Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups and Initial Management
2.2. Dietary Habits and Physical Activity Assessment
2.3. Ophthalmologic Examination
2.4. Blood Sample Collection, RBC and PLT Preparation
2.5. The Activity of Antioxidant Enzymes
2.5.1. GSH Concentration
2.5.2. SOD Activity
2.5.3. CAT Activity
2.5.4. GPx Activity
2.5.5. GST Activity
2.5.6. R-GSSG Activity
2.5.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Subjects
3.2. Analysis of Lifestyle Habits
3.3. Components of the Antioxidant System
3.4. Correlations between the Antioxidant System and Lifestyle Factors
3.5. Genotypes and Components of the Antioxidant System
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMD | age-related macular degeneration |
CAT | catalase |
CNV | choroidal neovascularization |
GA | geographic atrophy |
GPx | glutathione peroxidase |
R-GSSG | glutathione reductase |
GST | glutathione transferase |
nAMD | neovascular AMD |
PLT | platelets |
ROS | reactive oxygen species |
RBCs | red blood cells |
GSH | reduced glutathione |
RPE | retinal pigment epithelium |
SOD | superoxide dismutase |
References
- Al-Zamil, W.M.; Yassin, S.A. Recent developments in age-related macular degeneration: A review. Clin. Interv. Aging 2017, 12, 1313–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alswailmi, F.K. Global prevalence and causes of visual impairment with special reference to the general population of Saudi Arabia. Pak. J. Med Sci. 2018, 34, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Cheung, C.M.G.; Panda-Jonas, S. Updates on the Epidemiology of Age-Related Macular Degeneration. Asia Pac. J. Ophthalmol (Phila) 2017, 6, 493–497. [Google Scholar] [CrossRef]
- Pennington, K.L.; DeAngelis, M.M. Epidemiology of age-related macular degeneration (AMD): Associations with cardiovascular disease phenotypes and lipid factors. Eye Vis. (Lond. Engl.) 2016, 3, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmier, J.K.; Jones, M.L.; Halpern, M.T. The burden of age-related macular degeneration. Pharmacoeconomics 2006, 24, 319–334. [Google Scholar] [CrossRef]
- Hernandez-Zimbron, L.F.; Zamora-Alvarado, R.; Ochoa-De la Paz, L.; Velez-Montoya, R.; Zenteno, E.; Gulias-Canizo, R.; Quiroz-Mercado, H.; Gonzalez-Salinas, R. Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. Oxid. Med. Cell Longev. 2018, 2018, 8374647. [Google Scholar] [CrossRef]
- Morris, B.; Imrie, F.; Armbrecht, A.-M.; Dhillon, B. Age-related macular degeneration and recent developments: New hope for old eyes? Postgrad. Med. J. 2007, 83, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Gehrs, K.M.; Anderson, D.H.; Johnson, L.V.; Hageman, G.S. Age-related macular degeneration--emerging pathogenetic and therapeutic concepts. Ann. Med. 2006, 38, 450–471. [Google Scholar] [CrossRef]
- Carneiro, Â.; Andrade, J.P. Nutritional and Lifestyle Interventions for Age-Related Macular Degeneration: A Review. Oxidative Med. Cell. Longev. 2017, 2017, 6469138. [Google Scholar] [CrossRef]
