Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural and Synthetic Antioxidants
2.2. Total Phenolic Content (TPC) and Antioxidant Capacity
2.3. Lamb Burger Preparation
2.4. Proximal Composition and Mineral Bioavailability
2.5. Shelf-Life Study
2.5.1. Microbiological Analysis
2.5.2. Volatile Compounds by GC-MC
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results
3.1. Characterisation of Preservative Extracts
3.2. Proximate Composition and Bioavailability of the Mineral Fraction
3.3. Shelf-Life Study
3.4. Volatile Compounds (GS-MS)
3.5. Sensory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Fernández, A. Effect of ageing time on suckling lamb meat quality resulting from different carcass chilling regimes. Meat Sci. 2014, 96, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Osés, S.; Diez, A.M.; Melero, B.; Luning, P.A.; Jaime, I.; Rovira, J. Characterization by culture-dependent and culture-independent methods of the bacterial population of suckling-lamb packaged in different atmospheres. Food Microbiol. 2013, 36, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.W. Adverse Reactions to the Antioxidants Butylated Hydroxyanisole and Butylated Hydroxytoluene. In Food Allergy; Wiley: New York, NY, USA, 2014; pp. 393–401. [Google Scholar]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yangui, T.; Dhouib, A.; Rhouma, A.; Sayadi, S. Potential of hydroxytyrosol-rich composition from olive mill wastewater as a natural disinfectant and its effect on seeds vigour response. Food Chem. 2009, 117, 1–8. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol. 2020, 309, 29–33. [Google Scholar] [CrossRef]
- Cabrerizo, S.; De La Cruz, J.P.; López-Villodres, J.A.; Muñoz-Marin, J.; Guerrero, A.; Reyes, J.J.; Labajos, M.T.; Gonzalez-Correa, J.A. Role of the inhibition of oxidative stress and inflammatory mediators in the neuroprotective effects of hydroxytyrosol in rat brain slices subjected to hypoxia reoxygenation. J. Nutr. Biochem. 2013, 24, 2152–2157. [Google Scholar] [CrossRef]
- De Leonardis, A.; Aretini, A.; Alfano, G.; Macciola, V.; Ranalli, G. Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea europaea L.) and evaluation of its antioxidant properties and bioactivity. Eur. Food Res. Technol. 2007, 226, 653–659. [Google Scholar] [CrossRef]
- Nieto, G.; Martínez-Zamora, L.; Castillo, J.; Ros, G. Hydroxytyrosol extracts, olive oil and walnuts as functional components in chicken sausages. J. Sci. Food Agric. 2017, 97, 3761–3771. [Google Scholar] [CrossRef]
- Espín, J.C.; Soler-Rivas, C.; Cantos, E.; Tomás-Barberán, F.A.; Wichers, H.J. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J. Agric. Food Chem. 2001, 49, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Bañon, S.; Méndez, L.; Almela, E. Effects of dietary rosemary extract on lamb spoilage under retail display conditions. Meat Sci. 2012, 90, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G. Incorporation of by-products of rosemary and thyme in the diet of ewes: Effect on the fatty acid profile of lamb. Eur. Food Res. Technol. 2013, 236, 379–389. [Google Scholar] [CrossRef]
