Green Version]
- Cherif, S.; Rahal, N.; Haouala, M.; Hizaoui, B.; Dargouth, F.; Gueddiche, M.; Kallel, Z.; Balansard, G.; Boukef, K. A clinical trial of a titrated Olea extract in the treatment of essential arterial hypertension. J. Pharm. Belg. 1996, 51, 69–71. (In French) [Google Scholar]
- Perrinjaquet-Moccetti, T.; Busjahn, A.; Schmidlin, C.; Schmidt, A.; Bradl, B.; Aydogan, C. Food Supplementation with an Olive (Olea europaea L.) Leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytother. Res. 2008, 22, 1239–1242. [Google Scholar] [CrossRef]
- Susalit, E.; Agus, N.; Effendi, I.; Tjandrawinata, R.R.; Nofiarny, D.; Perrinjaquet-Moccetti, T.; Verbruggen, M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with Captopril. Phytomedicine: Int. J. Phytother. Phytopharm. 2011, 18, 251–258. [Google Scholar] [CrossRef]
- Cabrera-Vique, C.; Navarro-Alarcón, M.; Rodríguez Martínez, C.; Fonollá-Joya, J. Hypotensive effect of an extract of bioactive compounds of olive leaves: Preliminary clinical study. Nutr. Hosp. 2015, 32, 242–249. (In Spanish) [Google Scholar]
- Lockyer, S.; Rowland, I.; Spencer, J.P.; Yaqoob, P.; Stonehouse, W. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial. Eur. J. Nutr. 2017, 56, 1421–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widmer, R.J.; Freund, M.A.; Flammer, A.J.; Sexton, J.; Lennon, R.; Romani, A.; Mulinacci, N.; Vinceri, F.F.; Lerman, L.O.; Lerman, A. Beneficial effects of polyphenol-rich olive oil in patients with early atherosclerosis. Eur. J. Nutr. 2013, 52, 1223–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valls, R.M.; Farràs, M.; Suárez, M.; Fernández-Castillejo, S.; Fitó, M.; Konstantinidou, V.; Fuentes, F.; López-Miranda, J.; Giralt, M.; Covas, M.I.; et al. Effects of functional olive oil enriched with its own phenolic compounds on endothelial function in hypertensive patients. A randomised controlled trial. Food Chem. 2015, 167, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Moerland, M.; Kales, A.J.; Schrier, L.; van Dongen, M.G.J.; Bradnock, D.; Burggraaf, J. Evaluation of the EndoPAT as a tool to assess endothelial function. Int. J. Vasc. Med. 2012. [Google Scholar] [CrossRef]
- Verhoeven, V.; Van der Auwera, A.; Van Gaal, L.; Remmen, R.; Apers, S.; Stalpaert, M.; Wens, J.; Hermans, N. Can red yeast rice and olive extract improve lipid profile and cardiovascular risk in metabolic syndrome?: A double blind, placebo controlled randomized trial. BMC Complementary Altern. Med. 2015. [Google Scholar] [CrossRef] [Green Version]
- Tshongo Muhindo, C.; Ahn, S.A.; Rousseau, M.F.; Dierckxsens, Y.; Hermans, M.P. Effect and safety of a combination of red yeast rice and olive extract in hypercholesterolemic patients with and without statin-associated myalgia. Complementary Ther. Med. 2017, 35, 140–144. [Google Scholar] [CrossRef]
- Hernáez, Á.; Castañer, O.; losua, R.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; Fiol, M.; et al. Mediterranean diet improves high-density lipoprotein function in high-cardiovascular-risk individuals: A randomized controlled trial. Circulation 2017, 135, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Mahdy Ali, K.; Wonnerth, A.; Huber, K.; Wojta, J. Cardiovascular disease risk reduction by raising HDL cholesterol--current therapies and future opportunities. Br. J. Pharmacol. 2012, 167, 1177–1194. [Google Scholar]
- Guasch-Ferré, M.; Hruby, A.; Salas-Salvadó, J.; Martínez-González, M.A.; Sun, Q.; Willett, W.C.; Hu, F.B. Olive oil consumption and risk of type 2 diabetes in US women. Am. J. Clin. Nutr. 2015, 102, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Wainstein, J.; Ganz, T.; Boaz, M.; Bar Dayan, Y.; Dolev, E.; Kerem, Z.; Madar, Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food 2012, 15, 605–610. [Google Scholar] [CrossRef]
