Isoprostanoids Levels in Cerebrospinal Fluid Do Not Reflect Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Samples Analysis
2.3. Chromatographic System
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Correlation between CSF Isoprostanoids and Standard CSF Biomarkers
3.3. Correlations between CSF Isoprostanoids and Neuropsychological Evaluation
3.4. CSF and Plasma Lipid Peroxidation Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kramarow, E.A.; Tejada-Vera, B. Dementia Mortality in the United States, 2000–2017. Natl. Vital Stat. Rep. 2019, 68, 1–29. [Google Scholar] [PubMed]
- Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers. Dement. 2016, 12, 459–509. [Google Scholar] [CrossRef] [PubMed]
- WHO. Dementia; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Bloom, G.S. Amyloid-β and Tau. JAMA Neurol. 2014, 71, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Ayllón, M.S.; Monge-Argilés, J.A.; Monge-García, V.; Navarrete, F.; Cortés-Gómez, M.A.; Sánchez-Payá, J.; Manzanares, J.; Gasparini-Berenguer, R.; Leiva-Santana, C.; Sáez-Valero, J. Measurement of CSF ∝-synuclein improves early differential diagnosis of mild cognitive impairment due to Alzheimer’s disease. J. Neurochem. 2019, 150, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Schindler, S.E.; Li, Y.; Todd, K.W.; Herries, E.M.; Henson, R.L.; Gray, J.D.; Wang, G.; Graham, D.L.; Shaw, L.M.; Trojanowski, J.Q.; et al. Emerging cerebrospinal fluid biomarkers in autosomal dominant Alzheimer’s disease. Alzheimer’s Dement. 2019, 15, 655–665. [Google Scholar] [CrossRef]
- Plagman, A.; Hoscheidt, S.; McLimans, K.E.; Klinedinst, B.; Pappas, C.; Anantharam, V.; Kanthasamy, A.; Willette, A.A. Cholecystokinin and Alzheimer’s disease: A biomarker of metabolic function, neural integrity, and cognitive performance. Neurobiol. Aging 2019, 76, 201–207. [Google Scholar] [CrossRef]
- Kim, M.; Snowden, S.; Suvitaival, T.; Ali, A.; Merkler, D.J.; Ahmad, T.; Westwood, S.; Baird, A.; Proitsi, P.; Nevado-Holgado, A.; et al. Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical Information Framework for Alzheimer’s Disease biomarker discovery cohort. Alzheimer’s Dement. 2019, 15, 817–827. [Google Scholar] [CrossRef]
- Jacobs, K.R.; Lim, C.K.; Blennow, K.; Zetterberg, H.; Chatterjee, P.; Martins, R.N.; Brew, B.J.; Guillemin, G.J.; Lovejoy, D.B. Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer’s disease and relationship to amyloid-β and tau. Neurobiol. Aging 2019, 80, 11–20. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Chiu, M.-J.; Yang, C.-C.; Yang, S.-Y.; Scheltens, P.; Zetterberg, H.; Blennow, K. Plasma Amyloid-β (Aβ42) Correlates with Cerebrospinal Fluid Aβ42 in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1857–1863. [Google Scholar] [CrossRef]