- Pinazo-Durán, M.D.; Gómez-Ulla, F.; Arias, L.; Araiz, J.; Casaroli-Marano, R.; Gallego-Pinazo, R.; García-Medina, J.J.; López-Gálvez, M.I.; Manzanas, L.; Salas, A.; et al. Do nutritional supplements have a role in age macular degeneration prevention? J. Ophthalmol. 2014, 2014, 901686. [Google Scholar] [CrossRef] [Green Version]
- Chapman, N.A.; Jacobs, R.J.; Braakhuis, A.J. Role of diet and food intake in age-related macular degeneration: A systematic review. Clin. Exp. Ophthalmol. 2019, 47, 106–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janko, N.-Z. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol. 2001, 119, 1417–1436. [Google Scholar] [CrossRef] [Green Version]
- Gorusupudi, A.; Nelson, K.; Bernstein, P.S. The Age-Related Eye Disease 2 Study: Micronutrients in the Treatment of Macular Degeneration. Adv. Nutr. (BethesdaMd.) 2017, 8, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, J.G.; Evans, J.R. Advice about diet and smoking for people with or at risk of age-related macular degeneration: A cross-sectional survey of eye care professionals in the UK. BMC Public Health 2013, 13, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, H.E.; Ng, H.S.; Yap, W.-S.; Goh, H.J.H.; Yim, H.S. Nutrients for Prevention of Macular Degeneration and Eye-Related Diseases. Antioxidants 2019, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Vina, J.; Sanchis-Gomar, F.; Martinez-Bello, V.; Gomez-Cabrera, M.C. Exercise acts as a drug; the pharmacological benefits of exercise. Br. J. Pharmacol. 2012, 167, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.; Bedell, M.; Zhang, K. Age-related macular degeneration: Genetic and environmental factors of disease. Mol. Interv. 2010, 10, 271–281. [Google Scholar] [CrossRef]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.-Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef]
- Cascella, R.; Strafella, C.; Longo, G.; Ragazzo, M.; Manzo, L.; De Felici, C.; Errichiello, V.; Caputo, V.; Viola, F.; Eandi, C.M.; et al. Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration: Significant association of twelve variants. Oncotarget 2017, 9, 7812–7821. [Google Scholar] [CrossRef] [Green Version]
- Chakravarthy, U.; McKay, G.J.; de Jong, P.T.; Rahu, M.; Seland, J.; Soubrane, G.; Tomazzoli, L.; Topouzis, F.; Vingerling, J.R.; Vioque, J.; et al. ARMS2 increases the risk of early and late age-related macular degeneration in the European Eye Study. Ophthalmology 2013, 120, 342–348. [Google Scholar] [CrossRef]
- Conley, S.M.; Naash, M.I. Gene therapy for PRPH2-associated ocular disease: Challenges and prospects. Cold Spring Harb. Perspect. Med. 2014, 4, a017376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velilla, S.; García-Medina, J.J.; García-Layana, A.; Dolz-Marco, R.; Pons-Vázquez, S.; Pinazo-Durán, M.D.; Gómez-Ulla, F.; Arévalo, J.F.; Díaz-Llopis, M.; Gallego-Pinazo, R. Smoking and age-related macular degeneration: Review and update. J. Ophthalmol. 2013, 2013, 895147. [Google Scholar] [CrossRef] [PubMed]
