Antioxidant Supplementation Modulates Neutrophil Inflammatory Response to Exercise-Induced Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Protocol
2.2. Blood Sampling and Determination of Circulating Parameters
2.3. Determination of Antioxidant and Myeloperoxidase Enzymatic Activities and Oxidative Stress Markers
2.4. Cytokine Determination
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nieman, D.C.; Mitmesser, S.H. Potential impact of nutrition on immune system recovery from heavy exertion: A metabolomics perspective. Nutrients 2017, 9, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinley, C.; Shafat, A.; Donnelly, A.E. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med. 2009, 39, 1011–1032. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.P.; Kayani, A.C.; McArdle, A.; Drust, B. The exercise induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 2009, 39, 643–662. [Google Scholar] [CrossRef] [PubMed]
- Niess, A.M.; Simon, P. Response and adaptation of skeletal muscle to exercise: The role of reactive oxygen species. Front. Biosci. 2007, 12, 4826–4838. [Google Scholar] [CrossRef] [Green Version]
- Pattwell, D.M.; Jackson, M.J. Contraction-induced oxidants as mediators of adaptation and damage in skeletal muscle. Exerc. Sport Sci. Rev. 2004, 32, 14–18. [Google Scholar] [CrossRef]
- Tidball, J.G. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Toumi, H.; F’Guyer, S.; Best, T.M. The role of neutrophils in injury and repair following muscle stretch. J. Anat. 2006, 208, 459–470. [Google Scholar] [CrossRef]
- Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical markers of muscle damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in sports and exercise: Tracking health, performance, and recovery in athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [Green Version]
- Jesaitis, A.J.; Buescher, E.S.; Harrison, D.; Quinn, M.T.; Parkos, C.A.; Livesey, S.; Linner, J. Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes. J. Clin. Investig. 1990, 85, 821–835. [Google Scholar] [CrossRef] [Green Version]
- Quinn, M.T.; Gauss, K.A. Structure and regulation of neutrophil respiratory burst oxidase: Comparison with non-phagocyte oxidases. J. Leukoc. Biol. 2004, 76, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Alsahli, M.A.; Rahmani, A.H. Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. 2018, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Wei, Q.; Shin, J.N.; Fattah, E.A.; Bonilla, D.L.; Xiang, Q.; Eissa, N.T. Autophagy is required for neutrophil-mediated inflammation. Cell Rep. 2015, 12, 1731–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozov, V.I.; Pryatkin, S.A.; Kalinski, M.I.; Rogozkin, V.A. Effect of exercise to exhaustion on myeloperoxidase and lysozyme release from blood neutrophils. Eur. J. Appl. Physiol. 2003, 89, 257–262. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Thompson, H.S. Antioxidants: What role do they play in physical activity and health? Am. J. Clin. Nutr. 2000, 72, 637S–646S. [Google Scholar] [CrossRef] [Green Version]
