Next Article in Journal / Special Issue
Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops
Previous Article in Journal
The AMP-Activated Protein Kinase Plays a Role in Antioxidant Defense and Regulation of Vascular Inflammation
Previous Article in Special Issue
Superior Antioxidant Capacity of Berberis iliensis—HPLC-Q-TOF-MS Based Phytochemical Studies and Spectrophotometric Determinations
Open AccessArticle

LC-MS Profile, Gastrointestinal and Gut Microbiota Stability and Antioxidant Activity of Rhodiola rosea Herb Metabolites: A Comparative Study with Subterranean Organs

1
Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, Ulan-Ude 670047, Russia
2
Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
3
Institute for Biological Problems of Cryolithozone, Siberian Division, Russian Academy of Science, 41 Lenina Street, Yakutsk 677000, Russia
*
Author to whom correspondence should be addressed.
Antioxidants 2020, 9(6), 526; https://doi.org/10.3390/antiox9060526
Received: 26 May 2020 / Revised: 12 June 2020 / Accepted: 14 June 2020 / Published: 16 June 2020
(This article belongs to the Special Issue Phenolics as Antioxidant Agents)
Golden root (Rhodiola rosea L., Crassulaceae) is a famous medical plant with a one-sided history of scientific interest in the roots and rhizomes as sources of bioactive compounds, unlike the herb, which has not been studied extensively. To address this deficiency, we used high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection for comparative qualitative and quantitative analysis of the metabolic profiles of Rhodiola rosea organs before and after gastrointestinal digestion in simulated conditions together with various biochemical assays to determine antioxidant properties of the extracts and selected compounds. R. rosea organs showed 146 compounds, including galloyl O-glucosides, catechins, procyanidins, simple phenolics, phenethyl alcohol derivatives, (hydroxy)cinnamates, hydroxynitrile glucosides, monoterpene O-glucosides, and flavonol O-glycosides, most of them for the first time in the species. The organ-specific distribution of compounds found for catechins, procyanidins, and cinnamyl alcohols and glucosides was typical for underground organs and flavonoids and galloylated glucoses concentrated in the herb. Extracts from rhizomes, leaves and flowers showed high phenolic content and were effective scavengers of free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), O2•−, OH) and protected β-carotene in a bleaching assay. Digestion in the gastric and intestine phase influenced the composition of R. rosea extracts negatively, affecting the content of catechins, procyanidins, and galloyl glucoses, and therefore, the antioxidativity level. After gut microbiota treatment, the antioxidant capacity of rhizome extract was lower than leaves and flowers due to the aglycone composition found in the colonic phase of digestion. Our study demonstrated that the herb of R. rosea is a rich source of metabolites with high antioxidant properties and could be a valuable plant for new bioactive products. View Full-Text
Keywords: Rhodiola rosea; phenolic compounds; antioxidant activity; gastrointestinal digestion; gut microbiota; herbal products Rhodiola rosea; phenolic compounds; antioxidant activity; gastrointestinal digestion; gut microbiota; herbal products
Show Figures

Figure 1

MDPI and ACS Style

Olennikov, D.N.; Chirikova, N.K.; Vasilieva, A.G.; Fedorov, I.A. LC-MS Profile, Gastrointestinal and Gut Microbiota Stability and Antioxidant Activity of Rhodiola rosea Herb Metabolites: A Comparative Study with Subterranean Organs. Antioxidants 2020, 9, 526.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop