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Abstract: Carotenoids are bioactive compounds with widely accepted health benefits.
Their quantification in human faeces can be a useful non-invasive approach to assess their
bioavailability. Identification and quantification of major dietary carotenoids in human faeces
was the aim of the present study. Faeces and dietary intake were obtained from 101 healthy adults
(45–65 years). Carotenoid concentrations were determined by HPLC in faeces and by 3-day food
records in dietary intake. Carotenoids quantified in faeces (µg/g dry weight, median) were: β-carotene
(39.5), lycopene (20), lutein (17.5), phytoene (11.4), zeaxanthin (6.3), β-cryptoxanthin (4.5), phytofluene
(2.9). α-carotene (5.3) and violaxanthin were found 75.5% and 7.1% of the faeces. The carotenoids
found in the highest concentrations corresponded to the ones consumed in the greatest amounts
(µg/d): lycopene (13,146), phytoene (2697), β-carotene (1812), lutein+zeaxanthin (1148). Carotenoid
concentration in faeces and in dietary intake showed correlation for the total non-provitamin A
carotenoids (r = 0.302; p = 0.003), phytoene (r = 0.339; p = 0.001), phytofluene (r = 0.279; p = 0.005),
lycopene (0.223; p = 0.027), lutein+zeaxanthin (r = 0.291; p = 0.04) and β-cryptoxanthin (r = 0.323;
p = 0.001). A high proportion of dietary carotenoids, especially those with provitamin A activity and
some of their isomers, reach the large intestine, suggesting a low bioavailability of their intact forms.
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1. Introduction

Carotenoids have been widely studied owing to their beneficial properties on health. In addition
to the provitamin A activity that some exhibit, there are also others related to their anti-oxidant,
anti-inflammatory, photo-protective and immunological capacity [1,2]. The principal sources of
carotenoids are fruits and vegetables but their bio-accessibility from these sources is low. Some studies
have found that approximately 70% of carotenoids may actually remain in the final digesta [3–5].
This means that significant concentrations could reach the colon. However, it is not known whether
carotenoids can be further taken up or whether a significant proportion is fermented to unknown
metabolites. This is important as studies indicate that polar metabolites and/or derivatives appear to
be bioactive and interact with transcription factors such as NF-κB and Nrf2 and nuclear receptors such
as RXR/RAR [2]. While it is known that a fraction of carotenoids taken up by the enterocytes can be
cleaved by beta-carotene oxygenases (BCO1/2) into apo-carotenoids, there is scant information about
further metabolism, biodistribution or excretion [6]. Faeces provide a valuable matrix to study changes
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during in vivo digestion and the bioavailability of dietary components [7]. However, few studies on
the identification and quantification of carotenoids have been conducted using human faeces [4,7–9].

The validity of analysing carotenoid content in microsamples of human faeces as a non-invasive
approach in nutritional studies was confirmed in an intervention study with a β-carotene enriched
beverage given to 40 post-menopausal women and 11 pre-term infants [4]. Recently, a suitable method
was set up and validated to determine dietary isoprenoids in the faeces of five-month-old babies fed
with purees made of different vegetables [7]. In addition, faecal samples have already been used to
assess carotenoids bioavailability in a few studies to date, one focusing on β-carotene in 17 Indonesian
children [8] and another on β-cryptoxanthin and major dietary carotenoids in an intervention study
involving 40 post-menopausal women [9]. However, data regarding carotenoid content in human
faeces samples to date comes from studies with a small number of participants and the relationship
between the dietary intake of carotenoids and their presence in faecal matter has yet to be studied in
depth. In this connection, our study stands out for the high number of well characterized Spanish
subjects between age 45 and 65.

The aim of this work was to evaluate the carotenoid profile in the faeces of apparently healthy
adults and compare that with their dietary intake, as this could be a non-invasive approach by which
to assess carotenoid bioavailability.

2. Materials and Methods

2.1. Samples

Samples were obtained from an analytical observational study assessing lutein and zeaxanthin
dietary intake and short- and long-term status markers (serum concentrations and macular pigment
optical density) to assess their predictive value for macular pigment optical density and visual function
in apparently healthy subjects [10].

