Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Standards
2.3. Carotenoid Extraction
2.3.1. Rehydration of Faeces Samples
2.3.2. Selection of the Extraction Solvent
2.4. Saponification
2.5. HPLC-DAD Carotenoid Analysis
2.6. Calculation of Carotenoid Concentrations in Faeces
2.7. Carotenoid Dietary Intake Assessment
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krinsky, N.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Concepción, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gómez-Gómez, L.; Hornero-Méndez, D.; Limón, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granado-Lorencio, F.; Herrero-Barbudo, C.; Blanco-Navarro, I.; Pérez-Sacristán, B.; Olmedilla-Alonso, B. Bioavailability of carotenoids and α-tocopherol from fruit juices in the presence of absorption modifiers: In vitro and in vivo assessment. Br. J. Nutr. 2008, 101, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Alvarez, E.; Pérez-Sacristán, B.I.; Blanco-Navarro, I.; Donoso-Navarro, E.; Silvestre-Mardomingo, R.A.; Granado-Lorencio, F. Analysis of microsamples of human faeces: A non-invasive approach to study the bioavailability of fat-soluble bioactive compounds. Eur. J. Nutr. 2015, 54, 1371–1378. [Google Scholar] [CrossRef]
- Stinco, C.M.; Pumilia, G.; Giuffrida, D.; Dugo, G.; Meléndez-Martínez, A.J.; Vicario, I.M. Bioaccessibility of carotenoids, vitamin A and α-tocopherol, from commercial milk-fruit juice beverages: Contribution to the recommended daily intake. J. Food Compos. Anal. 2019, 78, 24–32. [Google Scholar] [CrossRef]
- Bohn, T. Metabolic fate of bioaccessible and non-bioaccessible carotenoids. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health, 1st ed.; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; RSC: Stratford, UK, 2018; pp. 165–200. [Google Scholar]
- Stinco, C.M.; González, A.M.B.; Meléndez-Martínez, A.J.; Hernanz, D.; Vicario, I.M. Simultaneous determination of dietary isoprenoids (carotenoids, chlorophylls and tocopherols) in human faeces by Rapid Resolution Liquid Chromatography. J. Chromatogr. A 2018, 1583, 63–72. [Google Scholar] [CrossRef]
- Van Lieshout, M.; West, C.E.; Van De Bovenkamp, P.; Wang, Y.; Sun, Y.; Van Breemen, R.B.; Muhilal, D.P.; Verhoeven, M.A.; Creemers, A.F.L.; Lugtenburg, J. Extraction of carotenoids from feces, enabling the bioavailability of β-carotene to be studied in indonesian children. J. Agric. Food Chem. 2003, 51, 5123–5130. [Google Scholar] [CrossRef]
- Hernández-Alvarez, E.; Blanco-Navarro, I.; Pérez-Sacristán, B.; Sanchez-Siles, L.M.; Granado-Lorencio, F. In vitro digestion-assisted development of a β-cryptoxanthin-rich functional beverage; in vivo validation using systemic response and faecal content. Food Chem. 2016, 208, 18–25. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Rodríguez-Rodríguez, E.; Beltrán-De-Miguel, B.; Estévez-Santiago, R.; Sánchez-Prieto, M. Predictors of macular pigment and contrast threshold in normolipemic subjects aged 45–65. Appl. Physiol. Nutr. Metab. 2020. [Google Scholar]
- Granado, F.; Olmedilla-Alonso, B.; Gil-Martinez, E.; Blanco, I. A fast, reliable and low-cost saponification protocol for analysis of carotenoids in vegetables. J. Food Compos. Anal. 2001, 14, 479–489. [Google Scholar] [CrossRef]
- De Ritter, E.; Purcell, A.E. In Carotenoids as Colorants and Vitamin A Precursors; Bauernfeind, J.C., Ed.; Academic Press: London, UK, 1981; pp. 883–916. [Google Scholar]
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, R.M.; Lopez-Sobaler, A.M.; Andrés, P.; Requejo, A.M.; Aparicio, A.; Molinero, L.M. DIAL Programa Para Evaluación de Dietas y Gestión de Datos de Alimentación; Department of Nutrition (UCM) & Alce Ingeniería: Madrid, Spain, 2008. [Google Scholar]
- Beltrán, B.; Estévez, R.; Cuadrado, C.; Jiménez, S.; Olmedilla-Alonso, B. Base de datos de carotenoides para la valoración de la ingesta dietética de carotenos, xantofilas y de vitamina A; utilización en un estudio comparativo del estado nutricional en vitamina A de adultos jóvenes. Nutr. Hosp. 2012, 27, 1334–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estévez-Santiago, R.; Beltrán-De-Miguel, B.; Cuadrado-Vives, C.; Olmedilla-Alonso, B. Software application for the calculation of dietary intake of individual carotenoids and of its contribution to vitamin A intake. Nutr. Hosp. 2013, 28, 823–829. [Google Scholar] [PubMed]
- Dias, M.G.; Olmedilla-Alonso, B.; Hornero-Méndez, D.; Mercadante, A.Z.; Osorio, C.; Vargas-Murga, L.; Meléndez-Martínez, A.J. Comprehensive database of carotenoid contents in ibero-american foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. J. Agric. Food Chem. 2018, 66, 5055–5107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeid, M.A.; Khadra, I.; Mullen, A.B.; Tate, R.; Ferro, V.A. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int. J. Pharm. 2017, 516, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez-Martínez, A.J. An overview of carotenoids, apocarotenoids, and vitamin a in agro-food, nutrition, health, and disease. Mol. Nutr. Food Res. 2019, 63, e1801045. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Human Nutrition Institute: Washington, DC, USA, 2001; p. 64. [Google Scholar]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P.; Vicario, I.M. Analysis of Carotenoids and Tocopherols in Plant Matrices and Assessment of Their In Vitro Antioxidant Capacity; Springer Science and Business Media LLC: Berlin, Germany, 2014; Volume 1153, pp. 77–97. [Google Scholar]
- Chacón-Ordóñez, T.; Carle, R.; Schweiggert, R. Bioaccessibility of carotenoids from plant and animal foods. J. Sci. Food Agric. 2019, 99, 3220–3239. [Google Scholar] [CrossRef]
- Blanquet-Diot, S.; Soufi, M.; Rambeau, M.; Rock, E.; Alric, M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 2009, 139, 876–883. [Google Scholar] [CrossRef] [Green Version]
- Schieber, A.; Weber, F. Carotenoids. In Handbook on Natural Pigments in Food and Beverages; Reinhold, C., Schweiggert, R.M., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 101–123. [Google Scholar]
- Kopec, R.E.; Gleize, B.; Borel, P.; Desmarchelier, C.; Caris-Veyrat, C. Are lutein, lycopene, and β-carotene lost through the digestive process? Food Funct. 2017, 8, 1494–1503. [Google Scholar] [CrossRef]
- Courraud, J.; Berger, J.; Cristol, J.-P.; Avallone, S. Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chem. 2013, 136, 871–877. [Google Scholar] [CrossRef]
- De Rosso, V.V.; Mercadante, A.Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from amazonian fruits. J. Agric. Food Chem. 2007, 55, 5062–5072. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mapelli-Brahm, P.; González, A.M.B.; Stinco, C.M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 2015, 572, 188–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, A.A.; Sturzenbecker, L.J.; Kazmer, S.; Bosakowski, T.; Huselton, C.; Allenby, G.; Speck, J.; Ratzeisen, C.; Rosenberger, M.; Lovey, A.; et al. 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature 1992, 355, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Bechor, S.; Relevy, N.Z.; Harari, A.; Almog, T.; Kamari, Y.; Ben-Amotz, A.; Harats, D.; Shaish, A. 9-cis β-carotene increased cholesterol efflux to HDL in macrophages. Nutrients 2016, 8, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borel, P.; Grolier, P.; Mekki, N.; Boirie, Y.; Rochette, Y.; Le Roy, B.; Alexandre-Gouabau, M.C.; Lairon, D.; Azais-Braesco, V. Low and high responders to pharmacological doses of beta-carotene: Proportion in the population, mechanisms involved and consequences on beta-carotene metabolism. J. Lipid Res. 1998, 39, 2250–2260. [Google Scholar] [PubMed]
- Turner, T.; Betty, B.; Michael, L.F. Beta-cryptoxanthin: A vitamin a-forming carotenoid. In Carotenoids: Properties, Effects, and Diseases; Yamaguchi, M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 331–354. [Google Scholar]
- Böhm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Bánati, D.; Borel, P.; Corte-Real, J.; de Lera, A.R.; Desmarchelier, C.; et al. From carotenoid intake to carotenoid blood and tissue concentrations—Implications for dietary intake recommendations. Nutr. Rev. 2018, in press. [Google Scholar]
- Reboul, E.; Richelle, M.; Perrot, E.; Desmoulins-Malezet, C.; Pirisi, V.; Borel, P. Bioaccessibility of carotenoids and vitamin e from their main dietary sources. J. Agric. Food Chem. 2006, 54, 8749–8755. [Google Scholar] [CrossRef]
- Burri, B.J.; La Frano, M.; Zhu, C. Absorption, metabolism, and functions of β-cryptoxanthin. Nutr. Rev. 2016, 74, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Moran, N.E.; Cichon, M.J.; Riedl, K.M.; Grainger, E.M.; Schwartz, S.J.; Novotny, J.A.; Erdman, J.W.; Clinton, S.K. Compartmental and noncompartmental modeling of ¹³C-lycopene absorption, isomerization, and distribution kinetics in healthy adults. Am. J. Clin. Nutr. 2015, 102, 1436–1449. [Google Scholar] [CrossRef] [Green Version]
- Wiese, M.; Bashmakov, Y.; Chalyk, N.; Nielsen, D.; Krych, Ł.; Kot, W.; Klochkov, V.; Pristensky, D.; Bandaletova, T.; Chernyshova, M.; et al. Prebiotic effect of lycopene and dark chocolate on gut microbiome with systemic changes in liver metabolism, skeletal muscles and skin in moderately obese persons. BioMed Res. Int. 2019, 2019, 4625279. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Liu, C.; Wang, X.-D. A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chem. 2013, 138, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Estévez-Santiago, R.; Beltrán-De-Miguel, B.; Olmedilla-Alonso, B. Assessment of dietary lutein, zeaxanthin and lycopene intakes and sources in the Spanish survey of dietary intake (2009–2010). Int. J. Food Sci. Nutr. 2016, 67, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Nagao, A. Absorption and metabolism of dietary carotenoids. BioFactors 2011, 37, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, L.; Kobayashi, M.; Terasaki, M.; Nagao, A. Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J. Nutr. 2010, 140, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Biehler, E.; Alkerwi, A.; Hoffmann, L.; Krause, E.; Guillaume, M.; Lair, M.-L.; Bohn, T. Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: Assessment in Luxembourg. J. Food Compos. Anal. 2012, 25, 56–65. [Google Scholar] [CrossRef]
- Shortt, C.; Hasselwander, O.; Meynier, A.; Nauta, A.; Fernández, E.N.; Putz, P.; Rowland, I.; Swann, J.; Türk, J.; Vermeiren, J.; et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr. 2017, 57, 25–49. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Yang, B.; Pang, X.; Chen, T.; Chen, F.; Cheng, K.-W.; Chen, T. Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food Funct. 2019, 10, 5644–5655. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Fu, X.; Zhang, Z.; Zhu, L.; Zheng, X.; Liu, J.-S. Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota. Nutrients 2018, 10, 1298. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Liu, C.; Li, C.-C.; Fu, M.; Takahashi, S.; Hu, K.-Q.; Aizawa, K.; Suganuma, H.; Wu, G.; Zhao, L.; et al. Dietary tomato powder inhibits high-fat diet–promoted hepatocellular carcinoma with alteration of gut microbiota in mice lacking carotenoid cleavage enzymes. Cancer Prev. Res. 2018, 11, 797–810. [Google Scholar] [CrossRef] [Green Version]
Carotenoids | Equation | |
---|---|---|
Calibration Curve (Diluted) | Calibration Curve (Concentrated) | |