- Shamoto-Nagai, M.; Hisaka, S.; Naoi, M.; Maruyama, W. Modification of α-synuclein by lipid peroxidation products derived from polyunsaturated fatty acids promotes toxic oligomerization: Its relevance to Parkinson disease. J. Clin. Biochem. Nutr. 2018, 62, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Sultana, R.; Perluigi, M.; Butterfield, D.A. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med. 2013, 62, 157–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsou, H.-H.; Hsu, W.-C.; Fuh, J.-L.; Chen, S.-P.; Liu, T.-Y.; Wang, H.-T. Alterations in Acrolein Metabolism Contribute to Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 61, 571–580. [Google Scholar] [CrossRef] [PubMed]
- García-Blanco, A.; Peña-Bautista, C.; Oger, C.; Vigor, C.; Galano, J.-M.; Durand, T.; Martín-Ibáñez, N.; Baquero, M.; Vento, M.; Cháfer-Pericás, C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta 2018, 184, 193–201. [Google Scholar] [CrossRef]
- Peña-Bautista, C.; Vigor, C.; Galano, J.-M.; Oger, C.; Durand, T.; Ferrer, I.; Cuevas, A.; López-Cuevas, R.; Baquero, M.; López-Nogueroles, M.; et al. Plasma lipid peroxidation biomarkers for early and non-invasive Alzheimer Disease detection. Free Radic. Biol. Med. 2018, 124, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, R.I.; Kurosaki, T.T.; Harrah, C.H.; Chance, J.M.; Filos, S. Measurement of functional activities in older adults in the community. J. Gerontol. 1982, 37, 323–329. [Google Scholar] [CrossRef]
- Hughes, C.P.; Berg, L.; Danziger, W.; Coben, L.A.; Martin, R.L. A new clinical scale for the staging of dementia. Br. J. Psychiatry 1982, 140, 566–572. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R.; Scheltens, P.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Anoop, A.; Singh, P.K.; Jacob, R.S.; Maji, S.K. CSF Biomarkers for Alzheimer’s Disease Diagnosis. Int. J. Alzheimers. Dis. 2010, 2010, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; Dubois, B.; Fagan, A.M.; Lewczuk, P.; de Leon, M.J.; Hampel, H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimer’s Dement. 2015, 11, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spies, P.E.; Verbeek, M.M.; van Groen, T.; Classeen, J.A. Reviewing reasons for the decreased CSF Abeta42 concentration in Alzheimer disease. Front Biosci (Landmark Ed). 2012, 17, 2024–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, J.F.; Montine, K.S.; Moore, M.; Morrow, J.D.; Kaye, J.A.; Montine, T.J. Suppression of longitudinal increase in CSF F2-isoprostanes in Alzheimer’s disease. J. Alzheimer’s Dis. 2004, 6, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Duits, F.H.; Kester, M.I.; Scheffer, P.G.; Blankenstein, M.A.; Scheltens, P.; Teunissen, C.E.; van der Flier, W.M. Increase in Cerebrospinal Fluid F2-Isoprostanes is Related to Cognitive Decline in APOE ε4 Carriers. J. Alzheimer’s Dis. 2013, 36, 563–570. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Yen, H.-C.; Huang, C.-C.; Hsu, W.-C.; Wei, H.-J.; Lin, C.-L. Cerebrospinal fluid biomarkers for neuropsychological symptoms in early stage of late-onset Alzheimer’s disease. Int. J. Neurosci. 2015, 125, 747–754. [Google Scholar] [CrossRef]