- De Bock, M.; Derraik, J.G.; Brennan, C.M.; Biggs, J.B.; Morgan, P.E.; Hodgkinson, S.C.; Hofman, P.L.; Cutfield, W.S. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: A randomized, placebo-controlled, crossover trial. PLoS ONE 2013, 8, e57622. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L. Hydroxytyrosol: Bioavailability, toxicity and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Colica, C.; Di Renzo, L.; Trombetta, D.; Smerriglio, A.; Bernardini, S.; Cioccoloni, G.; de Miranda, R.C.; Gualtieri, P.; Salimei, P.S.; De Lorenzo, A. Antoxidant effects of a hydroxytyrosol-based pharmaceutical formulation on body composition, metabolic state and gene expression: A randomized double-blinded, placebo-controlled crossover trial. Oxidat. Med. Cell. Long. 2017. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Villalba, R.; Larrosa, M.; Possemiers, S.; Tomas-Barberan, F.A.; Espin, J.C. Bioavailability of phenolics from an oleuropein-rich olive (Olea europea) leaf extract and its acute effect on plasma antioxidant status: Comparison between pre- and postmenopausal women. Eur. J. Nutr. 2014. [Google Scholar] [CrossRef] [PubMed]
- Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C. Hydroxytyrosol: From laboratory investigations to future clinical trials. Nut. Rev. 2010, 68, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Berrougui, H.; Ikhlef, S.; Khalil, A. Extra virgin oil polyphenols promote cholesterol efflux and improve HDL functionality. Evid.-Based Complem. Altern. Med. 2015. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Villaba, R.; Carrasco-Pancorbo, A.; Nevedomskaya, E.; Mayboroda, O.A.; Deelder, A.M.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Exploratory analysis of human urine by LC-ESI-TOF MS after intake of olive oil: Understanding the metabolism of phenols. Anal. Bioanal. Chem. 2010, 398, 463–475. [Google Scholar] [CrossRef]
- Miro-Casas, E.; Covas, M.-I.; Farre, M.; Fito, M.; Ortuno, J.; Weinbrenner, T.; Roset, P.; de la Torre, R. Hydroxytyrosol disposition in humans. Clin. Chem. 2003, 49, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Pastor, A.; Rodriguez-Morato, J.; Olesti, E.; Pujadas, M.; Perez-Mana, C.; Khymenets, O.; Fito, M.; Covas, M.-I.; Sola, R.; Motilva, M.-J.; et al. Analysis of free hydroxytyrosol in human plasma following the administration of olive oil. J. Chromat. A 2016, 1437, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Markovic, A.K.; Toric, J.; Barbaric, M.; Jakobusic Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourova, J.; Najmanova, I.; Voprsalova, M.; Migkos, T.; Pilarova, V.; Applova, L.; Novakova, L.; Mladenka, P. Two flavonoid metabolites, 3,4 dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vasc. Pharm. 2018, 111, 36–43. [Google Scholar] [CrossRef]
- Khymenets, O.; Fito, M.; Tourino, S.; Munoz-Aguayo, D.; Pujadas, M.; Torres, J.L.; Joglar, J.; Farre, M.; Covas, M.-I.; de la Torre, R. Antioxidant activities of hydroxytyrosol main metabolites do not contribute to beneficial effects after olive ingestion. Drug. Met. Dis. 2010, 38, 1417–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birringer, M. Hormetics: Dietary triggers of an adaptive stress response. Pharmacol. Res. 2011, 28, 2680–2694. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Z.; Lu, H.; Xu, Z.; Tong, R.; Shi, J.; Jia, G. Recent advances of natural polyphenols activators for Keap1-Nrf2 signaling pathway. Chem. Biodivers. 2020. [Google Scholar] [CrossRef]