- Ortuño, J.; Serrano, R.; Jordán, M.; Bañon, S. Shelf life of meat from lambs given essential oil-free rosemary extract containing carnosic acid plus carnosol at 200 or 400 mg kg−1. Meat Sci. 2014, 96, 1452–1459. [Google Scholar] [CrossRef]
- Ortuño, J.; Serrano, R.; Bañon, S.; Casanova, J.O. Use of dietary rosemary diterpenes to extend the preservation of sulphited-lamb products. Small Rumin. Res. 2015, 123, 269–277. [Google Scholar] [CrossRef]
- Ortuño, J.; Serrano, R.; Bañon, S. Use of dietary rosemary diterpenes to inhibit rancid volatiles in lamb meat packed under protective atmosphere. Animal 2016, 10, 1391–1401. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Boil. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Prior, R.L.; Hoang, H.A.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analyticial Chemistry: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.O.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Martínez, L.; Ros, G.; Nieto, G. Effect of natural extracts obtained from food industry by-products on nutritional quality and shelf life of chicken nuggets enriched with organic Zn and Se provided in broiler diet. Poult. Sci. 2020, 99, 1491–1501. [Google Scholar] [CrossRef]
- Wang, L.L.; Xiong, Y.L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J. Agric. Food Chem. 2005, 53, 9186–9192. [Google Scholar] [CrossRef]
- Martínez, L.; Bastida, P.; Castillo, J.; Ros, G.; Nieto, G. Green alternatives to synthetic antioxidants, antimicrobials, nitrates, and nitrites in clean label Spanish Chorizo. Antioxidants 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Lemonakis, N.; Poudyal, H.; Halabalaki, M.; Brown, L.; Tsarbopoulos, A.; Skaltsounis, A.-L.; Gikas, E. The LC–MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome. J. Chromatogr. B 2017, 1041, 45–59. [Google Scholar] [CrossRef]
- Martínez, L.; Castillo, J.; Ros, G.; Nieto, G. Antioxidant and antimicrobial activity of rosemary, pomegranate and olive extracts in fish patties. Antioxidants 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Nieto, G.; Martínez-Zamora, L.; Castillo, J.; Ros, G.; Nieto, G. Effect of hydroxytyrosol, walnut and olive oil on nutritional profile of Low-Fat Chicken Frankfurters. Eur. J. Lipid Sci. Technol. 2017, 119, 1600518. [Google Scholar] [CrossRef]
- Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 2012, 19, 436–443. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Wang, D.; Williams, B.A.; Ferruzzi, M.; D’Arcy, B.R. Microbial metabolites, but not other phenolics derived from grape seed phenolic extract, are transported through differentiated Caco-2 cell monolayers. Food Chem. 2013, 138, 1564–1573. [Google Scholar] [CrossRef]
- Martínez, L.; Ros, G.; Nieto, G. Fe, Zn and Se bioavailability in chicken meat emulsions enriched with minerals, hydroxytyrosol and extra virgin olive oil as measured by Caco-2 cell model. Nutrients 2018, 10, 969. [Google Scholar] [CrossRef] [Green Version]
- Santos-López, J.A.; Garcimartín, A.; Merino, P.; López-Oliva, M.E.; Bastida, S.; Benedí, J.; Sánchez-Muniz, F.J. Effects of Silicon vs. Hydroxytyrosol-Enriched Restructured Pork on Liver Oxidation Status of Aged Rats Fed High-Saturated/High-Cholesterol Diets. PLoS ONE 2016, 11, e0147469. [Google Scholar] [CrossRef]