- Yao, Y.; Clark, C.M.; Trojanowski, J.Q.; Lee, V.M.-Y.; Praticò, D. Elevation of 12/15 lipoxygenase products in AD and mild cognitive impairment. Ann. Neurol. 2005, 58, 623–626. [Google Scholar] [CrossRef]
- Kester, M.I.; Scheffer, P.G.; Koel-Simmelink, M.J.; Twaalfhoven, H.; Verwey, N.A.; Veerhuis, R.; Twisk, J.W.; Bouwman, F.H.; Blankenstein, M.A.; Scheltens, P.; et al. Serial CSF sampling in Alzheimer’s disease: Specific versus non-specific markers. Neurobiol. Aging 2012, 33, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Leon, M.J.; Mosconi, L.; Li, J.; Santi, S.; Yao, Y.; Tsui, W.H.; Pirraglia, E.; Rich, K.; Javier, E.; Brys, M.; et al. Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. J. Neurol. 2007, 254, 1666–1675. [Google Scholar] [CrossRef]
- De Vos, A.; Jacobs, D.; Struyfs, H.; Fransen, E.; Andersson, K.; Portelius, E.; Andreasson, U.; De Surgeloose, D.; Hernalsteen, D.; Sleegers, K.; et al. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimer’s Dement. 2015, 11, 1461–1469. [Google Scholar] [CrossRef] [Green Version]
- Le Bastard, N.; Aerts, L.; Leurs, J.; Blomme, W.; De Deyn, P.P.; Engelborghs, S. No correlation between time-linked plasma and CSF Aβ levels. Neurochem. Int. 2009, 55, 820–825. [Google Scholar] [CrossRef]
- Mehta, P.; Pirttila, T.; Patrick, B.; Barshatzky, M.; Mehta, S. Amyloid β protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett. 2001, 304, 102–106. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Minthon, L.; Wallmark, A.; Warkentin, S.; Blennow, K.; Janciauskiene, S. Inflammatory Markers in Matched Plasma and Cerebrospinal Fluid from Patients with Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2003, 16, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Une, K.; Takei, Y.A.; Tomita, N.; Asamura, T.; Ohrui, T.; Furukawa, K.; Arai, H. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur. J. Neurol. 2011, 18, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Hertze, J.; Nägga, K.; Nilsson, K.; Nilsson, C.; Wennström, M.; van Westen, D.; Blennow, K.; Zetterberg, H.; Hansson, O. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol. Aging 2017, 51, 104–112. [Google Scholar] [CrossRef]
- Algotsson, A.; Winblad, B. The integrity of the blood-brain barrier in Alzheimer’s disease. Acta Neurol. Scand. 2007, 115, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Sato, N.; Ikimura, K.; Nishino, H.; Rakugi, H.; Morishita, R. Increased blood–brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol. Aging 2013, 34, 2064–2070. [Google Scholar] [CrossRef]
Variables | Non-AD (n = 34) $ | AD (n = 42) | p-Value (Mann-Whitney) |
---|---|---|---|
Age (years) Median (IQR) | 66 (63, 72) | 70 (68, 73) | 0.102 |