- Saunier, V.; Merle, B.M.J.; Delyfer, M.N.; Cougnard-Gregoire, A.; Rougier, M.B.; Amouyel, P.; Lambert, J.C.; Dartigues, J.F.; Korobelnik, J.F.; Delcourt, C. Incidence of and Risk Factors Associated with Age-Related Macular Degeneration: Four-Year Follow-up From the ALIENOR Study. JAMA Ophthalmol. 2018, 136, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Myers, C.E.; Cruickshanks, K.J.; Gangnon, R.E.; Danforth, L.G.; Sivakumaran, T.A.; Iyengar, S.K.; Tsai, M.Y.; Klein, B.E. Markers of inflammation, oxidative stress, and endothelial dysfunction and the 20-year cumulative incidence of early age-related macular degeneration: The Beaver Dam Eye Study. JAMA Ophthalmol. 2014, 132, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Kauppinen, A.; Paterno, J.J.; Blasiak, J.; Salminen, A.; Kaarniranta, K. Inflammation and its role in age-related macular degeneration. Cell Mol. Life Sci. 2016, 73, 1765–1786. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Taneja, V.; Vassallo, R. Cigarette smoking and inflammation: Cellular and molecular mechanisms. J. Dent. Res. 2012, 91, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Shaw, P.X.; Stiles, T.; Douglas, C.; Ho, D.; Fan, W.; Du, H.; Xiao, X. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol. Sci. 2016, 3, 196–221. [Google Scholar] [CrossRef]
- Masuda, T.; Shimazawa, M.; Hara, H. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone). Oxidative Med. Cell. Longev. 2017, 2017, 9208489. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef] [Green Version]
- Handa, J.T. How does the macula protect itself from oxidative stress? Mol. Asp. Med. 2012, 33, 418–435. [Google Scholar] [CrossRef] [Green Version]
- Plestina-Borjan, I.; Katusic, D.; Medvidovic-Grubisic, M.; Supe-Domic, D.; Bucan, K.; Tandara, L.; Rogosic, V. Association of age-related macular degeneration with erythrocyte antioxidant enzymes activity and serum total antioxidant status. Oxidative Med. Cell. Longev. 2015, 2015, 804054. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, Z.; Ucgun, N.I.; Yildirim, F. The role of oxidative stress and antioxidants in the pathogenesis of age-related macular degeneration. Clinics (Sao Paulo Braz.) 2011, 66, 743–746. [Google Scholar] [CrossRef]
- Nunes, S.; Alves, D.; Barreto, P.; Raimundo, M.; da Luz Cachulo, M.; Farinha, C.; Lains, I.; Rodrigues, J.; Almeida, C.; Ribeiro, L.; et al. Adherence to a Mediterranean diet and its association with age-related macular degeneration. The Coimbra Eye Study-Report 4. Nutrition 2018, 51–52, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Srinivasan, S.; Muralidharan, V.; Roy, R.; Jayprakash, V.; Raman, R. Prevention of Age-Related Macular Degeneration. Asia Pac. J. Ophthalmol. (Phila) 2017, 6, 520–526. [Google Scholar] [CrossRef]
- Ferris, F.L., III; Wilkinson, C.P.; Bird, A.; Chakravarthy, U.; Chew, E.; Csaky, K.; Sadda, S.R. Clinical classification of age-related macular degeneration. Ophthalmology 2013, 120, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Fleisch, H. The measure of hemolysis by the determination in the plasma of hemoglobin, methemalbumin and their derivatives. Helv. Med. Acta 1960, 27, 383–407. [Google Scholar]