A total of 101 subjects (77 women and 24 men) were recruited. Inclusion criteria were: age range
45–65 years, cholesterolemia within normal range (upper limit 240 mg/dL), body mass index ≥ 20 and
≤30 kg/m2, varied diet (no avoidance of any food groups) and, among exclusion criteria: consumption
of food supplements, use of drugs or phytosterol-enriched beverages/foods to control cholesterolemia,
regular consumption of n-3 fatty acid-enriched food products and chronic diseases that can affect
carotenoid or lipid metabolism (i.e., diabetes, cardiovascular disease).

Faeces samples were collected and kept in the fridge until delivery to the lab the same day of
collection or were frozen at −20 ◦C until delivery (maximum 1 month). Once received in the laboratory,
they were kept at −80 ◦C, for a maximum of 3 months, under N2 atmosphere until lyophilisation.
Samples were then put in the freeze-drier for 48 h at −70 ◦C. Once lyophilised, they were returned to
the freezer at −80 ◦C until extraction and analysis.

Recent dietary intake was evaluated using 3-day food records involving 24 h recalls, one of which
coincided with a weekend or holiday, carried out within a period of 7 to 10 days.

The study was approved by the Ethical Committee of Research with Drugs of the Hospital
Universitario Puerta de Hierro Majadahonda of Madrid, Spain (acta no. 03.17, dated 13 February 2017)
and by the CSIC’s Ethics Committee, Bioethic Subcommittee (dated 21 February 2017). All subjects
signed a written informed consent for joining the study.

2.2. Chemicals and Standards

Lutein (xanthophyll from marigold), zeaxanthin, α- and β-carotene, β-cryptoxanthin, lycopene
and phytoene, tocopheryl acetate, trimethylamine, celite, potassium hydroxide (KOH), phosphate
buffered saline (PBS) and sodium chloride (NaCl) were obtained from Sigma Aldrich (Madrid, Spain).
Sodium sulphate anhydrous and pyrogallic acid were supplied by Panreac (Barcelona, Spain). Hexane
(Hex), methyl tert-butyl ether (MTBE), methanol (MeOH), ethanol, dichloromethane (DCl), petroleum
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ether (PE) and diethyl ether (DE), were obtained from Análisis Vínicos (Spain). MeOH and MTBE
were HPLC grade.

2.3. Carotenoid Extraction

2.3.1. Rehydration of Faeces Samples

A preliminary assay was conducted to select the lyophilised sample rehydration procedure.
One faeces sample, in triplicate (0.2 g) was hydrated in three different ways: (1) with 10 mL distilled
H2O + 2 mL ethanol; (2) 10 mL NaCl 10% + 2 mL ethanol; and (3) 10 mL phosphate buffered saline
(PBS) 1% + 2 mL ethanol. After 20 min of rehydration, the carotenoids were extracted with DE:PE
(50:50) as the extraction solvent as described further on.

2.3.2. Selection of the Extraction Solvent

Before definitive extraction, we analysed in triplicate the capacity of four different solvents to
extract the carotenoid compounds from the faeces. Solvent A: DE:PE (1:1); solvent B: MeOH:MTBE:DE
(1.2:1.2:1); solvent C: DE; and solvent D: Hex:DCl (5:1).

To extract the carotenoids, we homogenized approximately 0.3 g of the lyophilised faeces sample
with 10.0 mL of cool PBS 1x solution (pH = 7.4) and 2 mL of ethanol to hydrate the faeces and
magnetically stirred the mixture for 20 min. Then, 20 mL of pure acetone and 750 µL of internal
standard (tocopherol acetate 0.32 mg/mL) were added. This was stirred for 4 min on a heat-free plate
and then left to rest for one minute. Supernatant liquid was then removed to a 100 mL beaker by
decantation and faeces samples were re-extracted with 10 mL of pure acetone and stirred for 4 min.
10 mL of extraction solvent (solvent A) were then added, stirred for 2 min and then centrifuged at
3500 rpm for 3 min. After recovering the coloured fraction, the residue was extracted again with
another aliquot of 10.0 mL extraction solvent. This procedure was repeated until the colour disappeared
(usually 2 extractions but up to 5 in some cases) and the supernatants were combined in a beaker
and anhydrous sodium sulphate was added little by little while swirling the flask to absorb all the
aqueous content. The organic coloured fractions were evaporated to dryness in a rotary evaporator
at a temperature below 35 ◦C and dissolved in 25 mL of MeOH:MTBE (50:50), were filtered under
membrane filtration (0.45 µm pore size) and transferred to vials which were kept at −20 ◦C under
nitrogen atmosphere until analysis.