- Garcimartín, A.; Santos-López, J.A.; Bastida, S.; Benedí, J.; Sánchez-Muniz, F.J. Silicon-Enriched Restructured Pork Affects the Lipoprotein Profile, VLDL Oxidation, and LDL Receptor Gene Expression in Aged Rats Fed an Atherogenic Diet. J. Nutr. 2015, 145, 2039–2045. [Google Scholar] [CrossRef] [Green Version]
- Nieto, G.; Banon, S.; Garrido, M.D.; Nieto, G. Administration of distillate thyme leaves into the diet of Segureña ewes: Effect on lamb meat quality. Animal 2012, 6, 2048–2056. [Google Scholar] [CrossRef] [Green Version]
- Nieto, G.; Díaz, P.; Bañon, S.; Garrido, M.D. Effect on lamb meat quality of including thyme (Thymus zygis ssp. gracilis) leaves in ewes’ diet. Meat Sci. 2010, 85, 82–88. [Google Scholar] [CrossRef]
- Andrés, A.I.; Petrón, M.; Adámez, J.; López, M.; Timón, M. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef]
- Carballo, D.; Caro, I.; Andres, S.; Giráldez, F.; Mateo, J. Assessment of the antioxidant effect of astaxanthin in fresh, frozen and cooked lamb patties. Food Res. Int. 2018, 111, 342–350. [Google Scholar] [CrossRef]
- Muíño, I.; Díaz, M.T.; Apeleo, E.; Pérez-Santaescolástica, C.; Rivas-Cañedo, A.; Pérez, C.; Cañeque, V.; Lauzurica, S.; De La Fuente, J. Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. 2017, 140, 924–932. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.; Hewitt, B.; Fursey, G.; Wood, J. Fatty acid content and composition of english beef, lamb and pork at retail. Meat Sci. 1996, 42, 443–456. [Google Scholar] [CrossRef]
- Fishera, A.V.; Ensera, M.; Richardsona, R.I.; Wooda, J.D.; Nutea, G.R.; Kurta, E.; Sinclairb, L.A.; Wilkinson, R.G. Fatty acid composition and eating quality of lamb types derived from four diverse breed× production systems. Meat Sci. 2000, 55, 141–147. [Google Scholar] [CrossRef]
- Bravo-Lamas, L.; Barron, L.; Kramer, J.K.; Etaio, I.; Aldai, N. Characterization of the fatty acid composition of lamb commercially available in northern Spain: Emphasis on the trans-18:1 and CLA content and profile. Meat Sci. 2016, 117, 108–116. [Google Scholar] [CrossRef]
- Deiana, M.; Corona, G.; Incani, A.; Loru, D.; Rosa, A.; Atzeri, A.; Melis, M.P.; Dessì, M.A. Protective effect of simple phenols from extra virgin olive oil against lipid peroxidation in intestinal Caco-2 cells. Food Chem. Toxicol. 2010, 48, 3008–3016. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Abou-Arab, A.A.; Abu Salem, F.M. Antioxidant and antimicrobial effect of some natural plant extracts added to lamb patties during storage. Grasas Aceites 2011, 62, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Nieto, G.; Jongberg, S.; Andersen, M.L.; Skibsted, L.H.; Nieto, G. Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic. Meat Sci. 2013, 95, 177–184. [Google Scholar] [CrossRef]
- Delles, R.M.; Xiong, Y.L.; True, A.D. Mild Protein Oxidation Enhanced Hydration and Myofibril Swelling Capacity of Fresh Ground Pork Muscle Packaged in High Oxygen Atmosphere. J. Food Sci. 2011, 76, C760–C767. [Google Scholar] [CrossRef]
- Delles, R.M.; Xiong, Y.L. The effect of protein oxidation on hydration and water-binding in pork packaged in an oxygen-enriched atmosphere. Meat Sci. 2014, 97, 181–188. [Google Scholar] [CrossRef]