- Hunter, F.T.; Grove-Rasmussen, M.; Soutter, L. A spectrophotometric method for quantitating hemoglobin in plasma or serum. Am. J. Clin. Pathol 1950, 20, 429–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Schneider, C.D.; Bock, P.M.; Becker, G.F.; Moreira, J.C.F.; Bello-Klein, A.; Oliveira, A.R. Comparison of the effects of two antioxidant diets on oxidative stress markers in triathletes. Biol. Sport 2018, 35, 181–189. [Google Scholar] [CrossRef]
- Ulanczyk, Z.; Sobus, A.; Luczkowska, K.; Grabowicz, A.; Mozolewska-Piotrowska, K.; Safranow, K.; Kawa, M.p.; Palucha, A.; Krawczyk, M.; Sikora, P.; et al. Associations of microRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism-An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2019, 20, 5750. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.K.; Gupta, A.; Prabhakar, S.; Singh, R.; Sharma, S.K.; Chen, W.; Anand, A. Association between CFH Y402H polymorphism and age related macular degeneration in North Indian cohort. PLoS ONE 2013, 8, e70193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litwinska, Z.; Sobus, A.; Luczkowska, K.; Grabowicz, A.; Mozolewska-Piotrowska, K.; Safranow, K.; Kawa, M.p.; Machalinski, B.; Machalinska, A. The Interplay Between Systemic Inflammatory Factors and MicroRNAs in Age-Related Macular Degeneration. Front. Aging Neurosci. 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrowicka, M.; Mrowicki, J.; Szaflik, J.p.; Szaflik, M.; Ulinska, M.; Szaflik, J.; Majsterek, I. Analysis of antioxidative factors related to AMD risk development in the polish patients. Acta Ophthalmol. 2017, 95, 530–536. [Google Scholar] [CrossRef]
- Delcourt, C.; Cristol, J.p.; Leger, C.L.; Descomps, B.; Papoz, L. Associations of antioxidant enzymes with cataract and age-related macular degeneration. Pola Study. Pathol. Ocul. Liees A L’age. Ophthalmol. 1999, 106, 215–222. [Google Scholar] [CrossRef]
- Ueta, T.; Inoue, T.; Furukawa, T.; Tamaki, Y.; Nakagawa, Y.; Imai, H.; Yanagi, Y. Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J. Biol. Chem. 2012, 287, 7675–7682. [Google Scholar] [CrossRef] [Green Version]
- Tokarz, P.; Kaarniranta, K.; Blasiak, J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013, 14, 461–482. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaie, T.; Floyd, R.A. Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys. 1994, 314, 112–119. [Google Scholar] [CrossRef]
- Cohen, S.M.; Olin, K.L.; Feuer, W.J.; Hjelmeland, L.; Keen, C.L.; Morse, L.S. Low glutathione reductase and peroxidase activity in age-related macular degeneration. Br. J. Ophthalmol 1994, 78, 791–794. [Google Scholar] [CrossRef]
- Čolak, E.; Majkić-Singh, N.; Žoric, L.; Radosavljević, A.; Kosanović-Jaković, N. The impact of inflammation to the antioxidant defense parameters in AMD patients. Aging Clin. Exp. Res. 2012, 24, 588–594. [Google Scholar] [CrossRef]
- Hunter, A.A., III; Smit-McBride, Z.; Anderson, R.; Bordbari, M.H.; Ying, G.S.; Kim, E.S.; Park, S.S.; Telander, D.G.; Dunaief, J.L.; Hjelmeland, L.M.; et al. GSTM1 and GSTM5 Genetic Polymorphisms and Expression in Age-Related Macular Degeneration. Curr. Eye Res. 2016, 41, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oz, O.; Aras Ates, N.; Tamer, L.; Yildirim, O.; Adigüzel, U. Glutathione S-transferase M1, T1, and P1 gene polymorphism in exudative age-related macular degeneration: A preliminary report. Eur. J. Ophthalmol. 2006, 16, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Rodrigues, G.A. Progress and perspectives on the role of RPE cell inflammatory responses in the development of age-related macular degeneration. J. Inflamm. Res. 2008, 1, 49–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venza, I.; Visalli, M.; Cucinotta, M.; Teti, D.; Venza, M. Association between oxidative stress and macromolecular damage in elderly patients with age-related macular degeneration. Aging Clin. Exp. Res. 2012, 24, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, L.; Zhu, L.; Jia, X.; Li, X.; Jia, H.; Wang, Y.; Weber, P.; Long, J.; Liu, J. Hydroxytyrosol protects retinal pigment epithelial cells from acrolein-induced oxidative stress and mitochondrial dysfunction. J. Neurochem. 2007, 103, 2690–2700. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Oveson, B.C.; Jo, Y.J.; Lauer, T.W.; Usui, S.; Komeima, K.; Xie, B.; Campochiaro, P.A. Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid. Redox Signal. 2009, 11, 715–724. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Liles, M.R.; Newsome, D.A.; Oliver, P.D. Antioxidant enzymes in the aging human retinal pigment epithelium. Arch. Ophthalmol. 1991, 109, 1285–1288. [Google Scholar] [CrossRef]
- Frank, R.N.; Amin, R.H.; Puklin, J.E. Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration. Am. J. Ophthalmol. 1999, 127, 694–709. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- The Age-Related Eye Disease Study: A clinical trial of zinc and antioxidants--Age-Related Eye Disease Study Report No. 2. J. Nutr. 2000, 130, 1516s–1519s. [CrossRef] [Green Version]
- Whitehead, A.J.; Mares, J.A.; Danis, R.P. Macular Pigment: A Review of Current Knowledge. Arch. Ophthalmol. 2006, 124, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Mares-Perlman, J.A.; Fisher, A.I.; Klein, R.; Palta, M.; Block, G.; Millen, A.E.; Wright, J.D. Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am. J. Epidemiol. 2001, 153, 424–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, B.; Liew, G.; Tang, D.; Burlutsky, G.; Flood, V.M.; Mitchell, P. Consumption of eggs and the 15-year incidence of age-related macular degeneration. Clin. Nutr. 2020, 39, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Gray, J. Considering the benefits of egg consumption for older people at risk of sarcopenia. Br. J. Community Nurs. 2016, 21, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.S.; Wang, J.J.; Flood, V.; Mitchell, P. Dietary fatty acids and the 10-year incidence of age-related macular degeneration: The Blue Mountains Eye Study. Arch. Ophthalmol 2009, 127, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.A.; López-Sánchez, R.C.; Rendón-Ramírez, A. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage. Oxidative Med. Cell. Longev. 2016, 2016, 1543809. [Google Scholar] [CrossRef] [Green Version]
- Knudtson, M.D.; Klein, R.; Klein, B.E. Alcohol consumption and the 15-year cumulative incidence of age-related macular degeneration. Am. J. Ophthalmol. 2007, 143, 1026–1029. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.K.M.; Chong, E.W.; Williamson, E.; Aung, K.Z.; Makeyeva, G.A.; Giles, G.G.; English, D.R.; Hopper, J.; Guymer, R.H.; Baird, P.N.; et al. 20/20—Alcohol and Age-related Macular Degeneration: The Melbourne Collaborative Cohort Study. Am. J. Epidemiol. 2012, 176, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, B.; Liew, G.; Burlutsky, G.; Mitchell, P. Physical Activity and the 15-Year Incidence of Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7799–7803. [Google Scholar] [CrossRef] [Green Version]
- Knudtson, M.D.; Klein, R.; Klein, B.E. Physical activity and the 15-year cumulative incidence of age-related macular degeneration: The Beaver Dam Eye Study. Br. J. Ophthalmol. 2006, 90, 1461–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuinness, M.B.; Le, J.; Mitchell, P.; Gopinath, B.; Cerin, E.; Saksens, N.T.M.; Schick, T.; Hoyng, C.B.; Guymer, R.H.; Finger, R.P. Physical Activity and Age-related Macular Degeneration: A Systematic Literature Review and Meta-analysis. Am. J. Ophthalmol. 2017, 180, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Risk factors for neovascular age-related macular degeneration. Eye Dis. Case-Control Study Group. Arch. Ophthalmol. 1992, 110, 1701–1708. [CrossRef]
- Astrup, A. Healthy lifestyles in Europe: Prevention of obesity and type II diabetes by diet and physical activity. Public Health Nutr. 2001, 4, 499–515. [Google Scholar] [CrossRef]
Parameter | AMD Group | Control Group | p-Value * |
---|---|---|---|
Number of patients | 330 | 121 | - |
Sex (male/female) | 135/219 | 32/89 | 0.02 |
Age [years] (mean ± SD) | 73.4 ± 8.0 | 73.1 ± 6.0 | 0.41 |
Current smokers (%) | 13.6% | 6.3% | 0.05 |
Former smokers (%) | 51.4% | 30.9% | <0.001 |
Smoking pack-years (mean ± SD) | 13.6 ± 18.9 | 6.0 ± 13.1 | <0.001 |
Period without smoking [years] (mean ± SD) | 6.8 ± 10.9 | 5.3 ± 10.2 | 0.06 |
Iris colour (dark/light) | 91/261 | 26/95 | 0.39 |
Outdoor/indor working conditions | 40.1/59.9% | 33.1/66.9% | 0.19 |
MAP [mmHg] (mean ± SD) | 98.3 ± 11.1 | 98.7 ± 9.7 | 0.86 |
Disease history: | |||
Hypertension (%) | 64.7% | 71.1% | 0.27 |
Hypertension duration [years] (mean ± SD) | 8.2 ± 9.5 | 9.2 ± 9.9 | 0.27 |
Ischemic heart disease (%) | 16.2% | 11.3% | 0.33 |
Ischemic heart disease duration [years] (mean ± SD) | 1.2 ± 4.2 | 0.8 ± 3.3 | 0.26 |
Aortic aneurysm (%) | 1.6% | 0.0% | 0.59 |
Peripheral artery disease (%) | 5.0% | 6.2% | 0.61 |
Cerebral stroke (%) | 2.8% | 3.1% | 1.00 |
Cardiac infarction (%) | 6.2% | 6.1% | 1.00 |
Currently taken medications: | |||
Hypotensive drugs/vasodilators | 65.0% | 70.1% | 0.39 |
Cardiac/antiarrhythmic drugs | 13.9% | 14.4% | 0.87 |
