A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp.
Abstract
:1. Introduction
2. Approach
3. Antioxidant Potential of Amaranthus spp.
3.1. Chemical-Based Assays
3.2. In Vitro Studies
3.3. In Vivo Studies
3.4. Antioxidant Activity of Hydrolysates/Peptides from Amaranthus spp.
4. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haddad, L.; Hawkes, C.; Waage, J.; Webb, P.; Godfray, C.; Toulmin, C. Food Systems and Diets: Facing the Challenges of the 21st Century; Global Panel on Agriculture and Food Systems for Nutrition: London, UK, 2016. [Google Scholar]
- Peter, K.; Gandhi, P. Rediscovering the therapeutic potential of Amaranthus species: A review. Egypt. J. Basic Appl. Sci. 2017, 4, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, A.; Millan-Linares, M.C.; Rodriguez-Martin, N.M.; Millan, F.; Montserrat-de la Paz, S. Nutraceutical value of kiwicha (Amaranthus caudatus L.). J. Funct. Foods 2020, 65, 103735. [Google Scholar] [CrossRef]
- Calzetta Resio, A.; Tolaba, M.; Suarez, C. Some physical and thermal characteristics of amaranth starch Algunas propiedades físicas y térmicas del almidón de amaranto. Food Sci. Technol. Int. 2000, 6, 371–378. [Google Scholar] [CrossRef]
- Rastogi, A.; Shukla, S. Amaranth: A new millennium crop of nutraceutical values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Grundy, M.M.; Momanyi, D.K.; Holland, C.; Kawaka, F.; Tan, S.; Salim, M.; Boyd, B.J.; Bajka, B.; Mulet-Cabero, A.-I.; Bishop, J. Effects of grain source and processing methods on the nutritional profile and digestibility of grain amaranth. J. Funct. Foods 2020, 72, 104065. [Google Scholar] [CrossRef]
- Ebert, A.W.; Wu, T.-H.; Wang, S.-T. Vegetable amaranth (Amaranthus L.). AVRDC 2011, 9, 11–754. [Google Scholar]
- Mlakar, S.G.; Bavec, M.; Turinek, M.; Bavec, F. Rheological properties of dough made from grain amaranth-cereal composite flours based on wheat and spelt. Czech J. Food Sci. 2009, 27, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [Green Version]
- Montoya-Rodríguez, A.; Gómez-Favela, M.A.; Reyes-Moreno, C.; Milán-Carrillo, J.; González de Mejía, E. Identification of bioactive peptide sequences from amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf. 2015, 14, 139–158. [Google Scholar] [CrossRef]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.G. Betalains in some species of the Amaranthaceae family: A review. Antioxidants 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segura-Nieto, M.; Barba de la Rosa, A.P.; Paredes-López, O. Biochemistry of amaranth proteins. In Amaranth: Biology, Chemistry, and Technology; Paredes-López, O., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 75–106. [Google Scholar]
- Santiago, P.; Tenbergen, K.; Vélez-Jiménez, E.; Cardador-Martínez, M. Functional attributes of amaranth. Austin J. Nutr. Food Sci. 2014, 2, 6. [Google Scholar]
- Santra, D.K.; Schoenlechner, R. Amaranth Part 2—Sustainability, Processing, and Applications of Amaranth. In Sustainable Protein Sources; Nadathur, S., Wanasundara, J.P.D., Scalin, L., Eds.; Elsevier, Academic Press: Amsterdam, The Netherlands, 2017; pp. 257–264. [Google Scholar] [CrossRef]
- de la Barca, A.M.C.; Rojas-Martínez, M.E.; Islas-Rubio, A.R.; Cabrera-Chávez, F. Gluten-free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities. Plant Foods Hum. Nutr. 2010, 65, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Mlakar, S.G.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Grain amaranth as an alternative and perspective crop in temperate climate. J. Geog. 2010, 5, 135–145. [Google Scholar]
- Singh, N.; Singh, P. Amaranth: Potential source for flour enrichment. In Flour and Breads and Their Fortification in Health and Disease Prevention; Preedy, V., Watson, R., Patel, V., Eds.; Elsevier, Academic Press: London, UK, 2011; pp. 101–111. [Google Scholar]
- Alvarez-Jubete, L.; Arendt, E.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Bioactive peptides from selected latin american food crops–A nutraceutical and molecular approach. Crit. Rev. Food Sci. Nutr. 2019, 59, 1949–1975. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Peña, J.; Kallio, H.; Salminen, S. Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). J. Cereal Sci. 2009, 49, 219–224. [Google Scholar] [CrossRef]
- Emire, S.A.; Arega, M. Value added product development and quality characterization of amaranth (Amaranthus caudatus L.) grown in East Africa. Afr. J. Food Sci. Technol. 2012, 3, 129–141. [Google Scholar]
- Hoang, H.L.; de Guzman, C.C.; Cadiz, N.M.; Hoang, T.T.H.; Tran, D.H.; Rehman, H. Salicylic acid and calcium signaling induce physiological and phytochemical changes to improve salinity tolerance in Red Amaranth (Amaranthus tricolor L.). J. Soil Sci. Plant Nutr. 2020, 20, 1759–1769. [Google Scholar] [CrossRef]
- Dixit, A.A.; Azar, K.M.; Gardner, C.D.; Palaniappan, L.P. Incorporation of whole, ancient grains into a modern Asian Indian diet to reduce the burden of chronic disease. Nutr. Rev. 2011, 69, 479–488. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, N.; Rana, J.C. Amaranthus hypochondriacus and Amaranthus caudatus germplasm: Characteristics of plants, grain and flours. Food Chem. 2010, 123, 1227–1234. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service. Food Data Central. Amaranth Grain, Uncooked. Available online: Fdc.nal.usda.gov (accessed on 20 November 2020).
- Valcárcel-Yamani, B.; Lannes, S.d.S. Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. Food Public Health 2012, 2, 265–275. [Google Scholar]
- Orsango, A.Z.; Loha, E.; Lindtjørn, B.; Engebretsen, I.M.S. Efficacy of processed amaranth-containing bread compared to maize bread on hemoglobin, anemia and iron deficiency anemia prevalence among two-to-five year-old anemic children in Southern Ethiopia: A cluster randomized controlled trial. PLoS ONE 2020, 15, e0239192. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.L. Amaranth: New crop opportunity. In Progress in New Crops; ASHS Press: Alexandria, VA, USA, 1996; pp. 207–220. [Google Scholar]
- Tkaczewska, J. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings—A review. Trends Food Sci. Technol. 2020, 106, 298–311. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Gomez, B.; Barba, F.J.; Mora, L.; Perez-Santaescolastica, C.; Toldra, F. Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Adegbola, P.I.; Adetutu, A.; Olaniyi, T.D. Antioxidant activity of Amaranthus species from the Amaranthaceae family—A review. S. Afr. J. Bot. 2020, 133, 111–117. [Google Scholar] [CrossRef]
- Silva-Sánchez, C.; De La Rosa, A.B.; León-Galván, M.; De Lumen, B.; de León-Rodríguez, A.; De Mejía, E.G. Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J. Agric. Food Chem. 2008, 56, 1233–1240. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Coelho, L.M.; Silva, P.M.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 2018, 9, 5499–5512. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current Trends of Bioactive Peptides—New Sources and Therapeutic Effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef]
- Ayala-Niño, A.; Rodríguez-Serrano, G.M.; Jiménez-Alvarado, R.; Bautista-Avila, M.; Sánchez-Franco, J.A.; González-Olivares, L.G.; Cepeda-Saez, A. Bioactivity of peptides released during lactic fermentation of amaranth proteins with potential cardiovascular protective effect: An in vitro study. J. Med. Food 2019, 22, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Amabye, T.G. Evaluation of physiochemical, phytochemical, antioxidant and antimicrobial screening parameters of Amaranthus spinosus leaves. Nat. Prod. Chem. Res. 2015, 4, 1–5. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Liu, S.X. Antioxidant activities of selective gluten free ancient grains. Food Nutr. Sci. 2015, 6, 612. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.-J.; Chung, K.-H.; Yoon, J.A.; Lee, K.-J.; Song, B.C.; An, J.H. Radical scavenging activities of tannin extracted from amaranth (Amaranthus caudatus L.). J. Microbiol. Biotechnol. 2015, 25, 795–802. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compost. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Amornrit, W.; Santiyanont, R. Neuroprotective effect of Amaranthus lividus and Amaranthus tricolor and their effects on gene expression of RAGE during oxidative stress in SH-SY5Y cells. Genet. Mol. Res. 2016, 15, 15027562. [Google Scholar] [CrossRef]
- Gunathilake, K.P.P.; Ranaweera, K. Antioxidative properties of 34 green leafy vegetables. J. Funct. Foods 2016, 26, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamun, M.A.; Husna, J.; Khatun, M.; Hasan, R.; Kamruzzaman, M.; Hoque, K.; Reza, M.A.; Ferdousi, Z. Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complement. Altern. Med. 2016, 16, 157. [Google Scholar] [CrossRef] [Green Version]
- Hejazi, S.N.; Orsat, V. Malting process effects on antioxidant activity of finger millet and amaranth grains. J. Food Res. 2016, 5, 1–17. [Google Scholar] [CrossRef]
- Aguilar-Felices, E.J.; Romero-Viacava, M.; Enciso-Roca, E.; Herrera-Calderon, O.; Común-Ventura, P.; Yuli-Posadas, R.Á.; Chacaltana-Ramos, L.; Pari-Olarte, B. Antioxidant activity of the germinated seed of four varieties of Amaranthus caudatus L. from Peru. Pharmacogn. J. 2019, 11, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Omodamiro, O.; Jimoh, M.; Ezurike, P. In vitro antioxidant activity and hypolipidemic effects of an ethanol extract of Amaranthus viridis leaves on hyperlipidemic Wistar albino rats. J. Pharm. Res. Int. 2016, 1–12. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shukor, M.Y.; Shaharuddin, N.A.; Sabullah, M.K.; Ahmad, S.A. Anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities of Amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. Evid. Based Complementary Altern. Med. 2016, 2016, 8090841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rjeibi, I.; Saad, A.B.; Hfaiedh, N. Oxidative damage and hepatotoxicity associated with deltamethrin in rats: The protective effects of Amaranthus spinosus seed extract. Biomed. Pharmacother. 2016, 84, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Akin-Idowu, P.E.; Ademoyegun, O.T.; Olagunju, Y.O.; Aduloju, A.O.; Adebo, U.G. Phytochemical content and antioxidant activity of five grain amaranth species. Am. J. Food Sci. Technol. 2017, 5, 249–255. [Google Scholar]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food Compos. Anal. 2017, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Gresta, F.; Guerrini, A.; Sacchetti, G.; Tacchini, M.; Sortino, O.; Ceravolo, G.; Onofri, A. Agronomic, chemical, and antioxidant characterization of grain amaranths grown in a Mediterranean environment. Crop Sci. 2017, 57, 2688–2698. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Peñas, E.; Dueñas, M.; Frias, J.; Martinez-Villaluenga, C. Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT-Food Sci. Technol. 2017, 76, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Rjeibi, I.; Ben Saad, A.; Ncib, S.; Souid, S.; Alimi, H. Characterization of Amaranthus spinosus collected from different regions: Phytochemical and biological properties. J. Food Biochem. 2017, 41, e1239. [Google Scholar] [CrossRef]
- Pulipati, S.; Babu, P.S.; Naveena, U.; Parveen, S.R.; Nausheen, S.S.; Sai, M.T.N. Determination of total phenolic, tannin, flavonoid contents and evaluation of antioxidant property of Amaranthus tricolor (L). Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Joo, N. Antioxidative properties of Amaranth cauline leaf and suppressive effect against CT-26 cell proliferation of the sausage containing the leaf. Korean J. Food Sci. An. 2018, 38, 570. [Google Scholar]
- Rjeibi, I.; Saad, A.B.; Sdayria, J.; Feriani, A.; Ncib, S.; Allagui, M.S.; Hfaiedh, N.; Souid, S. HPLC–DAD identification of polyphenols from ethyl acetate extract of Amaranthus spinosus leaves and determination of their antioxidant and antinociceptive effects. Inflammopharmacology 2019, 27, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth. J. Integr. Agric. 2018, 17, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem. 2018, 252, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Appl. Biochem. Biotechnol. 2018, 186, 999–1016. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Islam, M.T.; Oba, S. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS ONE 2018, 13, e0206388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Zhou, C.; Cai, Y.; Tang, Y.; Sun, W.; Yao, H.; Zheng, T.; Chen, H.; Xiao, Y.; Shan, Z. Purification, characterization and antioxidant activities in vitro of polysaccharides from Amaranthus hybridus L. PeerJ 2020, 8, e9077. [Google Scholar] [CrossRef]
- Tang, Y.; Xiao, Y.; Tang, Z.; Jin, W.; Wang, Y.; Chen, H.; Yao, H.; Shan, Z.; Bu, T.; Wang, X. Extraction of polysaccharides from Amaranthus hybridus L. by hot water and analysis of their antioxidant activity. PeerJ 2019, 7, e7149. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS ONE 2019, 14, e0222517. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S. Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Oba, S.; Daramy, M.A. Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Nutrients, minerals, pigments, phytochemicals, and radical scavenging activity in Amaranthus blitum leafy vegetables. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, A.; Saxena, D.; Singh, S. Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT-Food Sci. Technol. 2015, 63, 939–945. [Google Scholar] [CrossRef]
- Kumar, K.V.P.; Dharmaraj, U.; Sakhare, S.D.; Inamdar, A.A. Preparation of protein and mineral rich fraction from grain amaranth and evaluation of its functional characteristics. J. Cereal Sci. 2016, 69, 358–362. [Google Scholar] [CrossRef]
- House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. S. Afr. J. Bot. 2020, 135, 408–412. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Szewczyk, K.; Miazga-Karska, M.; Pietrzak, W.; Komsta, Ł.; Krzemińska, B.; Grzywa-Celińska, A. Phenolic composition and skin-related properties of the aerial parts extract of different Hemerocallis cultivars. Antioxidants 2020, 9, 690. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Lin, Y.-K.; Fang, J.-Y. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Bahrami-Teimoori, B.; Nikparast, Y.; Hojatianfar, M.; Akhlaghi, M.; Ghorbani, R.; Pourianfar, H.R. Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. J. Exp. Nanosci. 2017, 12, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Harshiny, M.; AiswaryaDevi, S.; Matheswaran, M. Spiny amaranth leaf extract mediated iron oxide nanoparticles: Biocidal photocatalytic propensity, stability, dissolubility and reusability. Biocatal. Agric. Biotechnol. 2019, 21, 101296. [Google Scholar] [CrossRef]
- Chandrappa, H.; Bhajantri, R.F.; Prarthana, N. Simple fabrication of PVA-ATE (Amaranthus tricolor leaves extract) polymer biocomposites: An efficient UV-Shielding material for organisms in terrestrial and aquatic ecosystems. Opt. Mater. 2020, 109, 110204. [Google Scholar]
- Sasikumar, V.; Subramaniam, A.; Aneesh, A.; Saravanan, G. Protective effect of alkaloids from Amaranthus viridis linn. against hydrogen peroxide induced oxidative damage in human erythrocytes (RBC). Int. J. Clin. Endocrinol. Metab. 2015, 53, 49–53. [Google Scholar]
- Odongo, G.A.; Schlotz, N.; Baldermann, S.; Neugart, S.; Ngwene, B.; Schreiner, M.; Lamy, E. Effects of Amaranthus cruentus L. on aflatoxin B1-and oxidative stress-induced DNA damage in human liver (HepG2) cells. Food Biosci. 2018, 26, 42–48. [Google Scholar] [CrossRef]
- Lado, M.B.; Burini, J.; Rinaldi, G.; Añón, M.C.; Tironi, V.A. Effects of the dietary addition of Amaranth (Amaranthus mantegazzianus) protein isolate on antioxidant status, lipid profiles and blood pressure of rats. Plant Foods Hum. Nutr. 2015, 70, 371–379. [Google Scholar] [CrossRef]
- Ayoka, O.A.; Ojo, O.E.; Imafidon, E.C.; Ademoye, K.A.; Oladele, A.A. Neuro-endocrine effects of aqueous extract of Amaranthus viridis (Linn.) leaf in male Wistar rat model of cyclophosphamide-induced reproductive toxicity. Toxicol. Rep. 2016, 3, 608–619. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz-Ozden, T.; Can, A.; Karatug, A.; Pala-Kara, Z.; Okyar, A.; Bolkent, S. Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats. Toxicol. Ind. Health 2016, 32, 1143–1152. [Google Scholar] [CrossRef]
- Balasubramanian, T.; Karthikeyan, M.; Muhammed Anees, K.; Kadeeja, C.; Jaseela, K. Antidiabetic and antioxidant potentials of Amaranthus hybridus in streptozotocin-induced diabetic rats. J. Diet. Suppl. 2017, 14, 395–410. [Google Scholar] [CrossRef]
- Velarde-Salcedo, A.J.; Regalado-Rentería, E.; Velarde-Salcedo, R.; Juárez-Flores, B.I.; Barrera-Pacheco, A.; De Mejía, E.G.; De La Rosa, A.P.B. Consumption of amaranth induces the accumulation of the antioxidant protein paraoxonase/arylesterase 1 and modulates dipeptidyl peptidase iv activity in plasma of streptozotocin-induced hyperglycemic rats. Lifestyle Genom. 2017, 10, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Aphalo, P.; Martínez, E.N.; Añón, M.C. Amaranth sprouts: A potential health promoting and nutritive natural food. Int. J. Food Prop. 2015, 18, 2688–2698. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.C.O.; Galleano, M.; Añón, M.C.; Tironi, V.A. Amaranth peptides from simulated gastrointestinal digestion: Antioxidant activity against reactive species. Plant Foods Hum. Nutr. 2015, 70, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.C.O.; Nardo, A.; Pavlovic, M.; Rogniaux, H.; Anon, M.C.; Tironi, V.A. Identification and characterization of antioxidant peptides obtained by gastrointestinal digestion of amaranth proteins. Food Chem. 2016, 197, 1160–1167. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Miralles, B.; Hernández-Ledesma, B. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. J. Sci. Food Agric. 2019, 99, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Soriano-Santos, J.; Escalona-Buendía, H. Angiotensin I-converting enzyme inhibitory and antioxidant activities and surfactant properties of protein hydrolysates as obtained of Amaranthus hypochondriacus L. grain. J. Food Sci. Technol. 2015, 52, 2073–2082. [Google Scholar] [CrossRef] [Green Version]
- Sabbione, A.C.; Ibañez, S.M.; Martínez, E.N.; Añón, M.C.; Scilingo, A.A. Antithrombotic and antioxidant activity of amaranth hydrolysate obtained by activation of an endogenous protease. Plant Foods Hum. Nutr. 2016, 71, 174–182. [Google Scholar] [CrossRef]
- Ayala-Niño, A.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Contreras-López, E.; Regal-López, P.; Cepeda-Saez, A. Sequence identification of bioactive peptides from Amaranth seed proteins (Amaranthus hypochondriacus spp.). Molecules 2019, 24, 3033. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Tomas, M.; Zhang, L.; Zengin, G.; Lucini, L.; Capanoglu, E. Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chem. 2020, 332, 127415. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Velásquez-Sánchez, M.; Aguilar-Galvez, A.; Campos, D. In vitro antioxidant and angiotensin I-converting enzyme inhibitory properties of enzymatically hydrolyzed quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus) proteins. Cereal Chem. 2020. [Google Scholar] [CrossRef]
- Famuwagun, A.A.; Alashi, A.M.; Gbadamosi, O.S.; Taiwo, K.A.; Oyedele, D.; Adebooye, O.C.; Aluko, R.E. Antioxidant and enzymes inhibitory properties of Amaranth leaf protein hydrolyzates and ultrafiltration peptide fractions. J. Food Biochem. 2020, e13396. [Google Scholar] [CrossRef] [PubMed]
- Ramkisson, S.; Dwarka, D.; Venter, S.; Mellem, J.J. In vitro anticancer and antioxidant potential of Amaranthus cruentus protein and its hydrolysates. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Sandoval-Sicairos, E.S.; Domínguez-Rodríguez, M.; Montoya-Rodríguez, A.; Milán-Noris, A.K.; Reyes-Moreno, C.; Milán-Carrillo, J. Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in Mexican amaranth. Plant Foods Hum. Nutr. 2020, 75, 192–199. [Google Scholar] [CrossRef] [PubMed]
Species | Material | Country | Extract | Methods/Findings | Ref. |
---|---|---|---|---|---|
A. spinosus | Leaves | Ethiopia | 80% methanol | DPPH IC50 = 83.5 μg/mL; LAS = 67.4% | [38] |
Organic Amaranth | Gluten-free flour | USA | Free-ethanol Bound-2 N NaOH | DPPH = Free: 0.13–0.97 μmol/g; Bound: 9.8–9.9 μmol/g | [39] |
Tannin from A. caudatus | Leaves, flowers, and seeds | Korea | Methanol and hot water | DPPH (RC50) = PFM: 155.1 μg/mL, RLM: 189.9 μg/mL, (GLM, SHW, SM, RFM, GLHW, PFHW, RFHW, RLHW) ≥1000 μg/mL; ABTS (RC50) = PFM: 195.6 μg/mL, RLM: 166.9 μg/mL, RLHW: 303.3 μg/mL, PFHW: 321.7 μg/mL, (GLM, SM, RFM, GLHW, RFHW, SHW) ≥1000 μg/mL | [40] |
