Insights into the Oxidative Stress Response of Salmonella enterica serovar Enteritidis Revealed by the Next Generation Sequencing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture
2.2. Oxidative Stress Killing Assay
2.3. Incremental Oxidative Stress Gene Expression Assay
2.4. Preparation of Samples for Transcriptomics
2.5. Global Transcriptomic Analysis
2.6. Validation of RNA-Seq Data by Real-Time PCR
2.7. Experimental Replication and Gene Ontology Analysis
2.8. RN-Seq Accession Numbers
3. Results
3.1. Effect ofIincreasing H2O2 Concentrations on the Viability of S. Enteritidis
3.2. Expression Levels of the Genes Associated with Oxidative Stress and Anabolic Processes during Incremental Increase of H2O2 Concentration
3.3. Global Transcriptome Response of S. Enteritidis to Oxidative Stress.
3.3.1. Induction of Transcriptome—Molecular Response of S. Enteritidis to Oxidative Stress
3.3.2. Repression of Transcriptome—Molecular Response of S. Enteritidis to Oxidative Stress
3.4. Validation of RNA-seq Data by Real-Time PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. International Collaboration on Enteric Disease ‘Burden of Illness’ Studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1239–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, S.O.; Decol, L.T.; Tondo, E.C. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Qual. Saf. 2018, 2, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Bennet, S.D.; Littrell, K.W.; Hill, T.A.; Mahovic, M.; Behravesh, C.B. Multistate foodborne disease outbreaks associated with raw tomatoes, United States, 1990–2010: A recurring public health problem. Epidemiol. Infect. 2015, 143, 1352–1359. [Google Scholar] [CrossRef]
- Greene, S.K.; Daly, E.R.; Talbot, E.A.; Demma, L.J.; Holzbauer, S.; Patel, N.J.; Hill, T.A.; Walderhaug, M.O.; Hoekstra, R.M.; Lynch, M.F.; et al. Recurrent multistate outbreaks of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiol. Infect. 2008, 136, 157–165. [Google Scholar] [CrossRef]
- Gajraj, R.; Pooransingh, S.; Hawker, J.I.; Olowokure, B. Multiple outbreaks of Salmonella Braenderup associated with consumption of iceberg lettuce. Int. J. Environ. Health Res. 2012, 22, 150–155. [Google Scholar] [CrossRef]
- Reddy, S.P.; Wang, H.; Adams, J.K.; Peter, C.; Feng, H. Prevalence and characteristics of Salmonella serotypes isolated from fresh produce marketed in the United States. J. Food Protec. 2016, 79, 6–16. [Google Scholar] [CrossRef]
- Sivapalasingam, S.; Barrett, E.; Kimura, A.; Van Duyne, S.; De Witt, W.; Ying, M.; Frisch, A.; Phan, O.; Gould, E.; Shillam, P.; et al. A multistate outbreak of Salmonella enterica serotype Newport infection linked to mango consumption: Impact of water-dip disinfestation technology. Clin. Infect. Dis. 2003, 37, 1585–1590. [Google Scholar] [CrossRef]
- Gibbs, R.; Pingault, N.; Mazzucchelli, T.; O’Reilly, L.; MaCkenzie, B.; Green, J.; Mogyorosy, R.; Stafford, R.; Bell, R.; Hiley, L.; et al. An outbreak of Salmonella enterica serotype Litchfield infection in Australia linked to consumption of contaminated papaya. J. Food Prot. 2009, 72, 1094–1098. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Zhou, H.; Zhou, T.; Gong, J. Comparison of aqueous ozone and chlorine as sanitizers in the food processing industry: Impact on fresh agricultural produce quality. Ozone Sci. Eng. 2007, 29, 113–120. [Google Scholar] [CrossRef]
- Vidovic, S.; Korber, D.R. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Crit. Rev. Microbiol. 2016, 42, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, C.E.; Briones, A.C.; Aguirre, C.; Pardo-Este, C.; Castro-Severyn, J.; Salinas, C.R.; Baquedano, M.S.; Hidalgo, A.A.; Fuentes, J.A.; Morales, E.H.; et al. The transcription factor SlyA from Salmonella Typhimurium regulates genes in response to hydrogen peroxide and sodium hypochlorite. Res. Microbiol. 2018, 169, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Kurasz, J.E.; Hartman, C.E.; Samuels, D.J.; Mohanty, B.K.; Deleveaux, A.; Mrázek, J.; Karls, A.C. Genotoxic, metabolic, and oxidative stresses regulate the RNA repair operon of Salmonella enterica serovar Typhimurium. J. Bacteriol. 2018, 200, e00476-18. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Overall, C.C.; Johnson, R.C.; Jones, M.B.; McDermott, J.E.; Heffron, F.; Adkins, J.N.; Cambronne, E.D. ChIP-Seq analysis of the σE regulon of Salmonella enterica serovar Typhimurium reveals new genes implicated in heat shock and oxidative stress response. PLoS ONE 2015, 10, e0138466. [Google Scholar] [CrossRef] [Green Version]