- Moylan, J.S.; Reid, M.B. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 2007, 35, 411–429. [Google Scholar] [CrossRef]
- Kanda, K.; Sugama, K.; Hayashida, H.; Sakuma, J.; Kawakami, Y.; Miura, S.; Yoshioka, H.; Mori, Y.; Suzuki, K. Eccentric exercise-induced delayed-onset muscle soreness and changes in markers of muscle damage and inflammation. Exerc. Immunol. Rev. 2013, 19, 72–85. [Google Scholar]
- Zeng, M.Y.; Miralda, I.; Armstrong, C.L.; Uriarte, S.M.; Bagaitkar, J. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol. Oral. Microbiol. 2019, 34, 27–38. [Google Scholar] [CrossRef]
- Tauler, P.; Aguiló, A.; Fuentespina, E.; Tur, J.A.; Pons, A. Diet supplementation with vitamin E, vitamin C and beta-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. Pflug. Arch. 2002, 443, 791–797. [Google Scholar] [CrossRef]
- Carrera-Quintanar, L.; Funes, L.; Sánchez-Martos, M.; Martínez-Peinado, P.; Sempere, J.M.; Pons, A.; Micol, V.; Roche, E. Effect of a 2000-m running test on antioxidant and cytokine response in plasma and circulating cells. J. Physiol. Biochem. 2017, 73, 523–530. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Fry, A.C.; Falvo, M.J.; Moore, C.A. Protein carbonyls are acutely elevated following single set anaerobic exercise in resistance trained men. J. Sci. Med. Sport 2007, 10, 411–417. [Google Scholar] [CrossRef]
- Groussard, C.; Rannou-Bekono, F.; Machefer, G.; Chevanne, M.; Vincent, S.; Sergent, O.; Cillard, J.; Gratas-Delamarche, A. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur. J. Appl. Physiol. 2003, 89, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Quintanar, L.; Funes, L.; Vicente-Salar, N.; Blasco-Lafarga, C.; Pons, A.; Micol, V.; Roche, E. Effect of polyphenol supplements on redox status of blood cells: A randomized controlled exercise training trial. Eur. J. Nutr. 2015, 54, 1081–1093. [Google Scholar] [CrossRef]
- Cases, N.; Aguiló, A.; Tauler, P.; Sureda, A.; Llompart, I.; Pons, A.; Tur, J.A. Differential response of plasma and immune cell’s vitamin E levels to physical activity and antioxidant vitamin supplementation. Eur. J. Clin. Nutr. 2005, 59, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Sureda, A.; Tauler, P.; Aguiló, A.; Cases, N.; Llompart, I.; Tur, J.A.; Pons, A. Antioxidant supplementation influences the neutrophil tocopherol associated protein expression, but not the inflammatory response to exercise. Cent. Eur. J. Biol. 2007, 2, 56–70. [Google Scholar] [CrossRef]