A. hypochondriacus, A. caudatus, and A. cruentus | Flower, leaf, seed, sprout, and stalk | Canada | 80% methanol | FRAP = 0.6–62.2 μmol AAE/g DW; ORAC = 30.7–451.4 μmol TE/g DW | [41] |
A. lividus and A. tricolor | Leaves | Thailand | Petroleum ether, methanol, and dichloromethane | DPPH = 1.7 ± 0.9–15.2 ± 1.6 mg VCEAC/g dry plant material ABTS = 2.1 ± 0.9–25 ± 1.6 mg VCEAC/g dry plant material | [42] |
A. caudatus, A. viridis, and A. lividus | Leaves | Sri Lanka | Methanol | DPPH = 4.3 ± 3.2–24.3 ± 1.6%; RP = 0.7 ± 0.1–4.4 ± 0.1 mg AAE/g DW leaf; LPO = 79.2 ± 1.8–84.5 ± 6.3; TAC = 5.7 ± 0.3–15.8 ± 0.46 mg AAE/g DW | [43] |
A. lividus and A. hybridus | Stem and seeds | Bangladesh | Methanol | DPPH IC50 = A. lividus (93 ± 2.4 μg/mL) and A. hybridus (28 ± 1.8 μg/mL) | [44] |
A. caudatus | Germinated seeds | Canada | 90% methanol | DPPH = 43.2 ± 1.1–110.7 ± 1.3 mg Trolox/100 g db; ABTS = 52.3 ± 2.1–129.8 ± 4.5 mg Trolox/100 g db | [45] |
A. caudatus | Germinated seeds | Peru | Methanol | DPPH = 149.6 ± 4.5–151.8 ± 5.1 mg TE/g of sample; ABTS = 155.9 ± 10–180.2 ± 8 mg TE/g of sample; FRAP = 102.4 ± 6–136.4 ± 8 mg TE/g of sample | [46] |
A. viridis | Leaves | Nigeria | Ethanol | DPPH IC50 = 107.8%; NO IC50 = 72.2%; LPO IC50 = 78.1%; FTC IC50 = 78.1% | [47] |
A. viridis | Leaf, seed, and stem | Malaysia | Methanol | DPPH IC50 = leaf, 115.7 ± 1.6 μg/mL, seed, 189.2 ± 1.3 μg/mL, stem, >300 μg/mL; NO IC50 = leaf, 244.36 ± 2.15 μg/mL, seed, 299.4 ± 1.3 μg/mL, stem, >300 μg/mL; FRAP IC50 = leaf, 63.5 ± 1.8 μg/mL, seed, 83.5 ± 1.3 μg/mL, stem, >300 μg/mL | [48] |
A. spinosus | Seeds | Tunisia | Methanol | DPPH = 84.1%; H2O2 = 111.1 ± 8.4 μg/mL | [49] |
A. caudatus, A. cruentus, A. hybrid, A. hypochondriacus A. hybridus | Seeds | USA and Nigeria | Methanol | DPPH = 89.5 ± 0.5–93.4 ± 1.3 g/kg; ABTS = 169.6 ± 3.8–201.5 ± 4.1 mmol TE/100 g; TAC = 140.2 ± 4.9–199.9 ± 16.5 mg AAE/100 g; FR = 0.14–0.19 g/100 g; FC = 57.5 ± 3.3–66.7 ± 6.4 g/kg | [50] |
A. acanthochiton, A. blitum, A. caudatus, A. cruentus, A. deflexus, A. dubius, A. graecizans, A. hybr., A. hybridus, A. palmeri, A. retroflexus, A. spinosus, A. tricolor, A. virindis, and A. thunbergii | Leaves | USA | 50% methanol | ORAC = 38 ± 8.1–90 ± 7.3 mmol TE/g | [51] |
A. cruentus, A. hybridus, A. caudatus, A. hypochondriacus, X hybridus, A. hypochondriacus | Leaves | Italy | Methanol | DPPH IC50 = 1.7–3.4 mg/mL; ABTS IC50 = 0.97–2.2 mg/mL | [52] |
A. caudatus | Sprouts | Peru | Methanol:HCl:water (80:0.1:19.9) | ORAC = 369.5–2525.6 mg TE/100 g DW | [53] |
A. spinosus | Leaves | Tunisia | 80% methanol | DPPH EC50 = 25.6–54.6 μg/mL; H2O2 EC50 = 37.5–116.7 μg/mL | [54] |
A. tricolor | Leaves | India | Chloroform, methanol, and water | DPPH IC50 = 290 (methanol), 657 (chloroform), 830 (water) μg/mL; p-NDA IC50 ≥1000 μg/mL for methanol, chloroform, water | [55] |
A. cruentus | Stem | Korea | 70% ethanol | DPPH IC50 = 279.9–1041.4 μg/mL; ABTS IC50 = 798.4–2672.6 μg/mL | [56] |
A. spinosus | Leaves | Tunisia | 80% ethanol, n-hexane, water, n-butanol, ethyl acetate, and chloroform | TAC EC50 = 45.5 ± 0.3–90.0 ± 2.1 μg/mL; DPPH EC50 = 27.3 ± 0.8–90.7 ± 5.2 μg/mL; H2O2 EC50 = 30.6 ± 1.2–258.9 ± 8.5 μg/mL | [57] |
Vegetable amaranth genotypes (VA6, VA11, VA14, and VA16) | Leaves | Bangladesh | 90% methanol | DPPH = 2.3 ± 0.1–37.5 ± 0.2 TEAC μg/g DW; ABTS = 26.7 ± 0.3–81.8 ± 0.2 TEAC μg/g DW | [58] |
VA6, VA11, VA14, and VA16 | Leaves | Bangladesh | 90% methanol | Significant increase in TAC Highest: VA16, Lowest: VA11 LDS < MDS < SDS | [59] |
A. tricolor | Leaves | Bangladesh | 90% methanol | DPPH = 23.5 ± 0.3–44.8 ± 0.2 TEAC μg/kg DW; ABTS = 52.4 ± 0.6–82.5 ± 0.8 TEAC μg/kg DW | [60] |
Vegetable amaranth | Leaves | Bangladesh | 90% methanol | DPPH = 14.99–32.83 TEAC μg/g DW | [61] |
A. hybridus | Polysaccharides AHP-M-1, AHP-M-2 | China | DPPH = AHP-M-1: 72.4%, AHP-M-2: 78.9%; H2O2 = AHP-M-1: 32.6%, AHP-M-2: 40.2%; superoxide ion = AHP-M-1: 63.9%, AHP-M-2: 80.2%; Fe3+–Fe2+ reduction = AHP-M-1: 0.57, AHP-M-2: 0.90 | [62] | |