- Martinez-Huelamo, M.; Rodriguez-Morato, J.; Boronat, A. Modulation of NrF2 by olive oil and wine polyphenols and neuroprotection. Antioxidants 2017, 6, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M.A.; Ramos, S.; Granado-Serrano, A.B.; Rodriguez-Ramiro, I. Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol. Nutr. Food Res. 2010, 54, 956–966. [Google Scholar] [CrossRef]
- Serreli, G.; Deiana, M. Extra olive oil polyphenols: Modulation of cellular pathways related to oxidant species and inflammation in aging. Cells 2020, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Chartoumpekis, D.V.; Kensler, T.W. New player on an old field: The Keap1/NrF2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr. Diab. Rev. 2013, 9, 137–145. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, C.; Tuveson, D.A. Transcriptional regulation by NrF2. Antiox. Redox Signal. 2018, 29, 1727–1744. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.; De Silva, M.; Sobey, C.G.; Lim, K.; Drummond, G.R.; Vinh, A.; Jelinic, M. The vascular consequences of metabolic syndrome: Rodent models, endothelial dysfunction, and current therapies. Front. Pharmacol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tziomalos, K.; Athyros, V.G.; Karagianis, A.; Mikhailidis, D.P. Endothelial dysfunction in metabolic syndrome: Prevalence, pathogenesis and management. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shang, C.; Zhang, W.; Jin, Z.; Yao, F.; He, Y.; Wang, B.; Li, Y.; Zhang, J.; Lin, R. Hydroxytyrosol NO regulates oxidative stress and NO production through SIRT1 in diabetic mice and vascular endothelial cells. Phytomedicine 2019, 52, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.; Toral, M.; Gomez-Guzman, M.; Jimenez, R.; Galindo, P.; Sanchez, M.; Olivares, M.; Galvez, J.; Duarte, J. Antihypertensive effects of oleuropein-enriched olive oil extract in spontaneously hypertensive rats. Food Funct. 2016, 7, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.A.; Handler, N.; Heiss, E.H.; Erker, T.; Dirsch, V.M. No evidence for modulation of endothelial nitric oxide synthase by the olive oil polyphenol hydroxytyrosol in human endothelial cells. Atherosclerosis 2007, 195, e58–e64. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Garcia, J.C.; Cardona, F.; Tinahones, F.J. Inflammation, oxidative stress and metabolic syndrome: Dietary modulation. Curr. Vasc. Pharm. 2013, 11, 906–919. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Kalinovic, S.; Kuntic, M.; Jimenez, J.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; Daiber, A. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Long. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Prather, E.R.; Steskiv, M.; Garrison, D.E.; Peace, M.T.I.; Zhou, T. Inflammaging and oxidative Stress in human diseases: From molecular mechanisms to novel treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [Green Version]
- Barrows, I.R.; Ramezani, A.; Raj, D.S. Inflammation, immunity and oxidative stress in hypertension-partners in crime? Adv. Chron. Kidney Dis. 2019, 26, 122–130. [Google Scholar] [CrossRef]
- Touyz, R.M.; Rios, F.J.; Alves-Lopes, R.; Neves, K.B.; Camargo, L.L.; Montezano, A.C. Oxidative stress: A unifying paradigm in hypertension. Canad. J. Cardiol. 2020, 36, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Richard, N.; Arnold, S.; Hoeller, U.; Lilpert, C. Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Med. 2011, 77, 1890–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fucelli, R.; Fabiani, R.; Rosignoli, P. Hydroxytyrosol exerts anti-inflammatory and antioxidant activities in a mouse model of systemic inflammation. Molecules 2018, 23, 3212. [Google Scholar] [CrossRef] [Green Version]
- Ansseau, M.; Seidel, L.; Crosser, A.; Dierckxsens, Y.; Albert, A. A dry extract of Passiflora incarnate L. (Sedanxio®) as first intention treatment of patients consulting for anxiety problems in general practice. Acta Psychiatr. Belg. 2012, 112, 5–11. [Google Scholar]
- Appelboom, T.; Maes, N.; Albert, A. A new Curcuma extract (Flexofytol®) in osteoarthritis: Results from Belgian real-life experience. Open Rheumatol. J. 2014, 8, 77–81. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Portincasa, P.; Maes, N.; Albert, A. Efficacy of bio-optimized extracts of turmeric and essential fennel oil on the quality of life in patients with irritable bowel syndrome. Ann. Gastroenterol. 2018, 31, 685. [Google Scholar] [CrossRef]
Name | Part Used/Form | Botanical Name | Category | Numero E | Quantity API | Unit |
---|---|---|---|---|---|---|
Olive | Leaf, dry ext. | Olea europaea L. | 167 | mg | ||
Gelatin (Capsule shell) | Bovine | |||||
Olive | Fruit, dry ext. | Olea europaea L. | 53 | mg | ||
Microcrystalline cellulose | Bulking agent | E 460(i) | ||||
Tricalcium phosphate | Bulking agent | E341(iii) | ||||
Talc | Anticaking agent | E 553b | ||||
Silicon dioxide | Anticaking agent | E 551 | ||||
Magnesium salts of fatty acids | Magnesium stearate | Anticaking agent | E 470b | |||
Iron oxide yellow | Color | E 172 | ||||
Iron oxide black | Color | E 172 |
Variable | All Patients | Pre-Diabetic * | Diabetic ** |
---|---|---|---|
Number (n) of patients | 663 | 134 | 44 |
Age (years), mean ± SD | 60 ± 12 | 61 ± 12 | 62 ± 10 |
Gender (female), n (%) | 336 (50.7) | 57 (42.5) | 19 (43.2) |
History of AHT, n (%) | 303 (45.7) | 71 (53.0) | 26 (59.1) |
SBP (mmHg), mean ± SD | 151 ± 11 | 149 ± 10 | 150 ± 8.6 |
DBP (mmHg), mean ± SD | 91 ± 6.6 | 91 ± 6.2 | 91 ± 5.3 |
Stage of blood pressure, n (%) | |||
Optimal tension | 1 (0.2) | 0 (0.0) | 0 (0.0) |
Normal tension | 1 (0.2) | 1 (0.7) | 0 (0.0) |
Borderline tension | 34 (5.1) | 10 (7.5) | 2 (4.5) |
Grade 1 hypertension | 323 (48.7) | 68 (50.8) | 27 (61.4) |
Grade 2 hypertension | 122 (18.4) | 28 (20.9) | 5 (11.4) |
Grade 3 hypertension | 18 (2.7) | 1 (0.7) | 1 (2.3) |
Isolated systolic hypertension | 164 (24.7) | 26 (19.4) | 9 (20.4) |
Concomitant therapy, n (%) | |||
None - Tensiofytol® alone | 399 (60.2) | 69 (51.5) | 8 (18.2) |
Antihypertensive concomitant treatment | 92 (13.9) | 20 (14.9) | 8 (18.2) |
Antihypertensive treatment alone | 52 (7.8) | 9 (6.7) | 0 (0.0) |
Antihypertensive and CV treatments | 21 (3.2) | 4 (3.0) | 1 (2.3) |
Antihypertensive and diabetes treatments | 12 (1.8) | 2 (1.5) | 6 (13.6) |
Antihypertensive, CV and diabetes treatments | 7 (1.1) | 5 (3.7) | 1 (2.3) |
Non-antihypertensive concomitant treatment | 172 (25.9) | 45 (33.6) | 28 (63.6) |
Other therapy alone | 13 (2.0) | 2 (1.5) | 0 (0.0) |
Other therapy and CV treatment | 92 (13.9) | 22 (16.4) | 1 (2.3) |
Other therapy and diabetes treatment | 36 (5.4) | 11 (8.2) | 16 (36.3) |
Other therapy and CV/diabetes treatments | 31 (4.7) | 10 (7.5) | 11 (25.0) |
Variable | Number of Patients * | Visit 1 | Visit 2 | Difference | p-Value |
---|---|---|---|---|---|
Total population | |||||
SBP (mmHg) | 663 | 151 ± 11 | 138 ± 10 | −13 ± 10 | <0.0001 |
DBP (mmHg) | 663 | 91 ± 6.6 | 84 ± 6.8 | −7.1 ± 6.6 | <0.0001 |
Triglycerides (mg/dL) | 162 | 159 ± 70 | 140 ± 54 | −18 ± 42 | <0.0001 |
Fasting glucose (mg/dL) | 186 | 102 ± 19 | 98 ± 15 | −4.9 ± 11 | <0.0001 |
HDL-Cholesterol (mg/dL) | 160 | 53 ± 16 | 55 ± 16 | 2.8 ± 8.1 | <0.0001 |
Waist circumference (cm) | 170 | 100 ± 16 | 98 ± 16 | −1.4 ± 3.2 | <0.0001 |