- Vidovic, S.; Elder, J.; Medihala, P.; Lawrence, J.R.; Predicala, B.; Zhang, H.; Korber, D.R. ZnO nanoparticles impose a panmetabolic toxic effect along with strong necrosis, inducing activation of the envelope stress response in Salmonella enterica serovar Enteritidis. Antimicrob. Agents Chemother. 2015, 59, 3317–3328. [Google Scholar] [CrossRef] [Green Version]
- Vidovic, S.; Liu, X.; An, R.; Mendoza, K.M.; Abrahante, J.E.; Johny, A.K.; Reed, K.M. Transcriptional profiling and molecular characterization of the yccT mutant link: A novel STY1099 protein with the peroxide stress response and cell division of Salmonella enterica serovar Enteritidis. Biology 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Qi, L.; Hu, M.; Liu, Y.; Yu, K.; Liu, Q.; Liu, X. Salmonella proteomics under oxidative stress reveals coordinated regulation of antioxidant defense with iron metabolism and bacterial virulence. J. Proteom. 2017, 157, 52–58. [Google Scholar] [CrossRef]
- Vidovic, S.; Medihala, P.; Dynes, J.J.; Daida, P.; Vujanovic, V.; Hitchcock, A.P.; Shitty, D.; Zhang, H.; Brown, D.R.; Lawrence, J.R.; et al. Importance of the rpoE regulon in maintaining the lipid bilayer during antimicrobial treatment with the polycationic agent, chlorhexidine. Proteomics 2018, 18, 3–4. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Shitty, D.; Abrahante, J.E.; Chekabab, S.M.; Wu, X.; Korber, D.R.; Vidovic, S. Role of CpxR in biofilm development: Expression of key fimbrial, O-antigen and virulence operons of Salmonella Enteritidis. Int. J. Mol. Sci. 2019, 20, 5146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, S.D.; Flores, F.S.; dos Santos, L.R.; Brandelli, A. Antimicrobial resistance in Salmonella Enteritidis strains isolated from broiler carcasses, food, human and poultry-related samples. Int. J. Food Microbiol. 2005, 97, 297–305. [Google Scholar] [CrossRef]
- Vaz, C.S.; Streck, A.F.; Michael, G.B.; Marks, F.S.; Rodrigues, D.P.; dos Reis, E.M.F.; Cardoso, M.R.I.; Canal, C.W. Antimicrobial resistance and subtyping of Salmonella enterica subspecies enterica serovar Enteritidis isolated from human outbreaks and poultry is southern Brazil. Poult. Sci. 2010, 89, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Alshalchi, S.; Breimhurst, P.; Munoz-Aguayo, J.; Flores-Figueroa, C.; Vidovic, S. Strong influence of livestock environments on the emergence and dissemination of distinct multidrug-resistant phenotypes among the population of the non-typhoidal Salmonella. PLoS ONE 2017, 12, e0179005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braden, C.R. Salmonella enterica serotype Enteritidis and eggs: A national epidemic in the United States. Clin. Infect. Dis. 2006, 43, 512–517. [Google Scholar] [CrossRef]
- Rhen, M. Salmonella and reactive oxygen species: A love-hate relationship. J. Innate Immun. 2019, 11, 216–226. [Google Scholar] [CrossRef]
- He, H.; Genovese, J.K.; Swaggerty, C.L.; Nisbet, D.J.; Kogut, M.H. A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars. Foodborne Pathog. Dis. 2012, 9, 1104–1110. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.H.; Casavant, C.; Hawley, Q.; Addwebi, T.; Call, D.R.; Guard, J. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen. Foodborne Pathog. Dis. 2012, 9, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Mitosch, K.; Rieckh, G.; Bollenbach, T. Temporal order and precision of complex stress responses in individual bacteria. Mol. Syst. Biol. 2019, 15, e8470. [Google Scholar] [CrossRef]
- Wang, S.; Phillippy, A.M.; Deng, K.; Rui, X.; Li, Z.; Tortorello, M.L.; Zhang, W. Transcriptomic responses of Salmonella enterica serovars Enteritidis and Typhimurium to chlorine-based oxidative stress. Appl. Environ. Microbiol. 2010, 76, 5013–5024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Yang, E.; Vu, G.P.; Gong, H.; Su, J.; Liu, F.; Lu, S. Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol. 2010, 10, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala-Castro, C.; Saini, A.; Outten, F.W. Fe-S cluster assembly pathways in bacteria. Microbiol. Mol. Biol. Rev. 2008, 72, 110–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lill, R. Function and biogenesis of iron-sulfur proteins. Nature 2009, 460, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Outten, F.W. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria. Biochim. Biophys. Acta 2015, 1853, 1464–1469. [Google Scholar] [CrossRef] [Green Version]
- Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 2003, 57, 395–418. [Google Scholar] [CrossRef] [PubMed]
- Farr, S.B.; Kogoma, T. Oxidative stress response in Escherichia coli and Salmonella Typhimurium. Microbiol. Rev. 1991, 55, 561–585. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wang, G.; Maier, R.J. Helicobacter hepaticus Dps protein plays an important role in protecting DNA from oxidative damage. Free Radic. Res. 2006, 40, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Ditmarsch, D.; Boyle, K.E.; Sakhtah, H.; Oyler, J.E.; Nadell, C.D.; Deziel, É.; Dietrich, L.E.P.; Xavier, J.B. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 2013, 4, 697–708. [Google Scholar] [CrossRef]
- Haraga, A.; Ohlson, M.B.; Miller, S.I. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 2008, 6, 53–66. [Google Scholar] [CrossRef]
- Weber, H.; Polen, T.; Heuveling, J.; Wendisch, V.F.; Hengge, R. Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 2005, 187, 1591–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, J.L.; Uknalis, J.; Oscar, T.P.; Schwarz, J.G.; Vimini, B.; Parveen, S. The effect of previous life cycle phase on the growth kinetics, morphology, and antibiotic resistance of Salmonella Typhimurium DT104 in brain heart infusion and ground chicken extract. Front. Microbiol. 2019, 10, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunstad, D.A.; Justice, S.S. Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli. Annu. Rev. Microbiol. 2010, 64, 203–221. [Google Scholar] [CrossRef] [PubMed]
Gene Names | Primers for the Oxidative Stress Response Gene Expression Assay | |
---|---|---|
Forward Sequence (5′–3′) | Reverse Sequence (5′–3′) | |
rpoS | CGA AAA AGC GTT GCT GGA CA | ATC GTC ATC TTG CGT GGT GT |
rpoH | CCT TCG CCG TAC ACT GGA TT | GCT TTC GTG GTT GCG ACT TT |
iroN | TCA TGG AAA ATG ACC CCG CA | ACC GCG TTC GAA GTA CTG TT |
sitA | CGC CAA AAC AGG TGC GTA AA | ATC GGA AAC CGT ACT CTC GC |
dps | AAA AGC GAC GGT TGA GTT GC | TAC GGA AGC CAT CCA GCA TC |
nrdH | TGG TGA ACG TCG ATC TGG TG | CGG GTG CAG ACG GTT AAT CA |
trxC | AGC GGT AAA GTC CGT TTC GT | GAA AGG CGC TTT AGG CAC TG |
ycfR | CCG TTG AAG TTC AGG CAA CG | CCC ATC TCC TGC GCT TTT TG |
ompF | CAG CGT ACA GCA ACA GCA AG | TCA GCA TAT ACG GCA GCC AG |
pocR | GTG GGT AAA CCG CCA GAG AA | AGG TCT GGC GGA AGA CTT TG |
Primers for Validation of the RNA-Seq Data | ||
dinP | TTA CGG GCG GTG GTA ATT AAG | AAG GCT GCG TAA ATC GGT AG |
osmY | AAC TCT GCT GGC CGT AAT G | AGG GTG ACG ACT TTC TGA TTG |
dnaJ | TGG ATC TCA CCC TGG AAG AA | GCC CAT GAC CGT GAC ATT TA |
mdlA | CTC CAG TTG CTG ATA GCG ATA C | GCC AGC GTA CAT GAG GAT ATT |
eutC | CTC AAA GAA GTG CCG GAA GA | GGC AGG ATC TCT TCA TAG TTG G |
spaR | GAA AGA GAG TCG CGG TAC ATT | CCT TCA TTA CCG CCG CTA TTA |
nrdD | CTA TCT GCC CGT TGC CTA AAT | GCT GGA AGA TGT CTG GGA TTA C |
malK | CGA GCG TAC AGC TAC GAA AT | AGA GCG CAT AAG ACT GGA ATA C |
pagO | CCC GAG ATA CAG GGT AGC TAA TA | CAG ATC GCG GGC TTA ACT ATC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Omar, M.; Abrahante, J.E.; Nagaraja, K.V.; Vidovic, S. Insights into the Oxidative Stress Response of Salmonella enterica serovar Enteritidis Revealed by the Next Generation Sequencing Approach. Antioxidants 2020, 9, 849. https://doi.org/10.3390/antiox9090849
Liu X, Omar M, Abrahante JE, Nagaraja KV, Vidovic S. Insights into the Oxidative Stress Response of Salmonella enterica serovar Enteritidis Revealed by the Next Generation Sequencing Approach. Antioxidants. 2020; 9(9):849. https://doi.org/10.3390/antiox9090849
Chicago/Turabian StyleLiu, Xiaoying, Misara Omar, Juan E. Abrahante, Kakambi V. Nagaraja, and Sinisa Vidovic. 2020. "Insights into the Oxidative Stress Response of Salmonella enterica serovar Enteritidis Revealed by the Next Generation Sequencing Approach" Antioxidants 9, no. 9: 849. https://doi.org/10.3390/antiox9090849
APA StyleLiu, X., Omar, M., Abrahante, J. E., Nagaraja, K. V., & Vidovic, S. (2020). Insights into the Oxidative Stress Response of Salmonella enterica serovar Enteritidis Revealed by the Next Generation Sequencing Approach. Antioxidants, 9(9), 849. https://doi.org/10.3390/antiox9090849