- Martorell, M.; Capó, X.; Sureda, A.; Batle, J.M.; Llompart, I.; Argelich, E.; Tur, J.A.; Pons, A. Effect of DHA on plasma fatty acid availability and oxidative stressduring training season and football exercise. Food Funct. 2014, 5, 1920–1931. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Herranz-López, M.; Funes, L.; Borrás-Linares, I.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenylpropanoids and their metabolites are the major compounds responsible for blood-cell protection against oxidative stress after administration of Lippia citriodora in rats. Phytomedicine 2013, 20, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Funes, L.; Fernandez-Arroyo, S.; Laporta, O.; Pons, A.; Roche, E.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Micol, V. Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extracts. Food Chem. 2009, 117, 589–598. [Google Scholar] [CrossRef]
- Mestre-Alfaro, A.; Ferrer, M.D.; Sureda, A.; Tauler, P.; Martinez, E.; Bibiloni, M.M.; Micol, V.; Tur, J.A.; Pons, A. Phytoestrogens enhance antioxidant enzymes after swimming exercise and modulate sex hormone plasma levels in female swimmers. Eur. J. Appl. Physiol. 2011, 111, 2281–2294. [Google Scholar] [CrossRef] [PubMed]
- Marfell-Jones, M.; Olds, T.; Steward, A.; Carter, L. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Potchesfstroom, South Africa, 2006. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Flohe, L.; Gunzler, W.A. Assays of glutathione peroxidase. Methos Enzymol. 1984, 105, 114–121. [Google Scholar]
- Goldberg, D.M.; Spooner, R.J. Glutathione reductase. In Methods in Enzymatic Analysis; Bergmeyer, H.U., Ed.; Academic Press: Oxford, UK, 1985. [Google Scholar]
- McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [PubMed]
- Funes, L.; Carrera-Quintanar, L.; Cerdán-Calero, M.; Ferrer, M.D.; Drobnic, F.; Pons, A.; Roche, E.; Micol, V. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur. J. Appl. Physiol. 2011, 111, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Steensberg, A.; Keller, C.; Starkie, R.L.; Nielsen, H.B.; Krustrup, P.; Ott, P.; Secher, N.H.; Pedersen, B.K. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J. Physiol. 2003, 549, 607–612. [Google Scholar] [CrossRef]
- Pedersen, B.K. Muscle as a secretory organ. Compr. Physiol. 2013, 3, 1337–1362. [Google Scholar]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rodríguez, A.; Moya, M.; Vicente-Salar, N.; Brouzet, T.; Carrera-Quintanar, L.; Cervelló, E.; Micol, V.; Roche, E. Biochemical and psychological changes in university students performing aerobic exercise and consuming lemon verbena extracts. Curr. Top. Nutraceut. Res. 2015, 13, 95–102. [Google Scholar]
- Carrera-Quintanar, L.; Funes, L.; Viudes, E.; Tur, J.; Micol, V.; Roche, E.; Pons, A. Antioxidant effect of lemon verbena extracts in lymphocytes of university students performing aerobic training program. Scand. J. Med. Sci. Sports 2012, 22, 454–461. [Google Scholar] [CrossRef]
- Capó, X.; Martorell, M.; Sureda, A.; Tur, J.A.; Pons, A. Effects of docosahexaenoic supplementation and in vitro vitamin C on the oxidative and inflammatory neutrophil response to activation. Oxid. Med. Cell Longev. 2015, 2015, 187849. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Tijerina, T.; Frei, B. Vitamin C protects against and reverses specific hypochlorous acid- and chloramine-dependent modifications of low-density lipoprotein. Biochem. J. 2000, 346, 491–499. [Google Scholar] [CrossRef]
- Marin, D.P.; Bolin, A.P.; dos Santos, R.C.M.; Curi, R.; Otton, R. Testosterone suppresses oxidative stress in human neutrophils. Cell Biochem. Funct. 2010, 28, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Ferrer, M.D.; Tauler, P.; Maestre, I.; Aguiló, A.; Córdova, A.; Tur, J.A.; Roche, E.; Pons, A. Intense physical activity enhances neutrophil antioxidant enzyme gene expression. Immunocytochemistry evidence for catalase secretion. Free Rad. Res. 2007, 41, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Gieseg, S.P.; Baxter-Parker, G.; Lindsay, A. Neopterin, inflammation, and oxidative stress: What could we be missing? Antioxidans 2018, 7, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Supplement | Glycosylated Derivatives of Cinnamic Acid | Gallotannin | Flavone-Diglucuronide Derivatives | Verbascoside | Hesperidin |
---|---|---|---|---|---|
Almond beverage | 4.3 ± 0.4 | 62.8 ± 10 | 3.2 ± 0.0 | - | 60.4 ± 5 |
Almond beverage enriched with Lippia extract | 2.6 ± 0.1 | 32.7 ± 2 | 3.9 ± 0.2 | 90 ± 0.6 | 46 ± 3 |
Parameter (Units) | CG | AB | AB + LE |
---|---|---|---|
N | 10 | 11 | 10 |
Age (years) | 22 ± 1.5 | 21 ± 1.2 | 22 ± 0.5 |
Height (cm) | 173 ± 2 | 174 ± 2 | 175 ± 3 |
Weight (kg) | 71.8 ± 2.6 | 70.5 ± 2.0 | 72 ± 0.9 |
BMI (kg/m2) | 22.2 ± 0.9 | 23.5 ± 1.1 | 24.0 ± 1.3 |
Fat mass (%) | 14.6 ± 1.3 | 14.0 ± 1.3 | 14.3 ± 1.2 |
Muscle mass (%) | 42.0 ± 2.7 | 44.4 ± 2.3 | 41.5 ± 2.5 |
Test time (min) | 7.9 ± 0.3 | 7.8 ± 0.3 | 8.0 ± 0.2 |
Parameter (Units) | CG | AB | AB + LE |
---|---|---|---|
Basal | |||
Lactate (mg/dL) | 8.5 ± 0.5 | 8.8 ± 0.6 | 7.9 ± 0.7 |
Myoglobin (ng/mL) | 39.5 ± 3.0 | 34.4 ± 3.7 | 35.2 ± 4.1 |
GGT (U/L) | 17.2 ± 0.8 | 17.1 ± 1.0 | 16.4 ± 1.0 |
AST/GOT (U/L) | 23.3 ± 0.8 | 22.6 ± 1.3 | 23.8 ± 1.0 |
ALT/GPT (U/L) | 19.8 ± 1.3 | 20.3 ± 1.3 | 19.3 ± 1.2 |
CK (U/L) | 212 ± 18 | 195 ± 22 | 195 ± 12 |
Alkaline phosphatase (U/L) | 186 ± 17 | 154 ± 9 | 173 ± 19 |
Post-exercise | |||
Lactate (mg/dL) | 11.6 ± 2.5 * | 12.2 ± 2.7 * | 11.0 ± 1.3 * |
Myoglobin (ng/mL) | 45.2 ± 3.8 * | 45.7 ± 2.9 * | 39.9 ± 2.3 * |
GGT (U/L) | 18.4 ± 1.7 | 17.4 ± 0.9 | 18.1 ± 0.9 |
AST/GOT (U/L) | 25.8 ± 1.6 | 24.3 ± 0.9 | 25.1 ± 1.2 |
ALT/GPT (U/L) | 21.3 ± 1.2 | 26.4 ± 1.7 * | 28.8 ± 1.3 * |
CK (U/L) | 275 ± 23 * | 268 ± 30 * | 264 ± 26 * |
Alkaline phosphatase (U/L) | 173 ± 19 | 166 ± 12 | 186 ± 17 |
Marker (Units) | CG | AB | AB + LE | ANOVA | |
---|---|---|---|---|---|
Neutrophils | |||||
MDA (mmols/L) | Basal | 7.1 ± 2.1 | 7.6 ± 1.8 | 6.9 ± 1.9 | |
Post-exercise | 6.5 ± 1.1 | 8.2 ± 2.8 | 7.2 ± 1.2 | ||
Protein carbonyls (mmols/L) | Basal | 11.6 ± 2.1 | 10.6 ± 1.4 | 11.1 ± 1.7 | |
Post-exercise | 12.4 ± 2.5 | 10.6 ±1.4 | 12.6 ± 2.3 | ||
Plasma | |||||
MDA (µmols/L) | Basal | 2.6 ±1.3 | 2.8 ± 0.5 | 3.4 ± 1.3 | |
Post-exercise | 2.6 ± 1.4 | 3.0 ± 1.3 | 2.8 ± 0.3 | ||
Protein carbonyls (µmols/L) | Basal | 80.4 ± 2.3 | 86.0 ± 7.9 | 85.8 ± 9.4 | E |