Gender (Female) (n, %)) | 17 (50%) | 28 (67%) | 0.142 |
CSF β-amyloid (pg mL−1) Median (IQR) | 1236.50 (950, 1435) | 630 (535, 735) | 0.000 * |
CSF t-Tau (pg mL−1) Median (IQR) | 230 (159, 347) | 573 (436, 1005) | 0.000 * |
CSF p-Tau (pg mL−1) Median (IQR) | 47 (32, 61) | 86 (71, 122) | 0.000 * |
CDR Median (IQR) | 0.5 (0, 0.5) | 0.5 (0.5, 1) | 0.071 |
MMSE Median (IQR) | 27 (21, 28) | 24 (18, 25) | 0.004 * |
RBANS.IM Median (IQR) | 73 (69, 90) | 57 (40, 67) | 0.000 * |
RBANS.V/C Median (IQR) | 87 (75, 100) | 75 (57, 87) | 0.016 * |
RBANS.L Median (IQR) | 85 (60, 92) | 60 (51, 82) | 0.031 * |
RBANS.A Median (IQR) | 79 (60, 88) | 60 (49, 79) | 0.004 * |
RBANS.DM Median (IQR) | 68 (56, 88) | 40 (40, 53) | 0.000 * |
FAQ Median (IQR) | 3 (0, 8) | 7 (3, 13) | 0.015 * |
Correlations | CSF Aβ | CSF t-Tau | CSF p-Tau | CDR | MMSE | RBANS.IM | RBANS.V/C | RBANS.L | RBANS.A | RBANS.DM | FAQ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
15(R)-15-F2t-IsoP | PCC | −0.196 | −0.094 | −0.032 | −0.038 | 0.159 | −0.030 | 0.124 | −0.031 | 0.147 | −0.022 | −0.076 |
p-value | 0.089 | 0.419 | 0.783 | 0.770 | 0.226 | 0.818 | 0.344 | 0.811 | 0.262 | 0.865 | 0.564 | |
PGE2 | PCC | 0.013 | −0.205 | −0.267 | −0.031 | 0.095 | 0.136 | 0.043 | 0.219 | 0.106 | 0.061 | −0.044 |
p-value | 0.908 | 0.076 | 0.020 * | 0.814 | 0.471 | 0.298 | 0.743 | 0.092 | 0.418 | 0.643 | 0.738 | |
2.3-dinor-15-epi-15-F2t-IsoP | PCC | −0.107 | 0.128 | 0.100 | −0.047 | 0.081 | 0.010 | 0.021 | 0.019 | 0.074 | −0.122 | −0.025 |
p-value | 0.358 | 0.272 | 0.391 | 0.724 | 0.538 | 0.939 | 0.875 | 0.887 | 0.574 | 0.352 | 0.852 | |
15-keto-15-E2t-IsoP | PCC | −0.088 | −0.074 | −0.015 | 0.297 | −0.181 | −0.113 | −0.034 | −0.037 | −0.101 | −0.120 | 0.275 |
p-value | 0.449 | 0.524 | 0.897 | 0.021 * | 0.167 | 0.391 | 0.799 | 0.782 | 0.442 | 0.361 | 0.034 * | |
15-keto-15-F2t-IsoP | PCC | −0.109 | −0.107 | −0.101 | −0.117 | 0.259 | 0.149 | 0.344 | 0.216 | 0.280 | 0.019 | −0.230 |
p-value | 0.350 | 0.359 | 0.385 | 0.374 | 0.045 * | 0.254 | 0.007 * | 0.097 | 0.030 * | 0.884 | 0.077 | |
15-E2t-IsoP | PCC | −0.106 | 0.039 | 0.108 | −0.137 | 0.072 | 0.086 | −0.017 | −0.047 | 0.146 | 0.051 | −0.085 |
p-value | 0.360 | 0.741 | 0.353 | 0.296 | 0.587 | 0.514 | 0.895 | 0.724 | 0.265 | 0.697 | 0.517 | |
5-F2t-IsoP | PCC | −0.242 | −0.031 | 0.020 | −0.005 | 0.103 | −0.175 | −0.079 | −0.101 | −0.032 | −0.067 | −0.050 |
p-value | 0.035 * | 0.789 | 0.866 | 0.967 | 0.435 | 0.181 | 0.550 | 0.444 | 0.808 | 0.613 | 0.703 | |
15-F2t-IsoP | PCC | −0.014 | −0.068 | −0.024 | 0.038 | 0.120 | −0.022 | 0.265 | −0.051 | 0.178 | −0.007 | −0.058 |
p-value | 0.903 | 0.562 | 0.834 | 0.773 | 0.360 | 0.870 | 0.041 * | 0.699 | 0.173 | 0.959 | 0.659 | |
PGF2α | PCC | −0.171 | 0.022 | 0.051 | −0.075 | 0.031 | −0.113 | −0.138 | −0.066 | −0.070 | −0.127 | −0.097 |
