Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia aurita Constituents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material
2.3. Extraction and Purification of Chemical Constituents
2.4. Spectroscopic Data of the Isolated Compounds
2.5. Alpha-Glucosidase Inhibitory Activity
2.6. Alpha-Amylase Inhibitory Activity
2.7. Molecular Docking Analysis
2.7.1. Selection and Preparation of Ligands
2.7.2. Retrieval and Preparation of Alpha-Amylase and Alpha-Glucosidase Drug Target
2.7.3. Preparation of the Standards
2.7.4. Molecular Docking Using PyRx
2.7.5. Validation of Docking Protocol
2.8. Antioxidant Assays
2.8.1. Ferric-Ion Reducing Antioxidant Power (FRAP) Assay
2.8.2. Automated Oxygen Radical Absorbance Capacity (ORAC) Assay
2.8.3. Trolox Equivalent Absorbance Capacity (TEAC) Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization
3.2. Biological Evaluation
3.2.1. Alpha-Glucosidase and Alpha-Amylase Activities
3.2.2. Molecular Docking
3.2.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabish, S. Is diabetes becoming the biggest epidemic of the twenty-first century? Int. J. Health Sci. 2007, 1, V–VIII. [Google Scholar]
- Olokoba, A.; Obateru, O.; Olokoba, L. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012, 27, 269–273. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Arbain, D.; Shafiqul Islam, A.K.M.; Ahmad, M.S.; Ahmad, M.N. Alpha-glucosidase enzyme biosensor for the electrochemical measurement of antidiabetic potential of medicinal plants. Nanoscale Res. Lett. 2016, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [Green Version]
- Boucher, J.; Kleinridders, A.; Kahn, C. Insulin receptor signaling in normal and insulin- resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 2005, 26, 19–39. [Google Scholar]
- Krentz, A.J.; Bailey, C.J. Oral antidiabetic agents. Drugs 2005, 65, 385–411. [Google Scholar] [CrossRef]
- Palanisamy, S.; Yien, E.L.H.; Shi, L.W.; Si, L.Y.; Qi, S.H.; Ling, L.S.C.; Lun, T.W.; Chen, Y.N. Systematic review of efficacy and safety of newer antidiabetic drugs approved from 2013 to 2017 in controlling HbA1c in Diabetes Patients. Pharmacy 2018, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Etsassala, N.G.E.R.; Badmus, J.A.; Waryo, T.; Marnewick, J.L.; Cupido, C.N.; Hussein, A.A.; Iwuoha, E.I. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from Salvia africana-lutea. Antioxidants 2019, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Petrovska, B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Brieskorn, C.; Fuchs, A.; Brendenberg, J.; McChesney, J.; Wenkert, E. The Structure of carnosol. J. Org. Chem. 1964, 29, 2293–2298. [Google Scholar] [CrossRef]
- Mishra, S.; Verma, A.; Mukerjee, A.; Vijayakumar, M. Anti-hyperglycemic activity of leaves extract of Hyptis suaveolens L. Poit in streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med. 2011, 4, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fons, L.; Garzón, M.; Micol, V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar] [CrossRef]
- Etsassala, N.G.E.R.; Adeloye, A.O.; El-Halawany, A.; Hussein, A.A.; Iwuoha, E.I. Investigation of in-vitro antioxidant and electrochemical activities of isolated compounds from Salvia chamelaeagnea P.J.Bergius Extract. Antioxidants 2019, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Inatani, R.; Nakatani, N.F.; Seto, H. Structure of a new antioxidative phenolic diterpene isolated from Rosemary (Rosmarinus officinalis L.). Agric. Biol. Chem. 1982, 46, 1661–1666. [Google Scholar] [CrossRef]
- Richheimer, S.L.; Bernart, M.W.; King, G.A. Antioxidant activity of lipid-soluble phenolic diterpenes from Rosemary. J. Am. Oil Chem. Soc. 1996, 73, 507–514. [Google Scholar] [CrossRef]
- Bonito, M.; Cicala, C.; Marcotullio, M.; Maione, F.; Mascolo, N. Biological activity of bicyclic and tricyclic diterpenoids from Salvia Species of immediate pharmacological and pharmaceutical interest. Nat. Prod. Commun. 2011, 6, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Fischedick, J.T.; Standiford, M.; Johnson, D.A.; Johnson, J.A. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway. Bioorg. Med. Chem. 2013, 21, 2618–2622. [Google Scholar] [CrossRef] [Green Version]
- Ruaxgruxgsi, N.; Tappayuthpijarn, P.; Taxtiyataxa, P. Traditional medicinal plants of thailand. Isolation and structure elucidation of two new flavonoids, (2r,3r)-dihydroquercetin-4′-methyletherand(2r,3r)-dihydroquercetin-4′,7-dimethylether from blumea balsamifera. J. Nat. Prod. 1981, 44, 541–545. [Google Scholar]
- Kamatou, G.P.P.; Makunga, N.P.; Ramogola, W.P.N.; Viljoen, A. South African Salvia species: A review of biological activities and phytochemistry. J. Ethnopharmacol. 2008, 119, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Asghari, B.; Salehi, P.; Sonboli, A.; Ebrahimi, S.N. Flavonoids from Salvia chloroleuca with alpha-amylsae and alpha-glucosidase inhibitory effect. Iran. J. Pharm. Res. IJPR 2015, 14, 609. [Google Scholar] [PubMed]
- Telagari, M.; Hullatti, K. In-vitro alpha-amylase and alpha-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indiam J. Pharmacol. 2015, 47, 425–429. [Google Scholar]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of”antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 238, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Prior, R. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 1998, 22, 749–760. [Google Scholar]
- Pellegrini, N.; Re, R.; Yang, M.; Rice-Evans, C.A. Screening of dietary carotenoid rich fruit extracts for antioxidant activities applying ABTS radical cation decolorisation assay. Methods Enzymol. 1999, 299, 379–389. [Google Scholar]
- Sindhu, S.; Vaibhavi, K.; Anshu, M. In vitro studies on alpha-amylase and alpha- glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 2013, 3, 128–132. [Google Scholar]
- Mohamed, E.S. Potent alpha-glucosidase and alpha-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement. Altern. Med. 2012, 12, 6882. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.H.; Lee, S.H.; Yoon, N.Y.; Jung, W.K.; Jeon, Y.J.; Kim, S.K.; Lee, M.S.; Kim, Y.M. Alpha-glucosidase and alpha-amylase inhibitory activities of phlorotannins from Eisenia bicyclis. J. Sci. Food Agric. 2012, 92, 2084–2090. [Google Scholar] [CrossRef]
- Thilagam, E.; Parimaladevi, B.; Kumarappan, C.; Mandal, S.C.J. Alpha-glucosidase and alpha-amylase inhibitory activity of Senna surattensis. Acupunct. Meridian Stud. 2013, 6, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Obho, G. Antioxidant and antimicrobial properties of ethanolic extract of Ocimum gratissimum Leaves. J. Pharmacol. Toxicol. 2006, 1, 47–53. [Google Scholar]