Post-exercise | 95.8 ± 7.4 * | 91.3 ± 8.9 | 104 ± 10 * |
Enzymatic Activity | CG | AB | AB + LE | ANOVA | |
---|---|---|---|---|---|
SOD (pkat/109 cells) | Basal | 26.6 ± 6.7 | 20.3 ± 4.3 | 23.0 ± 2.7 | E SxE |
Post-Exercise | 47.5 ± 7.0 * | 27.6 ± 6.8 *& | 21.3 ± 4.7 *& | ||
CAT (k5/109 cells) | Basal | 58.2 ± 16.7 | 56.2 ± 11.7 | 60.0 ± 15.1 | S |
Post-Exercise | 70.8 ±12.2 | 82.2 ± 19.7 | 116 ± 39 & | ||
GPX (nkat/109 cells) | Basal | 78.9 ± 20.1 | 85.2 ± 28.4 | 88.7 ± 24.3 | E SxE |
Post-Exercise | 127 ± 11 * | 76.6 ± 7.7 *& | 146 ± 42 | ||
GRD (nkat/109 cells) | Basal | 369 ± 103 | 376 ± 92 | 317 ± 53 | S |
Post-Exercise | 442 ± 47 | 316 ± 36 & | 351 ± 36 & |
Cytokine (Units) | CG | AB | AB + LE | |
---|---|---|---|---|
IL-6 (pg/mL) | Basal | 1.6 ± 0.7 | 1.3 ± 0.3 | 2.4 ± 1.3 |
Post-Exercise | 1.8 ± 0.7 | 1.9 ± 0.7 | 1.8 ± 0.9 | |
IL-8 (pg/mL) | Basal | 6.2 ± 1.7 | 4.2 ± 1.6 | 2.9 ± 1.4 |
Post-test | 6.3 ±2.0 | 5.9 ± 1.7 | 5.5 ± 1.6 | |
IL-10 (fg/mL) | Basal | 339 ± 91 | 365 ± 98 | 282 ± 96 |
Post-test | 320 ± 125 | 324 ± 123 | 309 ± 94 | |
TNF-α (pg/mL) | Basal | 8.7 ± 3.2 | 6.0 ± 2.4 | 7.1 ± 3.5 |
Post-test | 5.3 ± 3.6 | 6.6 ± 2.4 | 7.9 ± 1.4 |
CG | AB | AB + LE | ANOVA | ||
---|---|---|---|---|---|
Neutrophils | |||||
MPO Activity (µkat/109cells) | Basal | 38.6 ± 7.9 | 35.1 ± 2.8 | 35.4 ± 2.9 | E SxE |
Post-Exercise | 59.5 ± 9.6 * | 39.5 ± 4.4 *& | 35.8 ± 3.3 *& | ||
Plasma | |||||
MPO levels (ng/mL) | Basal | 38.5 ± 8.2 | 41.2 ± 3.3 | 48.7 ± 6.7 | SxE |
Post-Exercise | 40.1 ± 4.5 | 49.5 ± 4.0 *& | 55.6 ± 3.3 *& |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrera-Quintanar, L.; Funes, L.; Herranz-López, M.; Martínez-Peinado, P.; Pascual-García, S.; Sempere, J.M.; Boix-Castejón, M.; Córdova, A.; Pons, A.; Micol, V.; et al. Antioxidant Supplementation Modulates Neutrophil Inflammatory Response to Exercise-Induced Stress. Antioxidants 2020, 9, 1242. https://doi.org/10.3390/antiox9121242
Carrera-Quintanar L, Funes L, Herranz-López M, Martínez-Peinado P, Pascual-García S, Sempere JM, Boix-Castejón M, Córdova A, Pons A, Micol V, et al. Antioxidant Supplementation Modulates Neutrophil Inflammatory Response to Exercise-Induced Stress. Antioxidants. 2020; 9(12):1242. https://doi.org/10.3390/antiox9121242
Chicago/Turabian StyleCarrera-Quintanar, Lucrecia, Lorena Funes, María Herranz-López, Pascual Martínez-Peinado, Sandra Pascual-García, José M Sempere, Marina Boix-Castejón, Alfredo Córdova, Antoni Pons, Vicente Micol, and et al. 2020. "Antioxidant Supplementation Modulates Neutrophil Inflammatory Response to Exercise-Induced Stress" Antioxidants 9, no. 12: 1242. https://doi.org/10.3390/antiox9121242
APA StyleCarrera-Quintanar, L., Funes, L., Herranz-López, M., Martínez-Peinado, P., Pascual-García, S., Sempere, J. M., Boix-Castejón, M., Córdova, A., Pons, A., Micol, V., & Roche, E. (2020). Antioxidant Supplementation Modulates Neutrophil Inflammatory Response to Exercise-Induced Stress. Antioxidants, 9(12), 1242. https://doi.org/10.3390/antiox9121242