NSAIDs | 20.2% | 19.6% | 1.00 |
Hormonal drugs | 17.1% | 20.6% | 0.45 |
Thyroxine | 13.7% | 20.6% | 0.11 |
Steroids | 1.9% | 1.0% | 1.00 |
Other hormonal drugs | 1.3% | 0.0% | 0.58 |
Statins | 26.6% | 36.1% | 0.07 |
Antidepressants | 4.7% | 5.2% | 0.79 |
Antiasthmatic drugs | 7.4% | 3.1% | 0.16 |
BMI [kg/m2] (mean ± SD) | 26.9 ± 4.2 | 26.6 ± 3.7 | 0.43 |
WHR [cm/cm] (mean ± SD) | 0.90 ± 0.10 | 0.88 ± 0.10 | 0.13 |
Waist circumference [cm] (mean ± SD) | 103.3 ± 9.1 | 102.1 ± 7.3 | 0.33 |
Intensive physical activity (MET) | 269.2 ± 824.2 | 173.5 ± 451.7 | 0.59 |
Average physical activity (MET) | 490.3 ± 1151.9 | 433.8 ± 706.2 | 0.35 |
Walking (MET) | 778.8 ± 914.3 | 785.6 ± 852.4 | 0.63 |
Total physical activity (MET) | 1536.2 ± 2025.1 | 1382.5 ± 1493.5 | 0.97 |
Cholesterol [mg/dL] (mean ± SD) | 204.4 ± 44.6 | 202.8 ± 43.3 | 0.99 |
HDL[mg/dL] (mean ± SD) | 60.1 ± 14.0 | 59.8 ± 13.6 | 0.90 |
LDL[mg/dL] (mean ± SD) | 119.9 ± 39.2 | 117.5 ± 37.5 | 0.71 |
Triglycerides [mg/dL] (mean ± SD) | 106.2 ± 51.5 | 108.9 ± 52.4 | 0.38 |
Glucose [mg/dL] (mean ± SD) | 104.8 ± 12.7 | 102.8 ± 11.0 | 0.12 |
Food Group | Portions Per Week (%) | AMD Group | Control Group | p-Value * |
---|---|---|---|---|
Fatty fish | <1 | 73.67% | 59.57% | 0.008 |
2–4 | 26.02% | 39.36% | ||
>4 | 0.31% | 1.06% | ||
Eggs | <1 | 23.82% | 10.75% | 0.04 |
2–4 | 69.91% | 84.95% | ||
>4 | 6.27% | 4.30% | ||
Green vegetables | <2 | 5.63% | 1.08% | 0.40 |
2–7 | 63.44% | 76.34% | ||
>7 | 30.94% | 22.58% | ||
Fruit and fruit juice | <2 | 6.94% | 1.06% | 0.01 |
2–7 | 46.69% | 72.34% | ||
>7 | 46.37% | 26.60% | ||
Omega-3 rich oils | <2 | 14.38% | 4.21% | 0.66 |
2–7 | 64.38% | 81.05% | ||
>7 | 21.25% | 14.74% | ||
Simple carbohydrates | <2 | 25.86% | 11.58% | 0.18 |
2–7 | 55.45% | 74.74% | ||
>7 | 18.69% | 13.68% | ||
Complex carbohydrates | <2 | 2.18% | 3.16% | 0.26 |
2–7 | 77.26% | 81.05% | ||
>7 | 20.56% | 15.79% | ||
Beer consumption | 0 | 37.54% | 36.08% | 0.87 |
≤1 | 58.68% | 63.92% | ||
2–7 | 3.79% | 0.00% | ||
Wine consumption | 0 | 37.78% | 36.08% | 0.88 |
<2 | 60.95% | 63.92% | ||
2–7 | 1.27% | 0.00% | ||
Vodka consumption | 0 | 37.42% | 36.08% | 0.84 |
≤1 | 62.26% | 63.92% | ||
2–3 | 0.31% | 0.00% |
Food Group | p-Value 1 | Portions Per Week (%) | Early AMD Group | Intermediate AMD Group | Late AMD Group | p-Value 2 | ||
---|---|---|---|---|---|---|---|---|
Early AMD vs. Intermediate AMD | Early AMD vs. Late AMD | Intermediate AMD vs. Late AMD | ||||||
Fatty fish | 0.047 | <1 | 76.47% | 63.44% | 77.46% | 0.21 | 0.83 | 0.01 |
2–4 | 20.59% | 36.56% | 22.54% | |||||
>4 | 2.94% | 0.00% | 0.00% | |||||
Eggs | 0.28 | <1 | 11.76% | 17.20% | 28.90% | 0.84 | 0.26 | 0.18 |
2–4 | 88.24% | 78.49% | 63.01% | |||||
>4 | 0.00% | 4.30% | 8.09% | |||||
Green vegetables | 0.47 | <2 | 0.00% | 3.23% | 7.47% | 0.45 | 0.24 | 0.55 |
2–7 | 64.71% | 66.67% | 63.22% | |||||
>7 | 35.29% | 30.11% | 29.31% | |||||
Fruit and fruit juice | 0.83 | <2 | 2.94% | 6.52% | 8.72% | 0.53 | 0.67 | 0.76 |
2–7 | 50.00% | 51.09% | 45.35% | |||||
>7 | 47.06% | 42.39% | 45.93% | |||||