- Wang, H.; Du, Y.; Song, H. Alpha-glucosidase and alpha-amylase inhibitory activities of guava leaves. Food Chem. 2010, 123, 6–13. [Google Scholar] [CrossRef]
- Vlavcheski, F.; Baron, D.; Vlachogiannis, I.A.; MacPherson, R.E.K.; Tsiani, E. Carnosol increases skeletal muscle cell glucose uptake via AMPK-Dependent GLUT4 glucose transporter translocation. Int. J. Mol. Sci. 2018, 29, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, B.A.; Akhtar, N.; Anwar, M.; Mahmood, T.; Khan, H.; Hussain, I.; Khan, K.A. Botanical Description of Coleus forskohlii: A review. J. Med. Plants Res. 2012, 6, 4832–4835. [Google Scholar]
- Samarghandian, S.; Borji, A.; Farkhondeh, T. Evaluation of antidiabetic activity of carnosol (Phenolic diterpene in Rosemary) in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Naimi, M.; Vlavcheski, F.; Shamshoum, H.; Tsiani, E. Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives. Nutrients 2017, 9, 968. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.S.; Noda, S.; Shigemori, G.; Kuriyama, R.; Takahashi, S.; Umemura, M.; Takahashi, Y.; Inoue, H. Phenolic diterpenes from Rosemary suppress cAMP responsiveness of gluconeogenic gene promoters. Phytother. Res. 2013, 27, 906–910. [Google Scholar] [CrossRef]
- Bischoff, H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin. Investig. Med. 1995, 18, 303–311. [Google Scholar]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.; Scism-Bacon, J.; Glass, L. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. Int. J. Clin. Pract. 2006, 60, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Yatoo, M.I.; Dimri, U.; Gopalakrishan, A.; Saminathan, M.; Dhama, K.; Mathesh, K.; Saxena, A.; Gopinath, D.; Husain, S. Antidiabetic and oxidative stress ameliorative potential of ethanolic extract of Pedicularis longiflora Rudolph. Int. J. Pharmacol. 2016, 12, 177–187. [Google Scholar] [CrossRef]
- Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician 2016, 8, 1832–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habtemariam, S. The therapeutic potential of Rosemary (Rosmarinus officinalis) diterpenes for alzheimer’s disease. Evid. Based Complement. Altern. Methods 2016, 2016, 2680409. [Google Scholar] [CrossRef] [Green Version]
- Masuda, T.; Kirikihira, T.; Takeda, Y. Recovery of antioxidant activity from carnosol quinone: Antioxidants obtained from a water-promoted conversion of carnosol quinone. J. Agric. Food Chem. 2005, 53, 6831–6834. [Google Scholar] [CrossRef] [PubMed]
- Manderville, R. Ambient reactivity of phenoxyl radicals in DNA adduction. J. Chem. 2009, 83, 1261–1267. [Google Scholar]
Items | Alpha-Glucosidase IC50 (µg/mL) | Alpha-Amylase IC50 (µg/mL) |
---|---|---|
Carnosol | 51.8 ± 1.9 | 19.8 ± 1.4 |
Rosmanol | 16.4 ± 1.4 | 40.9 ± 1.2 |
7-methoxyrosmanol | 4.2 ± 0.7 | NA |
12-methoxycarnosic acid | 36.9 ± 2.1 | 16.2 ± 0.3 |
4,7-dimethylapigenin ether | 28.7 ± 0.9 | NA |
Crude extract | 241.9 ± 2.7 | NA |
Acarbose | 610.4 ± 1.0 | 10.2 ± 0.6 |
S/N | Compounds | PubChem CID | α-Amylase Binding Energy (Kcal/mol) | α-Glucosidase Binding Energy (Kcal/mol) |
---|---|---|---|---|
1 | Carnosol | 442,009 (1) | −6.3 | −5.6 |
2 | Rosmanol | 13,966,122 | −5.2 | −6.9 |
3 | 7-methoxyrosmanol | 9,950,773 | −6.4 | −14.9 |
4 | 12-methoxycarnosic acid | 9,974,918 | −6.4 | −5.6 |