- Jongberg, S.; Tørngren, M.A.; Gunvig, A.; Skibsted, L.H.; Lund, M.N. Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork. Meat Sci. 2013, 93, 538–546. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Jongberg, S.; Ros, G.; Skibsted, L.H.; Nieto, G. Plant derived ingredients rich in nitrates or phenolics for protection of pork against protein oxidation. Food Res. Int. 2020, 129, 108789. [Google Scholar] [CrossRef]
- Tafesh, A.; Najami, N.; Jadoun, J.; Halahlih, F.; Riepl, H.; Azaizeh, H. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater. Evid. Based Complement. Altern. Med. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alkass, J.E.; Baker, I.A.; Saleh, H.H. Reduction of Oxidative Rancidity and Microbial Activities of the Karadi Lamb Patties in Freezing Storage Using Natural Antioxidant Extracts of Rosemary and Ginger. Int. J. Agric. Food Res. 2013, 2. [Google Scholar] [CrossRef]
Ingredients | Control | HXTs | HXTo | R |
---|---|---|---|---|
Lamb meat (g) | 2560 | 2560 | 2560 | 2560 |
Water (mL) | 640 | 640 | 640 | 640 |
Commercial mix® (g/kg) | 69 | |||
Preservative extracts (ppm) | ||||
• HXTS | 200 | |||
• HXTO | 200 | |||
• R | 200 |
Sample | Total Phenolic Content | Antioxidant Activity | |||
---|---|---|---|---|---|
ABTS | DPPH | ORAC | FRAP | ||
HXTs | 93.9 ± 54 a | 93.3 ± 5.3 a | 88.9 ± 3.9 | 70,542 ± 299.6 a | 64,961 ± 1239.4 a |
HXTo | 41.6 ± 81 b | 82.2 ± 4.5 b | 81.9 ± 1.3 | 40,993 ± 285.7 b | 60,457 ± 1439.4 b |
R | 36.5 ± 26 c | 80.1 ± 5.1 b | 81.3 ± 5.0 | 13,929 ± 393.4 c | 17,790 ± 839.4 c |
Proximate Composition (Average Percentage ± SD) | Mineral Bioavailability (mg/100 g) | |||||
---|---|---|---|---|---|---|
Samples | Moisture | Ash | Protein | Lipid | Fe | Si |
Control | 72.82 ± 0.26 | 2.01 ± 0.09 | 14.28 ± 0.81 | 19.88 ± 0.73 | 1.13 ± 0.00 c | 23.53 ± 0.03 d |
HXTs | 72.60 ± 0.91 | 1.93 ± 0.15 | 14.00 ± 0.19 | 19.19 ± 1.07 | 1.85 ± 0.16 a | 67.19 ± 0.08 a |
HXTo | 71.33 ± 1.20 | 1.72 ± 0.07 | 14.43 ± 0.58 | 20.37 ± 0.30 | 1.75 ± 0.04 a | 62.53 ± 0.10 b |
R | 73.04 ± 2.49 | 1.70 ± 0.19 | 15.24 ± 0.19 | 22.42 ± 2.09 | 1.42 ± 0.01 b | 48.95 ± 0.05 c |
Days of Storage | ||||
---|---|---|---|---|
Samples | 0 | 1 | 3 | 6 |
pH | ||||
Control | 6.12 ± 0.04 | 5.86 ± 0.00 | 5.79 ± 0.01 | 5.76 ± 0.01 |
HXTs | 6.10 ± 0.00 | 5.38 ± 0.01 | 5.35 ± 0.01 | 5.42 ± 0.01 |
HXTo | 6.05 ± 0.01 | 5.06 ± 0.01 | 4.97 ± 0.01 | 5.07 ± 0.01 |
R | 5.84 ± 0.00 | 5.30 ± 0.00 | 5.22 ± 0.00 | 5.31 ± 0.01 |
L* | ||||
Control | 55.36 ± 1.30 | 54.73 ± 1.61 | 53.75 ± 2.46 | 55.88 ± 2.47 |
HXTs | 53.53 ± 1.74 | 55.57 ± 2.65 | 56.96 ± 1.53 | 56.27 ± 1.58 |
HXTo | 54.36 ± 1.54 | 55.12 ± 1.02 | 57.11 ± 1.52 | 57.08 ± 0.63 |
R | 52.63 ± 1.55 | 54.88 ± 1.01 | 56.18 ± 1.79 | 54.19 ± 1.16 |
a* | ||||
Control | 20.17 ± 0.27 a,x | 21.14 ± 0.51 a,x | 14.66 ± 1.03 a,y | 11.11 ± 0.27 z |
HXTs | 17.89 ± 0.16 b,x | 16.33 ± 0.43 b,y | 11.81 ± 0.28 b,z | 11.52 ± 0.18 z |
HXTo | 17.69 ± 0.30 b,x | 16.44 ± 0.42 b,y | 11.45 ± 1.31 b,z | 11.83 ± 0.47 z |
R | 17.32 ± 0.50 b,x | 16.27 ± 1.37 b,x | 12.16 ± 0.16 b,y | 11.21 ± 0.41 z |
b* | ||||
Control | 14.73 ± 0.08 a,x | 14.61 ± 0.29 a,x | 10.67 ± 0.89 b,y | 8.52 ± 0.19 c,z |