2.4. Saponification

A previously described fast saponification protocol [11] was used to release hydrolysed xanthophyll
fatty acid esters. Briefly, 400 µL of the extracted carotenoids from the faeces were added to a test tube.
The same quantity (400 µL) of pyrogallic acid in ethanol (0.1 M) and KOH in MeOH (30%) was then
added and placed in an ultrasonic bath in darkness for 7 min. Then, 800 µL of distilled water and
1600 µL of extraction solvent were added. After vortex for 1 min and centrifuge for 3 min at 3500 rpm,
the organic phase (supernatant) was transferred to another test tube. This process (from the point at
which distilled water and extraction solvent were added) was repeated 2 more times. The organic phase
collected was dried under nitrogen and dissolved in 150 µL of MeOH:MTBE (50:50) in preparation for
HPLC analysis.

2.5. HPLC-DAD Carotenoid Analysis

Carotenoid concentrations were determined by high performance liquid chromatography (HPLC)
using a system consisting of a model 600 pump, a Rheodyne injector and a 2998 photodiode array
(PDA) detector (Waters, Milford, MA, USA) and a C30 YMC column (5 µm, 250 × 4.6 mm i.d.) (Waters,
Wilmington, MA, USA) with a guard column (Aquapore ODS type RP-18) at room temperature (25 ◦C).
Mobile phase was formed by MeOH with 0.1% trimethylamine (solvent A) and MTBE (solvent B) in a
linear gradient. At baseline, 25, 55 and 60 min the ratios of the solvents were 70:30, 35:65 and 95:5.
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The detection was performed at a wavelength of 450 nm for carotenoids, 285 nm for both phytoene and
tocopheryl acetate (internal standard) and 270 nm for phytofluene. Chromatograms were processed
using Empower 2 software (Waters, Milford, MA, USA).

Identification of trans-carotenoids (all-E carotenoids) was based on the retention time (RT) of
available standards and comparison with absorption spectra reported in the literature. β-carotene and
phytofluene isomers were identified by comparing the RT and spectra obtained with those described in
the literature. Standard carotenoid concentrations were calculated on the basis of published extinction
coefficients (E 1% 1 cm) in ethanol or petroleum ether [12]. Values used and the wavelength maxima
were: lutein, 2550 at 445 nm; zeaxanthin, 2540 at 450 nm; β-cryptoxanthin, 2386 at 452 nm; lycopene
3450 at 472 nm; α-carotene, 2800 at 444 nm; β-carotene, 2592 at 453; neoxanthin 2320 at 437 nm;
violaxanthin 2443 at 441 nm.

Carotenoids were quantified using calibration curves for lutein, zeaxanthin, β-cryptoxanthin,
α-carotene, β-carotene, lycopene and violaxanthin, at four concentration levels. No standard was
available for phytofluene so it was tentatively identified by comparing the RT and spectra obtained
with those described in the literature and quantified against a phytoene standard.

The concentrations of the carotenoids in the most diluted curve were: 0.19–1.5 ng/µL for
lutein (R2 = 0.994), 0.15–1.20 ng/µL for zeaxanthin (R2 = 0.996), 0.23–2.10 ng/µL for β-cryptoxanthin
(R2 = 0.995), 0.11–0.90 ng/µL for α-carotene (R2 = 0.996), 0.21–2.10 ng/µL for β-carotene (R2 = 0.972) and
0.23–1.80 ng/µL for lycopene (R2 = 0.987). Two additional curves were used for higher concentrations.
The concentrations of the carotenoids in the most concentrated curve were: 2.62–13.12 ng/µL for
lutein (R2 = 0.992), 7.26–36.6 ng/µL for zeaxanthin (R2 = 0.990), 2.3–11.50 ng/µL for β-cryptoxanthin
(R2 = 0.980), 1.59-7.94 ng/µL for α-carotene (R2 = 0.996), 7.89–19.72 ng/µL for β-carotene (R2 = 0.999)
and 2.59–12.93 ng/µL for lycopene (R2 = 0.999). The concentrations range for violaxanthin in the curve
was: 1.15–11.40 ng/µL (R2 = 0.989). The equations of these calibration curves are shown in Table 1.

Table 1. Equations of the calibration curves used in the quantification of carotenoids.

Carotenoids
Equation

Calibration Curve (Diluted) Calibration Curve (Concentrated)

Lutein y = 8.61 × 103x + 3.08 × 103 y = 1.43 × 104x − 4.22 × 105

Zeaxanthin y = 1.25 × 104x − 9.04 × 102 y = 1.68 × 104x − 1.36 × 106

β-cryptoxanthin y = 1.11 × 104x − 2.79 × 103 y = 1.28 × 104x + 4.57 × 105

α-carotene y = 1.38 × 104x − 3.76 × 103 y = 1.21 × 104x + 2.54 × 105

β-carotene y = 7.67 × 103x + 3.19 × 104 y = 1.24 × 104x + 9.26 × 105

Lycopene y = 6.14 × 103x + 1.70 × 104 y = 6.92 × 103x + 1.03 × 105

2.6. Calculation of Carotenoid Concentrations in Faeces

The amount of each carotene extracted (α-carotene, β-carotene, lycopene, phytoene and
phytofluene) was calculated on a dry-weight basis using the following Equation (1):

Carotenoid
(
µg
g

)
=

ng carotenoid × Vr(µL)
Vinjection(µL) × Wt(g) × 1000

(1)

where ng carotenoid is the quantity of each carotenoid calculated from the standard calibration curve
in ng, Vr the reconstitution volume (2000 µL), Vinjection is 50 µL and Wt the weight of the fresh sample
(an appropriate amount: 0.25–0.35 g).

The amount of each xanthophyll extracted after saponification (lutein, zeaxanthin, β-criptoxanthin
and violaxanthin) was calculated on a dry weight basis using the following Equation (2):

Xantophill
(
µg
g

)
=

ng xantophyll × Vr(µL) × Vrs(µL)
Vinjection(µL) × Vs(µL) × Wt(g) × 1000

(2)
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where the ng of carotenoid is the quantity of each carotenoid calculated from the standard calibration
curve in ng, Vr is the reconstitution volume (2000 µL), Vrs the reconstitution volume of the saponified
sample (150 µL), Vinjection is 50 µL, Vs is the volume of sample saponified (400 µL) and Wt is the weight
of the fresh sample (0.3 g approx.).

The carotenoid concentration in hydrated faeces (fresh) was calculated bearing in mind the
percentage of weight lost during lyophilisation (faeces were weighed before and after lyophilisation).

The concentration of the major carotenoids eliminated in faeces in 24 h was estimated by
multiplying carotenoid concentration (µg/g WW) by average bowel movement weight considered to
be 128 g/day [13].

2.7. Carotenoid Dietary Intake Assessment

Three-day food records involving 24 h recalls, one of which coincided with a weekend or holiday,
were used to calculate recent dietary intake. These were recorded within a period of 7 to 10 days.
Food consumption (grams/day) was calculated [14] and daily individual carotenoid intake was
estimated using a database generated by our group and integrated into a software application [15,16].
Data on phytoene and phytofluene concentration in fruit and vegetables [17] and unpublished data
supplied by Dr. A. Meléndez-Martínez were incorporated into our carotenoid database.

2.8. Statistical Analysis

The Kolmogorov-Smirnoff test was used to test whether the variables followed normal distribution.
None of the variables, except for the ingestion of phytoene and phytofluene, featured a normal
distribution and the median and inter-quartile range are presented. The relationship between dietetic
and faecal carotenoid data was examined by Pearson’s correlations. A significance level of p < 0.05
was used for the analyses. Statistical analyses were performed using the SPSS version 25.0 statistical
software package for Windows.

3. Results

A total of 98 faeces samples were analysed since 3 of the volunteers either failed to provide a
sample or the sample was too small to analyse. Water loss from lyophilisation was 47.0% (36.0–54.5%).

Figure 1 shows the concentration of the main carotenoids of the diet in dry faeces (µg/g dry weight
(DW)) once having hydrated the lyophilised faeces in the 3 different ways described above (distilled
H2O, NaCl and PBS) and having selected hydration with PBS 1x as it resulted in the best extraction of
most of the carotenoids in the study.
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Figure 1. Carotenoids concentration (µg/g dry weight (DW)) in a lyophilised faecal sample extracted
with DE:PE after different hydration media.
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Extraction was performed using DE:PE as this was the solvent that extracted the greatest amount
of xanthophylls (with no statistical significance) but not of carotenes which was similar for all 4 of the
solvents (Table 2).

Table 2. Carotenoids concentration (µg/g DW) extracted with different solvents (X ± SE).

Solvent DE:PE MeOH:MTBE:DE DE Hex:DCl

Carotenes (µg/g DW) 80.10 ± 11.65 81.63 ± 18.54 78.61 ± 19.91 69.12 ± 19.19
Xanthophylls (µg/g DW) 110.79 ± 54.56 34.18 ± 16.65 43.80 ± 27.07 38.11 ± 22.65

X ± SE: mean ± standard error.

A chromatogram of the carotenoid profile extracted from the samples is shown in Figure 2 and
the chromatographic and UV-Vis characteristics are shown in Table 3. The carotenoids detected and
quantified in faeces were violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, phytoene and phytofluene
(3 isomers), α-carotene, all-E-β-carotene, β-carotene (isomer 1) and lycopene. At the beginning of
the chromatogram, several unidentified compounds eluted before lutein. Peak 2 corresponds to the
coelution of zeaxanthin and capsanthin in one of the few faeces samples in which the latter was also
present (less than 5%). The zeaxanthin could be quantified because its maximum wavelength (477.3 and
450 nm) is different from that of capsanthin (474.8 nm). As for phytofluene, 3 compounds with similar
spectra (330;347;363) appearing around minute 20, 22.5 and 24 were identified, the most frequent
and abundant being the one that appeared first (found in 73.5% of the faeces) while the one that
appeared last was only found in 12.2% of the faeces. The β-carotene isomer obtained had a spectrum of
413;445.7;472.4 nm and a RT of 33.5 min, always eluting after β-carotene. This isomer was tentatively
identified as 9-Z-β-carotene based on its absorbance spectrum which showed a hypsochromic shift
from the normal β-carotene spectrum and a large Z peak at 413 nm, commonly associated with
Z-carotenoid spectra.
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Figure 2. Chromatograms at 450 nm (a); 285 nm (b) and 370 nm (c) of faeces extracted and of the extract
saponified at 450 nm (d).

Table 3 shows carotenoid concentrations expressed as median and interquartile range [p25–p75]
of concentrations found in the dry faeces samples analysed (µg/g DW). The major carotenoids were
found in participants’ faeces were, from highest to lowest: β-carotene, lutein+zeaxanthin, lycopene and
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phytoene. The other carotenoids were found in almost all faeces in lower concentrations. Violaxanthin
was only found in 7.1% of the faeces.

Table 3. Carotenoids profile and carotenoids concentration (p50 [p25–p75]) in the faecal samples.

Carotenoid RT (min) λ max Concentration (µg/g DW)

Xanthophylls
Violaxanthin 7.2 411.8;434.4;426.7 0 (0-0)

Lutein 10.2 444.5;472.4 17.46 (11.73–30.76)
Zeaxanthin 14.9 450;477.3 6.32 (3.33–13.93)

β-Cryptoxanthin 22.4 450;477.3 4.48 (1.79–7.81)
Carotenes
Phytoene 17.2 284.9 11.37 (4.30–20.00)

Phytofluene isomer 1 20 330;347;363.5 2.04 (0–5.96)
Phytofluene isomer 2 22.5 330;347;363.5 0.81 (0–2.67)
Phytofluene isomer 3 24 330;347;363.5 0 (0-0)

α-Carotene 28.4 444.5;472.4 5.29 (0.53–11.88)
β-Carotene 32.5 450.5;477.3 30.92 (17.25–46.31)

9-Z-β-Carotene (isomer 1) 33.5 413;445.7;472.4 9.71 (5.04–12.80)
Lycopene 56 444.5;472.4;501.6 20.02 (9.57–34.55)

RT: retention time; DW: dry weight.

The amount of dietary carotenoids ingested is shown in Table 4. Top on the list was lycopene,
followed by phytoene, β-carotene and lutein+zeaxanthin (shown together in this table as individual
ingestion data is unavailable). This table also shows dietary carotenoids eliminated in dry faeces
(µg/g DW), fresh faeces (µg/g WW) and the estimated amount in faeces after 24 h (µg/24 h).

Table 4. Dietary and faecal carotenoids concentrations (p50 [p25–p75]).

Carotenoid Intake (µg/day) Concentration
(µg/g DW)

Concentration
(µg/g WW)

Estimated
Concentration in
Faeces (µg/24 h) *

Estimated
Percentage of

Loss (%)

Lutein+zeaxanthin 1148 (666–1907) 25.48 (17.46–44.64) 13.35 (7.86–23.43) 1709 (1005–2999) 148.4 (77.9–309.5)
β-Cryptoxanthin 480 (142–984) 4.48 (1.79–7.81) 2.30 (0.79–4.40) 294 (101–563) 46.5 (16.5–159.1)
α-Carotene 283 (56–751) 5.29 (0.53–11.88) 2.50 (0.29–6.48) 320.0 (36.5–828.8) 86.4 (10.9–467.7)

Total β-Carotene 1812 (1081–3192) 39.54 (23.0–59.01) 19.13 (11.02–35.94) 2449 (1411–4600) 150.4 (65.5–264.9)
Lycopene 13146 (5143–26876) 20.02 (9.57–34.55) 10.97 (5.16–19.22) 1404 (660–2460) 11.5 (4.0–25.4)

Phytoene * 2697 (1560–4207) 11.37 (4.30–20.00) 5.67 (1.94–11.14) 726 (248–1425) 24.5 (10.7–62.4)
Phytofluene * 610 (310–953) 3.04 (0–8.08) 1.77 (0–4.60) 227 (0–590) 32.1 (0–84.4)
Provitamin A
carotenoids 2913 (1640–4507) 53.91 (29.88–83.0) 25.81 (14.71–49.44) 3304 (1883–6328) 122.6 (59.8–231.0)

Non-pro A
carotenoids 20384 (9104–31040) 66.37(42.33–102.5) 34.38 (21.68–58.79) 4334 (2760–7513) 32.3 (17.1–91.0)

* Normal distribution.

Assuming that the faeces samples analysed are representative of faeces eliminated after 24 h
(which is not the case since faeces samples are not homogeneous), the top carotenoids eliminated
on a daily basis would be β-carotene, lutein+zeaxanthin, lycopene and phytoene, and in lower
concentrations α-carotene, β-cryptoxanthin and phytofluene. Each carotenoid is eliminated in the
same proportion as it is consumed in the diet (Table 4).

There was a significantly positive correlation between dietary carotenoids and the faecal
concentrations found (µg/g DW) for β-cryptoxanthin (r = 0.323; p = 0.001), lutein+zeaxanthin (r = 0.291;
p = 0.04), lycopene (0.223; p = 0.027), phytoene (r = 0.339; p = 0.001) and phytofluene (r = 0.279;
p = 0.005), but not for α-carotene (r = 0.191; p = 0.059), all-E-β-carotene (r = 0.094; p = 0.358) or for
total β-carotene (all-E + isomer 1) (r = 0.098; p = 0.382). There was a significant correlation between
dietary carotenoids and the concentration in fresh faeces and in estimated faecal sample after 24 h for
lutein+zeaxanthin (r = 0.227; p = 0.025; in both cases), β-cryptoxanthin (r = 0.327; p = 0.001; in both
cases), phytoene (r = 0.350; p = 0.000; in both cases) and phytofluene (r = 0.290; p = 0.004; in both cases).
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In general, when we grouped carotenoids based on whether they exhibit provitamin A activity or not,
we found a correlation between the consumption of carotenoids not exhibiting said activity and their
concentration in dry faeces (r = 0.302; p = 0.003), in fresh faeces and in faeces at 24 h (r = 0.230; p = 0.023,
in both cases). No correlation was found between the provitamin A carotenoids in dietary intake and
in faeces (r = 0.390; p = 0.172). Moreover, carotenoids without provitamin A activity were in higher
concentrations in dietary intake and in faeces (p = 0.000, in both cases).

4. Discussion

This study analyses carotenoid content in faeces as a non-invasive approach to carotenoid
bioavailability. Faeces samples were lyophilised, stored and later hydrated with three different solvents
or mix of solvents. The one affording the best extraction of all the carotenoids was PBS 1x (Figure 1).
PBS is an ionic buffer composed of sodium chloride, sodium phosphate, (in some formulations)
potassium chloride and potassium phosphate (pH range from 5.8–8.0 at 25 ◦C), whose osmolarity
and ion concentrations correspond to that of human body fluids such as blood [18]. This buffer has
been used in other carotenoid studies involving faeces [4,7]. This study focused on the most prevalent
carotenoids found in the human diet that are known to have a positive health impact, and on others
attracting increasing interest due to their potential health benefits [19]. These carotenoids feature
very diverse polarities, carotenes being most soluble in low-polar or apolar solvents (i.e., hexane
and petroleum ether), and xanthophylls being more soluble in polar solvents (i.e., ethanol, methanol,
acetone) [20,21]. Thus, the first stage of this analysis entailed selecting the most appropriate extraction
solvent for the carotenes and xanthophylls present in faeces samples. DE:PE was the solvent that
extracted the greatest amount of xanthophylls while the amount of carotenes extracted was similar
for all of the solvents tested. This solvent was therefore chosen for carotenoid extraction in the
faeces samples.

The carotenoids found in the highest concentrations in faeces (β-carotene, lutein+zeaxanthin,
lycopene and phytoene) corresponded to the ones consumed in the greatest amounts by participants.
However, high levels of all-E and some isomers of non-provitamin A carotenoids were found in
faeces compared with their intake. There was a significant correlation between concentrations of
β-cryptoxanthin, lutein+zeaxanthin, phytoene and phytofluene in diet and in faeces and the same is
true for all the non-provitamin A carotenoids. However, there was no correlation for others such as
β-carotene or α-carotene. This could partly be due to their conversion into retinol in the organism
and the different losses and isomerizations resulting from food processing, to different degrees of
absorption during digestion [22] or to the different degradation and isomerization processes they are
subject to during digestion [23–25]. Of all these effects, the most important could be the bioconversion
of carotenoids to retinol as there is no correlation between provitamin A carotenoids in dietary intake
and faeces but there is correlation in the case of non-provitamin A carotenoids.

β-carotene is present mainly as all-E in raw foods and in the faeces samples. The lack of significant
correlation between its dietary intake and presence in faeces could influence the high variability reported
for this carotenoid in in vitro digestion studies (range 30–70%) [23,26]. In this study, large amounts
of the isomer tentatively identified as 9-Z-β-carotene was found in a high percentage of the faeces
samples analysed (79.6%) the all-E/Z β-carotene ratio being 3.5. Other studies involving faeces also
described the presence of 9-Z-β-carotene in lower concentrations than the all-E form [4,7]. This isomer
elutes immediately after its all-E form when similar chromatographic conditions are used [4,27,28].
The importance of the presence of 9-Z-β-carotene in faeces should be stressed as this isomer can be
metabolized to its respective retinoic acid, 9-Z retinoic acid in intestinal mucosa which has been related
with gene regulation [29,30] and beneficial health effects such as the inhibition of atherosclerosis by
improving cholesterol efflux from macrophages [30]. Furthermore, high β-carotene concentration in
faeces and the fact that it does not significantly correlate with intake, could also be due to its presence
in the intestine from food consumed the previous day and released during subsequent post-prandial
phases [31].
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β-crypoxanthin shows the highest correlation between dietary intake and content in faeces. It is
also the carotenoid exhibiting the highest correlation between ingestion and serum concentration [32,33].
Its low degree of elimination in faeces is also striking and could be related to high absorption levels
and/or a high capacity to convert into retinol. Thus, when studying the apparent bioavailability of
the different provitamin A carotenoids, a much higher bioavailability of β-cryptoxanthin-rich foods
compared to β-carotene-rich foods (725%) has been described and is most likely due to the presence of
one or two hydroxylated group(s) that increase(s) its solubility into the micellar structures [34,35].

Although there was a significant correlation between lycopene intake and faeces concentrations,
there is a large difference between those concentrations which could be due to low absorption which
has been estimated at 23% [36], to its effect on gut microbiota [37] and even to its degradation and
isomerization during digestion. Only one lycopene isomer was found (Figure 2) even though up to
five have been described in the faeces of babies fed with tomato puree [7]. More lycopene isomers,
up to 10 peaks, have been described in serum and lung samples, formed as a result of thermal
stereomutation [38].

Lutein concentration in faeces is higher than that of zeaxanthin (nearly 3 times higher), as is also
the case with dietary consumption, i.e., 13 times higher in the Spanish diet [39]. As described by
Hernández-Álvarez [4], several unidentified compounds are eluting before the lutein can correspond
with different apo-carotenoids. Moreover, metabolic activity in mammals oxidizes the secondary
hydroxyl group to a carbonyl group in xanthophylls such that a substantial amount of keto-carotenoids
is produced from lutein/zeaxanthin in humans [40]. Some of these keto-carotenoids (such as
ε,ε-carotene-3,3′-dione and 3′-hydroxy-ε,ε-caroten-3-one) eluting near the lutein peak have been
described in human plasma samples [41].

Phytoene is found in greater amounts in faeces than phytofluene, as is also the case with the
dietary amount consumed in this study and in another populational study which estimated the daily
per capita intake of phytoene and phytofluene combined accounted for 16% of the total dietary intake
of carotenoids [42]. Phytoene is also present in higher concentrations in foods than phytofluene [28].

Three phytofluene isomers were found in the faeces samples and, although they could not be
determined directly, we were able to identify them by comparing them with those described by
Meléndez-Martinez [38] who identified 6 phytofluene isomers with a wavelength of 370 nm and similar
spectra (328;345;363 nm) and with help from the work by Rosso and Mercadante [27] who identified
the Z-phytofluene to a RT of 20.4–21 and spectra of 330;347;366 nm and the all-E-phytofluene to a RT of
24.4 and the same spectra as Z-phytofluene.

Our results show that a high proportion of dietary carotenoids ingested, especially those with
provitamin A activity and some of their isomers, generally reach the large intestine, specifically the
colon, with the corresponding beneficial health effects. In this connection, several in vitro studies
have shown that carotenoids, following colonic fermentation, are not completely recovered but rather
are broken down (i.e., fermented) by microbiota [6]. Intestinal microbiota plays a major role in the
breakdown, absorption and metabolism of key dietary constituents contributing, for example, to the
transformation of compounds to bioactive components [43] as is the case with the metabolization of
9-Z-β-carotene to its respective retinoic acid. It has also been shown that some foods, owing to their
content in certain nutrients including carotenoids, are able to regulate intestinal microbiota and lower
the risk of several chronic diseases [44–46].

This study is limited insofar as faeces samples were not homogeneous and therefore a given
sample is not representative of a 24 h faeces excretion nor can an adequate correlation be drawn with
dietary intake. Taking 24 h faeces samples entails a higher economic compensation than what could be
offered in this study. Furthermore, this is a cross-sectional study meaning that causal inferences cannot
be made and the possibility of residual or unknown confounding cannot be excluded. Additionally,
our study included only one ethnic group and future studies should examine these relationships in
other populations. Future research should also include a higher number of individuals from different



Antioxidants 2020, 9, 484 10 of 12

age brackets and races and 24 h faeces samples. This would allow faeces samples to be used as a
complementary marker when assessing bioavailability.

5. Conclusions

The high level of the major dietary carotenoids in faeces samples in all-E- and some isomers
in Z-form, especially those with provitamin A activity, was particularly striking, and suggests
low bioavailability. However, their presence in the colon could have health benefits as they can
metabolize to bioactive compounds and regulate intestinal microbiota thus lowering the risk of several
chronic diseases.
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