5 | 4,7-dimethyl apigenin | 5,281,601 | −6.1 | −4.3 |
6 | Acarbose (standard) | 41,774 | −8.5 | −14.5 |
NAME | CATEGORY | DISTANCE (Å) |
---|---|---|
.:ALA537:HNN: N: 7-methoxyrosmanol:O | Hydrogen Bond | 2.97128 |
N: 7-methoxyrosmanol:H—.:PHE535:O | Hydrogen Bond | 3.03951 |
.:PRO287:CA—N: 7-methoxyrosmanol:O | Hydrogen Bond | 2.90164 |
.:PHE522:CA—N: 7-methoxyrosmanol:O | Hydrogen Bond | 2.85006 |
.:PRO287—N: 7-methoxyrosmanol | Hydrophobic | 5.06789 |
.:ALA509—N: 7-methoxyrosmanol:C | Hydrophobic | 4.05099 |
.:ALA512—N: 7-methoxyrosmanol:C | Hydrophobic | 3.63559 |
.:ALA512—N: 7-methoxyrosmanol:C | Hydrophobic | 3.80942 |
.:ALA537—N: 7-methoxyrosmanol | Hydrophobic | 5.1986 |
.:ALA537—N: 7-methoxyrosmanol:C | Hydrophobic | 3.12883 |
.:MET567—N: 7-methoxyrosmanol | Hydrophobic | 5.24033 |
N: 7-methoxyrosmanol:C—.:PRO287 | Hydrophobic | 3.6525 |
N: 7-methoxyrosmanol:C—.:MET567 | Hydrophobic | 2.66937 |
N: 7-methoxyrosmanol:C—.:ILE523 | Hydrophobic | 5.18761 |
N: 7-methoxyrosmanol:C—.:ILE523 | Hydrophobic | 4.28153 |
.:PHE641—N: 7-methoxyrosmanol:C | Hydrophobic | 4.60588 |
N: 7-methoxyrosmanol—.:ALA285 | Hydrophobic | 4.16732 |
N: 7-methoxyrosmanol—.:ILE523 | Hydrophobic | 4.57178 |
NAME | CATEGORY | DISTANCE (Å) |
---|---|---|
.:ALA285:HN—N:Acarbose:O | Hydrogen Bond | 3.08738 |
.:SER288:HN—N: Acarbose:O | Hydrogen Bond | 2.65592 |
.:ALA537:HN—N: Acarbose:N | Hydrogen Bond | 2.75117 |
.:LYS776:HZ1—N: Acarbose:O | Hydrogen Bond | 2.43057 |
N: Acarbose:H—.:MET567:SD | Hydrogen Bond | 2.65026 |
N: Acarbose:H—.:ALA285:O | Hydrogen Bond | 2.41018 |
N: Acarbose:H—.:ALA285:O | Hydrogen Bond | 2.89448 |
N: Acarbose:H—.:GLY564:O | Hydrogen Bond | 2.20166 |
N: Acarbose:H—.:SER521:O | Hydrogen Bond | 2.51361 |
N: Acarbose:H—.:LEU286:O | Hydrogen Bond | 2.23783 |
N: Acarbose:H—N:UNK1:O | Hydrogen Bond | 3.04118 |
N: Acarbose:C—.:PHE535:O | Hydrogen Bond | 3.11041 |
.:ALA536—N: Acarbose:C | Hydrophobic | 3.29491 |
.:ALA537—N: Acarbose:C | Hydrophobic | 3.37906 |
N: Acarbose:C—.:ILE523 | Hydrophobic | 4.52239 |
Items | ORAC (mM TE/g) | TEAC (mM TE/g) | FRAP (mM AAE/g) |
---|---|---|---|
Carnosol | 23.96 ± 0.01 | 0.33 ± 0.002 | 3.92 ± 0.002 |
Rosmanol | 25.79 ± 0.01 | 2.06 ± 0.003 | 1.52 ± 0.002 |
7-methoxyrosmanol | 23.94 ± 0.02 | 0.22 ±0.002 | 1.32 ± 0.002 |
12-methoxycarnosic acid | 20.25 ± 0.01 | 0.34 ± 0.003 | 0.51 ± 0.003 |
4,7-dimethylapigenin ether | 6.47 ± 0.01 | 3.19 ± 0.003 | 0.61 ± 0.006 |
Crude extract | 4.45 ± 0.00 | 0.72 ± 0.006 | 0.39 ± 0.002 |
EGCG | 3.98 ± 0.00 | 4.15 ± 0.02 | 7.53 ± 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etsassala, N.G.E.R.; Badmus, J.A.; Marnewick, J.L.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia aurita Constituents. Antioxidants 2020, 9, 1149. https://doi.org/10.3390/antiox9111149
Etsassala NGER, Badmus JA, Marnewick JL, Iwuoha EI, Nchu F, Hussein AA. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia aurita Constituents. Antioxidants. 2020; 9(11):1149. https://doi.org/10.3390/antiox9111149
Chicago/Turabian StyleEtsassala, Ninon G. E. R., Jelili A. Badmus, Jeanine L. Marnewick, Emmanuel I. Iwuoha, Felix Nchu, and Ahmed A. Hussein. 2020. "Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia aurita Constituents" Antioxidants 9, no. 11: 1149. https://doi.org/10.3390/antiox9111149