A. hybridus | Polysaccharides AHP-H-1, AHP-H-2 | China | DPPH = AHP-H-1: ~80%, AHP-H-2: >80%; H2O2 = AHP-H-1: 40%, AHP-H-2: 48%; superoxide ion = AHP-H-1: 80%, AHP-H-2: >60%; Fe3+–Fe2+ = AHP-H-1: 0.695, AHP-H-2: 0.918 | [63] | |
A. viridis (WAV4, 7, and 9), A. spinosus (WAS11, 13, and 15) | Leaves | Bangladesh | 90% methanol | DPPH = WAV: 21.9 ± 0.1–24.7 ± 0.1 TEAC μg/g DW, WAS: 25.9 ± 0.1–27.6 ± 0.1 TEAC μg/g DW; ABTS = WAV: 45.8 ± 0.4–51.2 ± 0.2 TEAC μg/g DW, WAS: 47.9 ± 0.3–52.4 ± 0.2 TEAC μg/g DW | [64] |
Red amaranth (RA1 to RA25) | Leaves | Bangladesh | 90% methanol | DPPH = RA1: 11.2–RA25: 31.7 TEAC μg/g DW; ABTS = RA1: 21.8–RA25: 62 TEAC μg/g DW | [65] |
A. tricolor and A. lividus | Leaves | Bangladesh | 90% methanol | DPPH = 43.8 TEAC μg/g DW; ABTS = 66.6 TEAC μg/g DW | [66] |
A. lividus | Leaves | Bangladesh | 90% methanol | DPPH = 9.21 ± 0.1–26.6 ± 0.2 TEAC μg/g DW; ABTS = 16.7 ± 0.1–51.7 ± 0.03 TEAC μg/g DW | [67] |
Green morph amaranth | Leaves | Bangladesh | 90% methanol | DPPH = 8.90 ± 0.14–26.56 ± 0.13 TEAC μg/g DW; ABTS = 16.84 ± 0.33–48.12 ± 0.13 TEAC μg/g DW | [68] |
A. blitum | Leaves | Bangladesh | 90% methanol | DPPH = 12.3 ± 0.1–29.5 ± 0.2 TEAC μg/g DW; ABTS = 21.9 ± 0.1–55.7 ± 0.03 TEAC μg/g DW | [69] |
Amaranth grain variety (VL-44) | Cookies from raw and germinated seeds | India | DPPH = raw: 15.1 g/100 g; germinated: 21.4 g/100 g | [70] | |
Amaranth grain variety (K432) | Grain | India | Water/methanol (50:50) and acetone/water (70:30) | DPPH = 16.4 g GAE/kg; ABTS = 15.3 g GAE/kg | [71] |
A. spinosus, A. dubius, A. viridis, and A. tricolor | Aerial portions | India | 100% methanol | DPPH = 63.94 ± 3.72–92.20 ± 4.21 µg/mL; H2O2 = 26.02 ± 1.50–32.13 ± 1.36 µg/mL; Ferric reducing = 20.44 ± 0.94–30.04 ± 1.20 µg/mL | [72] |
Species | Country | Material/Solvent | Cell Line | Dose | Major Findings | Ref. |
---|---|---|---|---|---|---|
A. viridis | India | Alkaloids from leaves/methanol | H2O2-induced human erythrocytes | 25, 50 mg | A dose-dependent increase in the SOD, CAT, GST, GSH, and VC | [81] |
A. lividus and A. tricolor | Thailand | Leaves, petroleum ether, dichloromethane, and methanol | H2O2-treated human neuroblastoma (SH-SY5Y) cell line | 1.56, 3.07, 6.25, 12.5, 25, 50, 100 μg/mL | Significant reduction of ROS dose. A. tricolor all extracts (Effective dose—100 μg/mL) A. lividus-petroleum ether and the methanol (effective dose—100 μg/mL), dichloromethane—50 μg/mL) | [42] |
A. cruentus | Germany | Leaves/ethanol | AFB1 and oxidative stress-induced HepG2 | 1.4, 4.1, 12.3, 37.0, 111.1, 333.3 μg/mL | Decreased ROS production in a concentration-dependent manner. Induction of ARE/Nrf2-mediated antioxidant enzymes | [82] |
Species | Country | Material | Model | Treatment | Methods/Findings | Ref. |
---|---|---|---|---|---|---|
A. mantegazzianus protein | Argentina | Seed flour | Wistar rats | C, Chol (chol 1%, w/w), CE (E 0.005%, w/w), CholE (chol 1%+E 0.005%, w/w), CAI (AI 2.5%, w/w), CholAI (chol 1%+AI 2.5%, w/w) | ↑ antioxidant capacity of the plasma by CholAI ↓ lipid oxidation products level of plasma and liver | [83] |
A. viridis | Nigeria | Leaves | CP-induced Wistar rats | CP+100, 200, and 400 mg/kg of A. viridis | ↑ GSH levels in the brain and testis ↓ TBARS activity in the brain and testis | [84] |
A. spinosus | Tunisia | Seeds | DLM-induced Wistar rats | 250 mg/kg BW for 1 h | ↓MDA levels ↑ SOD and CAT activities and GPx, GSH levels | [49] |
A. lividus | Turkey | Stem with leaves and flowers | CCl4-induced Wistar rats | Pretreatment with A. lividus 250 and 500 mg/kg BW for 9 days and 10th day-CCl4 (1.5 mL/kg BW; 50% in olive oil) | A. lividus supplementation prevented the decrease of CAT activity No significant effect on GST, GPx, GR, and SOD activities | [85] |
A. hybridus | India | Leaves | STZ induced Wistar albino rats | AHELE at a dose of 200 and 400 mg/kg, for 14 days | Dose-dependent ↑ of SOD and CAT activities and GSH levels in the liver and kidney and ↓ MDA levels | [86] |
A. hypochondriacus | Mexico | 20% popped amaranth grain | STZ induced Wistar rats | 30 g, 12 weeks | ↓DPP-IV activity and TC Accumulation of Apo-A-II and PON1 proteins | [87] |
Species | Country | Enzyme/Bacteria | Peptides/Hydrolysates | Peptide Sequence | Findings | Ref. |
---|---|---|---|---|---|---|
A. hypochondriacus | Argentina | Pepsin and pancreatin | Hydrolysate | ABTS = Seed sprout isolate (SI) undigested (0.32) SI digested (0.72) μmol/mg | [88] | |
A. mantegazzianus | Argentina | Pepsin and pancreatin | Hydrolysate | - | IC50 = ESR-OH (25%), ORAC (20%), peroxynitrites (20%), and HORAC (50%) | [89] |
A. mantegazzianus | Argentina | Pepsin and pancreatin | Hydrolysate and peptides | AWEEREQGSR (1) YLAGKPQQEH (2) IYIEQGNGITGM (3) TEVWDSNEQ (4) | IC50 ORAC = (1): 6.7 μg/mL, (2): 16 μg/mL, (3): 17μg/mL, (4): 20 μg/mL | [90] |
A. caudatus | Ecuador | Pepsin and pancreatin | Hydrolysate and peptides | F1 (YESGSQ, GGEDE, NRPET), F2 (FLISCLL, TALEPT, HVIKPPS, SVFDEELS, ASANEPDEN, DFIILE) | ORAC values = F2 fraction 4.47 μmol TE/mg peptide; F1 fraction 1.56 μmol TE/mg peptide | [91] |
A. hypochondriacus | USA | Alcalase | Hydrolysate | - | DPPH and ABTS (40%) | [92] |
A. hypochondriacus | Argentina | Endogenous protease | Hydrolysate (HEP) | - | ABTS; Protein isolate (I) = 5.40 ± 0.50 mg/mL; HEP = 2.1 ± 0.3 mg/mL. ORAC; I = 0.102 ± 0.021 mg/mL; HEP = 0.058 ± 0.027 mg/mL | [93] |
Raw amaranth seeds | Mexico | LAB | Hydrolysate | - | DPPH = 104.1 ± 9.7–168.1 ± 5.7 μmol TE/mL; ABTS = 103.9 ± 10–268.4 ± 11.8 μmol TE/mL; FRAP = 225.6 ± 19.6–381.3 ± 0.6 μmol Fe2+/mL | [37] |
A. hypochondriacus | Mexico | Alcalase and flavourzyme | Hydrolysate H1, H2, and H3 | LVRW, DPKLTL | DPPH = 76.6 ± 1.6–388.9 ± 2.7 μmol TE/100 g; ABTS = 115.6 ± 10.3–425.8 ± 0.6 mg TE/100 g; FRAP = 63.3 ± 5.7–592.5 ± 29.2 μmol Fe2+/100 g | [94] |
Amaranthus spp. | Turkey | Pepsin and pancreatin | Hydrolysate | - | DPPH = T1 (379.5 ± 14.6), T4 (309.4 ± 36.9), T7 (423.8 ± 31.7), T10 (542.8 ± 33.6) mg TE/100 g DW; CUPRAC = T1 (825.7 ± 9.0), T4 (628.0 ± 8.2), T7 (947.7 ± 9.6), T10 (1158.5 ± 12.2) mg TE/100 g DW | [95] |
A. caudatus | Peru | Alcalase, neutrase, flavourzyme, and their combination | Hydrolysate | - | IC50 ABTS = 0.29 mg/mL | [96] |
Amaranthus sp. | Nigeria | Alcalase, trypsin, pepsin, and chymotrypsin | Hydrolysate | - | EC50 (mg/mL) = DPPH (0.35 ± 0.01–1.09 ± 0.07); superoxide (0.91 ± 0.03–0.98 ± 0.10); hydroxyl (0.35 ± 0.04–1.09 ± 0.07); metal chelation (3.76 ± 0.08–4.81 ± 0.09) | [97] |
A. cruentus | South Africa | Alcalase, trypsin, and pepsin | Hydrolysate | - | IC50 (μg/mL) = DPPH (23.06–34.41); FRAP (23.92–28.28); ABTS (114–206.6) | [98] |
A. hypochondriacus | Mexico | Pepsin and pancreatin | GAF, UAF hydrolysate | - | After enzymatic hydrolysis (at 270 min) ORAC UAF (983.1) and GAF (1304.9) μmol TE/mg soluble protein | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-J.; Sharma, A.; Lee, H.-J. A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp. Antioxidants 2020, 9, 1236. https://doi.org/10.3390/antiox9121236
Park S-J, Sharma A, Lee H-J. A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp. Antioxidants. 2020; 9(12):1236. https://doi.org/10.3390/antiox9121236
Chicago/Turabian StylePark, Seon-Joo, Anshul Sharma, and Hae-Jeung Lee. 2020. "A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp." Antioxidants 9, no. 12: 1236. https://doi.org/10.3390/antiox9121236
APA StylePark, S.-J., Sharma, A., & Lee, H.-J. (2020). A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp. Antioxidants, 9(12), 1236. https://doi.org/10.3390/antiox9121236