Lutein | y = 8.61 × 103x + 3.08 × 103 | y = 1.43 × 104x − 4.22 × 105 |
Zeaxanthin | y = 1.25 × 104x − 9.04 × 102 | y = 1.68 × 104x − 1.36 × 106 |
β-cryptoxanthin | y = 1.11 × 104x − 2.79 × 103 | y = 1.28 × 104x + 4.57 × 105 |
α-carotene | y = 1.38 × 104x − 3.76 × 103 | y = 1.21 × 104x + 2.54 × 105 |
β-carotene | y = 7.67 × 103x + 3.19 × 104 | y = 1.24 × 104x + 9.26 × 105 |
Lycopene | y = 6.14 × 103x + 1.70 × 104 | y = 6.92 × 103x + 1.03 × 105 |
Solvent | DE:PE | MeOH:MTBE:DE | DE | Hex:DCl |
---|---|---|---|---|
Carotenes (μg/g DW) | 80.10 ± 11.65 | 81.63 ± 18.54 | 78.61 ± 19.91 | 69.12 ± 19.19 |
Xanthophylls (μg/g DW) | 110.79 ± 54.56 | 34.18 ± 16.65 | 43.80 ± 27.07 | 38.11 ± 22.65 |
Carotenoid | RT (min) | λ max | Concentration (μg/g DW) |
---|---|---|---|
Xanthophylls | |||
Violaxanthin | 7.2 | 411.8;434.4;426.7 | 0 (0-0) |
Lutein | 10.2 | 444.5;472.4 | 17.46 (11.73–30.76) |
Zeaxanthin | 14.9 | 450;477.3 | 6.32 (3.33–13.93) |
β-Cryptoxanthin | 22.4 | 450;477.3 | 4.48 (1.79–7.81) |
Carotenes | |||
Phytoene | 17.2 | 284.9 | 11.37 (4.30–20.00) |
Phytofluene isomer 1 | 20 | 330;347;363.5 | 2.04 (0–5.96) |
Phytofluene isomer 2 | 22.5 | 330;347;363.5 | 0.81 (0–2.67) |
Phytofluene isomer 3 | 24 | 330;347;363.5 | 0 (0-0) |
α-Carotene | 28.4 | 444.5;472.4 | 5.29 (0.53–11.88) |
β-Carotene | 32.5 | 450.5;477.3 | 30.92 (17.25–46.31) |
9-Z-β-Carotene (isomer 1) | 33.5 | 413;445.7;472.4 | 9.71 (5.04–12.80) |
Lycopene | 56 | 444.5;472.4;501.6 | 20.02 (9.57–34.55) |
Carotenoid | Intake (μg/day) | Concentration (μg/g DW) | Concentration (μg/g WW) | Estimated Concentration in Faeces (μg/24 h) * | Estimated Percentage of Loss (%) |
---|---|---|---|---|---|
Lutein+zeaxanthin | 1148 (666–1907) | 25.48 (17.46–44.64) | 13.35 (7.86–23.43) | 1709 (1005–2999) | 148.4 (77.9–309.5) |
β-Cryptoxanthin | 480 (142–984) | 4.48 (1.79–7.81) | 2.30 (0.79–4.40) | 294 (101–563) | 46.5 (16.5–159.1) |
α-Carotene | 283 (56–751) | 5.29 (0.53–11.88) | 2.50 (0.29–6.48) | 320.0 (36.5–828.8) | 86.4 (10.9–467.7) |
Total β-Carotene | 1812 (1081–3192) | 39.54 (23.0–59.01) | 19.13 (11.02–35.94) | 2449 (1411–4600) | 150.4 (65.5–264.9) |
Lycopene | 13146 (5143–26876) | 20.02 (9.57–34.55) | 10.97 (5.16–19.22) | 1404 (660–2460) | 11.5 (4.0–25.4) |
Phytoene * | 2697 (1560–4207) | 11.37 (4.30–20.00) | 5.67 (1.94–11.14) | 726 (248–1425) | 24.5 (10.7–62.4) |
Phytofluene * | 610 (310–953) | 3.04 (0–8.08) | 1.77 (0–4.60) | 227 (0–590) | 32.1 (0–84.4) |
Provitamin A carotenoids | 2913 (1640–4507) | 53.91 (29.88–83.0) | 25.81 (14.71–49.44) | 3304 (1883–6328) | 122.6 (59.8–231.0) |
Non-pro A carotenoids | 20384 (9104–31040) | 66.37(42.33–102.5) | 34.38 (21.68–58.79) | 4334 (2760–7513) | 32.3 (17.1–91.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rodríguez, E.; Beltrán-de-Miguel, B.; Samaniego-Aguilar, K.X.; Sánchez-Prieto, M.; Estévez-Santiago, R.; Olmedilla-Alonso, B. Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults. Antioxidants 2020, 9, 484. https://doi.org/10.3390/antiox9060484
Rodríguez-Rodríguez E, Beltrán-de-Miguel B, Samaniego-Aguilar KX, Sánchez-Prieto M, Estévez-Santiago R, Olmedilla-Alonso B. Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults. Antioxidants. 2020; 9(6):484. https://doi.org/10.3390/antiox9060484
Chicago/Turabian StyleRodríguez-Rodríguez, Elena, Beatriz Beltrán-de-Miguel, Kerly X. Samaniego-Aguilar, Milagros Sánchez-Prieto, Rocío Estévez-Santiago, and Begoña Olmedilla-Alonso. 2020. "Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults" Antioxidants 9, no. 6: 484. https://doi.org/10.3390/antiox9060484
APA StyleRodríguez-Rodríguez, E., Beltrán-de-Miguel, B., Samaniego-Aguilar, K. X., Sánchez-Prieto, M., Estévez-Santiago, R., & Olmedilla-Alonso, B. (2020). Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults. Antioxidants, 9(6), 484. https://doi.org/10.3390/antiox9060484