HXTs | 12.42 ± 0.24 b,x | 11.82 ± 0.13 c,y | 11.27 ± 0.21 b,y | 10.57 ± 0.16 b,z |
HXTo | 12.38 ± 0.19 b | 11.57 ± 0.17 c | 12.05 ± 0.79 a | 11.25 ± 0.16 a |
R | 12.41 ± 0.31 b,y | 12.16 ± 0.20 b,y | 12.07 ± 0.24 a,y | 10.26 ± 0.32 b,z |
Lipid Oxidation: TBARs (mg MDA/kg) | ||||
Control | 1.36 ± 0.22 a,y | 1.71 ± 0.26 y | 1.37 ± 0.09 b,y | 1.00 ± 0.15 b,z |
HXTs | 0.70 ± 0.10 b,z | 1.42 ± 0.25 x | 1.12 ± 0.12 c,y | 0.65 ± 0.06 c,z |
HXTo | 0.84 ± 0.03 b,z | 1.62 ± 0.11 x | 1.56 ± 0.14 a,x | 1.19 ± 0.04 a,y |
R | 0.78 ± 0.08 b,z | 1.44 ± 0.05 x | 1.15 ± 0.08 c,y | 1.13 ± 0.10 a,y |
Protein Oxidation: Thiol Loss (nmol/mg protein) | ||||
Control | 29.04 ± 1.15 a,x | 21.78 ± 3.00 a,y | 6.48 ± 0.22 a,z | 5.75 ± 0.28 a,z |
HXTs | 15.16 ± 1.26 b,x | 14.13 ± 1.87 b,x | 3.76 ± 0.17 b,y | 2.12 ± 0.06 b,z |
HXTo | 18.69 ± 1.98 b,y | 16.26 ± 2.03 b,y | 2.54 ± 0.04 c,z | 2.25 ± 0.14 b,z |
R | 17.54 ± 2.54 b,y | 16.33 ± 1.25 b,y | 2.54 ± 0.01 c,z | 2.01 ± 0.08 b,z |
Days of Storage | |||||
---|---|---|---|---|---|
Microorganism | Samples | 0 | 1 | 3 | 6 |
TVC | Control | 6350 ± 40 a,z | 25,000 ± 1200 c,y | 140,000 ± 25000 a,x | 220,000 ± 4250 a,w |
HXTs | 3600 ± 50 c,z | 53,000 ± 650 a,y | 59,000 ± 4000 c,x,y | 80,000 ± 1150 d,w | |
HXTo | 1550 ± 46 d,z | 55,000 ± 1500 a,y | 80,000 ± 5000 b,x | 180,000 ± 8000 b,w | |
R | 4750 ± 34 b,z | 40,000 ± 700 b,y | 50,000 ± 2500 d,x,y | 107,000 ± 9500 c,w | |
TCC | Control | 895 ± 70 b,z | 950 ± 80 c,y,z | 1280 ± 210 c,x,y | 2000 ± 120 c,w |
HXTs | 3490 ± 67 a,z | 3000 ± 90 a,z | 3400 ± 200 b,z | 4000 ± 320 b,y | |
HXTo | 3280 ± 110 a | 3930 ± 50 c | 3800 ± 380 b | 4900 ± 860 b | |
R | 515 ± 48 c, z | 1460 ± 115 b,y | 8000 ± 190 a,x | 9300 ± 250 a,w | |
E. coli | <10 |
Sample | Day 0 | Day 6 | Day 0 | Day 6 | ||
---|---|---|---|---|---|---|
3-Methyl-1-butanol | Control | 3.10 ± 0.32 | 6.60 ± 0.01 a | 3-Methyl-1-butanal | 0.45 ± 0.07 | 1.78 ± 0.02 a |
HXTs | 0.22 ± 0.03 | 2.16 ± 0.03 b | 0.12 ± 0.00 | 0.44 ± 0.03 d | ||
HXTo | 1.01 ± 0.05 | 1.42 ± 0.05 c | 0.25 ± 0.02 | 0.60 ± 0.05 c | ||
R | 0.45 ± 0.01 | 2.92 ± 0.04 b | 0.66 ± 0.04 | 1.35 ± 0.12 b | ||
Hexanal | Control | 0.03 ± 0.00 | 1.99 ± 0.02 b | 2-Bornanone | 0.01 ± 0.00 | 0.38 ± 0.02 |
HXTs | 0.02 ± 0.05 | 0.63 ± 0.02 c | nd | nd | ||
HXTo | 0.03 ± 0.01 | 0.59 ± 0.05 c | nd | nd | ||
R | 0.03 ± 0.01 | 5.88 ± 0.03 a | nd | nd | ||
2,3-Butanediol | Control | 0.16 ± 0.01 | 10.56 ± 0.02 a | Nonanal | 0.56 ± 0.00 | 1.70 ± 0.10 a |
HXTs | 0.29 ± 0.01 | 3.33 ± 0.03 d | 0.03 ± 0.00 | 0.10 ± 0.00 c | ||
HXTo | 1.09 ± 0.01 | 6.60 ± 0.05 c | 0.11 ± 0.02 | 0.31 ± 0.03 b | ||
R | 0.39 ± 0.01 | 7.35 ± 0.01 b | 0.06 ± 0.01 | 0.43 ± 0.01 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Zamora, L.; Ros, G.; Nieto, G. Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants 2020, 9, 851. https://doi.org/10.3390/antiox9090851
Martínez-Zamora L, Ros G, Nieto G. Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants. 2020; 9(9):851. https://doi.org/10.3390/antiox9090851
Chicago/Turabian StyleMartínez-Zamora, Lorena, Gaspar Ros, and Gema Nieto. 2020. "Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers" Antioxidants 9, no. 9: 851. https://doi.org/10.3390/antiox9090851