p-value | 0.140 | 0.849 | 0.660 | 0.569 | 0.814 | 0.390 | 0.292 | 0.615 | 0.593 | 0.332 | 0.459 | |
4(RS)-F4t-NeuroP | PCC | −0.018 | −0.167 | −0.130 | −0.175 | −0.049 | 0.109 | −0.078 | 0.082 | −0.123 | −0.060 | −0.149 |
p-value | 0.877 | 0.150 | 0.263 | 0.181 | 0.709 | 0.406 | 0.554 | 0.532 | 0.348 | 0.647 | 0.256 | |
10-epi-10-F4t-NeuroP | PCC | −0.106 | −0.045 | −0.017 | 0.103 | 0.048 | −0.077 | 0.068 | −0.108 | 0.098 | −0.047 | 0.015 |
p-value | 0.361 | 0.699 | 0.885 | 0.434 | 0.717 | 0.557 | 0.606 | 0.412 | 0.455 | 0.720 | 0.912 | |
14(RS)-14-F4t-NeuroP | PCC | 0.017 | −0.167 | −0.124 | −0.074 | 0.071 | 0.029 | −0.006 | −0.006 | 0.135 | 0.105 | −0.150 |
p-value | 0.886 | 0.150 | 0.284 | 0.574 | 0.591 | 0.824 | 0.965 | 0.962 | 0.304 | 0.423 | 0.252 | |
Ent-7(RS)-7-F2t-dihomo-IsoP | PCC | −0.004 | −0.081 | −0.086 | −0.050 | 0.186 | 0.055 | 0.349 | 0.011 | 0.240 | −0.066 | −0.173 |
p-value | 0.974 | 0.487 | 0.462 | 0.707 | 0.156 | 0.679 | 0.006 * | 0.931 | 0.065 | 0.618 | 0.186 | |
17-F2t-dihomo-IsoP | PCC | 0.010 | −0.086 | −0.036 | −0.009 | −0.026 | −0.099 | 0.153 | −0.139 | 0.017 | −0.102 | −0.053 |
p-value | 0.935 | 0.460 | 0.760 | 0.947 | 0.842 | 0.451 | 0.242 | 0.290 | 0.899 | 0.440 | 0.688 | |
17-epi-17-F2t-dihomo-IsoP | PCC | −0.003 | −0.079 | −0.073 | −0.006 | 0.012 | −0.129 | 0.076 | −0.180 | 0.034 | −0.014 | −0.018 |
p-value | 0.982 | 0.497 | 0.530 | 0.963 | 0.928 | 0.326 | 0.564 | 0.168 | 0.797 | 0.914 | 0.893 | |
17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF | PCC | −0.093 | 0.014 | −0.012 | −0.055 | 0.226 | 0.026 | 0.170 | −0.054 | 0.242 | 0.156 | −0.014 |
p-value | 0.422 | 0.901 | 0.916 | 0.675 | 0.083 | 0.847 | 0.194 | 0.683 | 0.062 | 0.233 | 0.913 | |
7(RS)-ST-Δ8-11-dihomo-IsoF | PCC | −0.262 | 0.030 | 0.035 | 0.048 | −0.030 | −0.155 | −0.040 | −0.230 | −0.110 | −0.029 | 0.131 |
p-value | 0.022 * | 0.797 | 0.765 | 0.715 | 0.821 | 0.238 | 0.761 | 0.077 | 0.405 | 0.828 | 0.318 | |
Isoprostanes $ | PCC | −0.196 | −0.022 | −0.020 | −0.085 | 0.004 | −0.150 | −0.238 | −0.193 | −0.141 | −0.040 | 0.010 |
p-value | 0.089 | 0.852 | 0.863 | 0.520 | 0.976 | 0.253 | 0.067 | 0.139 | 0.284 | 0.761 | 0.940 | |
Neurorostanes $ | PCC | −0.001 | −0.011 | −0.033 | 0.102 | −0.019 | −0.077 | 0.207 | −0.029 | 0.055 | 0.028 | −0.026 |
p-value | 0.995 | 0.924 | 0.775 | 0.437 | 0.883 | 0.556 | 0.113 | 0.825 | 0.678 | 0.831 | 0.841 | |
Neurofurans $ | PCC | −0.246 | −0.032 | 0.019 | −0.159 | 0.142 | 0.122 | −0.008 | −0.013 | 0.093 | 0.135 | −0.057 |
p-value | 0.032 * | 0.784 | 0.871 | 0.224 | 0.278 | 0.355 | 0.953 | 0.920 | 0.481 | 0.304 | 0.667 | |
Isofurans $ | PCC | −0.309 | 0.013 | 0.062 | −0.098 | −0.051 | −0.120 | −0.084 | −0.083 | −0.083 | −0.132 | 0.040 |
p-value | 0.007 * | 0.914 | 0.595 | 0.458 | 0.698 | 0.359 | 0.525 | 0.530 | 0.527 | 0.315 | 0.760 |
Concentration (nmol L−1) | Non-AD (n = 34) | AD (n = 42) | p-Value Mann-Whitney |
---|---|---|---|