Pre-diabetic group | |||||
SBP (mmHg) | 134 | 149 ± 10 | 138 ± 9.5 | −11 ± 9.2 | <0.0001 |
DBP (mmHg) | 134 | 91 ± 6.2 | 84 ± 6.3 | −6.8 ± 6.1 | <0.0001 |
Triglycerides (mg/dL) | 57 | 165 ± 50 | 147 ± 44 | −19 ± 33 | <0.0001 |
Fasting glucose (mg/dL) | 67 | 108 ± 6.8 | 103 ± 8.7 | −5.2 ± 7.8 | <0.0001 |
HDL-Cholesterol (mg/dL) | 57 | 49 ± 12 | 52 ± 13 | 2.5 ± 6.3 | 0.0043 |
Waist circumference (cm) | 67 | 102 ± 16 | 100 ± 16 | −1.9 ± 3.9 | 0.0001 |
Diabetic group | |||||
SBP (mmHg) | 44 | 150 ± 8.6 | 137 ± 9.8 | −13 ± 9.4 | <0.0001 |
DBP (mmHg) | 44 | 91 ± 5.3 | 84 ± 7.3 | −7.7 ± 8.0 | <0.0001 |
Triglycerides (mg/dL) | 19 | 236 ± 105 | 176 ± 90 | −59 ± 70 | 0.0016 |
Fasting glucose (mg/dL) | 24 | 141 ± 14 | 122 ± 16 | −19 ± 16 | <0.0001 |
HDL-Cholesterol (mg/dL) | 18 | 40 ± 10 | 47 ± 9.6 | 6.7 ± 11 | 0.018 |
Waist circumference (cm) | 22 | 104 ± 18 | 102 ± 18 | −2.0 ± 2.5 | 0.0012 |
Factor | Coefficient ± SE * | p-Value |
---|---|---|
SBP change (mmHg) | ||
Age (years) | 0.060 ± 0.029 | 0.044 |
Gender (Female) | −0.63 ± 0.68 | 0.36 |
Baseline SBP (mmHg) | −0.51 ± 0.032 | <0.0001 |
History of antihypertensive drugs (yes) | −0.40 ± 0.72 | 0.58 |
Other concomitant therapy (yes) | −0.75 ± 0.74 | 0.31 |
DBP change (mmHg) | ||
Age (years) | 0.0078 ± 0.020 | 0.69 |
Gender (Female) | −0.71 ± 0.46 | 0.12 |
Baseline DBP (mmHg) | −0.48 ± 0.035 | <0.0001 |
History of antihypertensive drugs (yes) | −0.50 ± 0.49 | 0.31 |
Other concomitant therapy (yes) | −0.65 ± 0.50 | 0.19 |
Study | n | Oleuropein and Hydroxytyrosol Content (mg/d) | Treatment Duration (weeks) | Baseline SBP (mmHg) | SBP Reduction (mmHg) | Baseline DBP (mmHg) | DBP Reduction (mmHg) |
---|---|---|---|---|---|---|---|
Cherif et al., [27] | 30 | 115 and NA * | 12 | 164.5 ± 20.9 | 16.7 (p < 0.001) | 97.4 ± 9.8 | 10.4 (p < 0.001) |
Perrinjaquet-Moccetti et al., [28] | 10 | 208 and NA | 8 | 137 ± 10 | 11.0 (p < 0.01) | 80 ± 10 | 4.0 (NS) |
Susalit et al., [29] | 72 | 200 and NA | 8 | 145.0 ± 5.0 | 11.5 ± 8.5 (p < 0.001) | 91.3 ± 5.1 | 4.8 ± 5.5 (p < 0.001) |
Cabrera-Vique et al., [30] | 10 | 240 and 16 | 4 | 133.2 ± 3.4 | 11.2 (p = 0.011) | 80.9 ± 2.1 | 8.0 (p = 0.026) |
Lockyer et al., [31] | 60 | 136 and 6 | 6 | 139.69 ± 12.28 | 3.95 ± 11.48 (p = 0.027) | 83.71 ± 8.86 | 3.00 ± 8.54 (p = 0.025) |
Hermans et al., [present data] | 663 | 100 and 20 | 8 | 151 ± 11 | 13 ± 10 (p < 0.0001) | 91 ± 6.6 | 7.1 ± 6.6 (p < 0.001) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermans, M.P.; Lempereur, P.; Salembier, J.-P.; Maes, N.; Albert, A.; Jansen, O.; Pincemail, J. Supplementation Effect of a Combination of Olive (Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome. Antioxidants 2020, 9, 872. https://doi.org/10.3390/antiox9090872
Hermans MP, Lempereur P, Salembier J-P, Maes N, Albert A, Jansen O, Pincemail J. Supplementation Effect of a Combination of Olive (Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome. Antioxidants. 2020; 9(9):872. https://doi.org/10.3390/antiox9090872
Chicago/Turabian StyleHermans, Michel P., Philippe Lempereur, Jean-Paul Salembier, Nathalie Maes, Adelin Albert, Olivia Jansen, and Joël Pincemail. 2020. "Supplementation Effect of a Combination of Olive (Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome" Antioxidants 9, no. 9: 872. https://doi.org/10.3390/antiox9090872
APA StyleHermans, M. P., Lempereur, P., Salembier, J. -P., Maes, N., Albert, A., Jansen, O., & Pincemail, J. (2020). Supplementation Effect of a Combination of Olive (Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome. Antioxidants, 9(9), 872. https://doi.org/10.3390/antiox9090872