15(R)-15-F2t-IsoP Median (IQR) | 0.075 (0, 0.231) | 0.300 (0.188, 0.394) | <0.001 * |
PGE2 Median (IQR) | 0.050 (0, 0.100) | 0.038 (0, 0.125) | 0.590 |
2,3-dinor-15-epi-15-F2t-IsoP Median (IQR) | 0 (0, 0) | 0 (0, 0.006) | 0.028 * |
15-keto-15-E2t-IsoP Median (IQR) | 0.150 (0, 0.250) | 0.163 (0, 0.325) | 0.541 |
15-keto-15-F2t-IsoP Median (IQR) | 0.113 (0.044, 0.181) | 0.225 (0.069, 0.331) | 0.065 |
15-E2t-IsoP Median (IQR) | 0.200 (0.100, 0.325) | 0.213 (0.019, 0.525) | 0.900 |
5-F2t-IsoP Median (IQR) | 0.263 (0.056, 0.831) | 0.700 (0.350, 1.125) | 0.021 * |
15-F2t-IsoP Median (IQR) | 0 (0, 0) | 0.020 (0.009, 0.035) | <0.001 * |
PGF2α Median (IQR) | 0.238 (0.044, 0.363) | 0.413 (0.194, 0.706) | 0.011 * |
4(RS)-F4t-NeuroP Median (IQR) | 0 (0, 1.475) | 1.100 (0.763, 1.425) | 0.119 |
1a,1b-dihomo-PGF2α Median (IQR) | 0 (0, 0) | 0 (0, 0) | 0.219 |
10-epi-10-F4t-NeuroP Median (IQR) | 0.225 (0.175, 0.281) | 0.079 (0.025, 0.175) | <0.001 * |
14(RS)-14-F4t-NeuroP Median (IQR) | 0.300 (0.019, 0.850) | 0.563 (0.131, 1.044) | 0.316 |
Ent-7(RS)-7-F2t-dihomo-IsoP Median (IQR) | 0 (0, 0.050) | 0.075 (0.050, 0.150) | <0.001 * |
17-F2t-dihomo-IsoP Median (IQR) | 0 (0, 0) | 0 (0, 0) | 0.096 |
17-epi-17-F2t-dihomo-IsoP Median (IQR) | 0 (0, 0) | 0 (0, 0.025) | <0.001 * |
17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF Median (IQR) | 0 (0, 0) | 0 (0, 0) | 0.066 |
7(RS)-ST-Δ8-11-dihomo-IsoF Median (IQR) | 0.013 (0, 0.050) | 0.025 (0, 0.075) | 0.098 |
Isoprostanes $ Median (IQR) | 0.449 (0.396, 0.488) | 0.345 (0.234, 0.409) | <0.001 * |
Neuroprostanes $ Median (IQR) | 0.142 (0.050, 0.207) | 0 (0, 0.268) | 0.029 * |
Isofurans $ Median (IQR) | 0.073 (0.058, 0.105) | 0.085 (0.069, 0.115) | 0.202 |
Neurofurans $ Median (IQR) | 0.114 (0.082, 0.173) | 0.095 (0, 0.169) | 0.111 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Bautista, C.; Baquero, M.; López-Nogueroles, M.; Vento, M.; Hervás, D.; Cháfer-Pericás, C. Isoprostanoids Levels in Cerebrospinal Fluid Do Not Reflect Alzheimer’s Disease. Antioxidants 2020, 9, 407. https://doi.org/10.3390/antiox9050407
Peña-Bautista C, Baquero M, López-Nogueroles M, Vento M, Hervás D, Cháfer-Pericás C. Isoprostanoids Levels in Cerebrospinal Fluid Do Not Reflect Alzheimer’s Disease. Antioxidants. 2020; 9(5):407. https://doi.org/10.3390/antiox9050407
Chicago/Turabian StylePeña-Bautista, Carmen, Miguel Baquero, Marina López-Nogueroles, Máximo Vento, David Hervás, and Consuelo Cháfer-Pericás. 2020. "Isoprostanoids Levels in Cerebrospinal Fluid Do Not Reflect Alzheimer’s Disease" Antioxidants 9, no. 5: 407. https://doi.org/10.3390/antiox9050407
APA StylePeña-Bautista, C., Baquero, M., López-Nogueroles, M., Vento, M., Hervás, D., & Cháfer-Pericás, C. (2020). Isoprostanoids Levels in Cerebrospinal Fluid Do Not Reflect Alzheimer’s Disease. Antioxidants, 9(5), 407. https://doi.org/10.3390/antiox9050407