Omega-3 rich oils | 0.25 | <2 | 5.88% | 8.60% | 18.39% | 0.14 | 0.12 | 0.66 |
2–7 | 64.71% | 74.19% | 58.62% | |||||
>7 | 29.41% | 17.20% | 22.99% | |||||
Simple carbohydrates | 0.36 | <2 | 8.82% | 22.34% | 30.46% | 0.29 | 0.17 | 0.59 |
2–7 | 76.47% | 61.70% | 49.43% | |||||
>7 | 14.71% | 15.96% | 20.11% | |||||
Complex carbohydrates | 0.48 | <2 | 0.00% | 0.00% | 4.02% | 0.18 | 0.40 | 0.57 |
2–7 | 73.53% | 84.04% | 73.56% | |||||
>7 | 26.47% | 15.96% | 22.41% | |||||
Beer consumption | 0.75 | 0 | 42.86% | 36.17% | 38.46% | 0.46 | 0.64 | 0.64 |
≤1 | 54.29% | 59.57% | 58.58% | |||||
2–7 | 2.86% | 4.26% | 2.96% | |||||
Wine consumption | 0.81 | 0 | 42.86% | 36.56% | 38.69% | 0.56 | 0.76 | 0.63 |
<2 | 54.29% | 61.29% | 60.71% | |||||
2–7 | 2.86% | 2.15% | 0.60% | |||||
Vodka consumption | 0.74 | 0 | 42.86% | 36.17% | 38.24% | 0.45 | 0.61 | 0.66 |
≤1 | 57.14% | 62.77% | 61.76% | |||||
2–3 | 0.00% | 1.06% | 0.00% |
Antioxidant System Component | AMD Group | Control Group | p-Value * |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
SOD (RBC) [U/mg Hb] | 0.31 ± 0.23 | 0.33 ± 0.19 | 0.56 |
Catalase (RBC) [U/mg Hb] | 0.33 ± 0.21 | 0.53 ± 0.24 | <0.0001 |
GPx (RBC) [U/g Hb] | 0.05 ± 0.05 | 0.02 ± 0.01 | <0.0001 |
R-GSSG (RBC) [U/g Hb] | 7.28 ± 5.73 | 5.55 ± 2.62 | 0.001 |
GSH (RBC) [µmol/g Hb] | 6.18 ± 2.7 | 6.49 ± 1.95 | 0.13 |
GSH transferase (RBC) [U/g Hb] | 0.02 ± 0.02 | 0.01 ± 0.01 | <0.0001 |
SOD (PLT) [U/mg of protein] | 69.24 ± 145.07 | 29.07 ± 26.64 | 0.03 |
Catalase (PLT) [U/mg of protein] | 28.31 ± 72.11 | 9.08 ± 17.91 | <0.0001 |
GPx (PLT) [U/g of protein] | 4.26 ± 16.083 | 1.45 ± 1.99 | 0.002 |
R-GSSG (PLT) [U/g of protein] | 1604.07 ± 5624.53 | 515.63 ± 528.46 | 0.04 |
GSH (PLT) [µmol/g Hb] | 1964.62 ± 3398.87 | 1126.1 ± 2141.95 | 0.44 |
GSH transferase (PLT) [U/g of protein] | 1.83 ± 3.92 | 1.06 ± 1.12 | 0.26 |
Antioxidant System Component | p-Value 1 | Early AMD Group | Intermediate AMD Group | Late AMD Group | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean ± SD Median (IQR) | n | Mean ± SD Median (IQR) | n | Mean ± SD Median (IQR) | Early AMD vs. Intermediate AMD | Early AMD vs. Late AMD | Intermediate AMD vs. Late AMD | ||
SOD (RBC) [U/mg Hb] | 0.27 | 39 | 0.27 ± 0.25 | 99 | 0.33 ± 0.23 | 184 | 0.30 ± 0.23 | 0.11 | 0.26 | 0.32 |
0.15 (0.38) | 0.33 (0.43) | 0.26 (0.42) | ||||||||
Catalase (RBC) [U/mg Hb] | 0.12 | 39 | 0.38 ± 0.25 | 99 | 0.36 ± 0.22 | 184 | 0.32 ± 0.20 | 0.83 | 0.15 | 0.07 |
0.31 (0.31) | 0.30 (0.31) | 0.26 (0.24) | ||||||||
GPx (RBC) [U/g Hb] | 0.17 | 39 | 0.04 ± 0.04 | 99 | 0.04 ± 0.04 | 183 | 0.05 ± 0.06 | 0.46 | 0.09 | 0.22 |
0.02 (0.01) | 0.02 (0.02) | 0.02 (0.07) | ||||||||
R-GSSG (RBC) [U/g Hb] | 0.97 | 39 | 7.27 ± 4.54 | 99 | 6.59 ± 2.86 | 185 | 7.64 ± 7.12 | 0.94 | 0.82 | 0.86 |
6.18 (5.64) | 6.20 (3.23) | 6.07 (5.07) | ||||||||
GSH (RBC) [µmol/g Hb] | 0.08 | 39 | 6.99 ± 2.38 | 99 | 6.56 ± 3.49 | 185 | 5.93 ± 2.25 | 0.09 | 0.03 | 0.47 |
6.89 (2.94) | 6.26 (3.59) | 6.36 (3.96) | ||||||||
GSH transferase (RBC) [U/g Hb] | 0.38 | 39 | 0.02 ± 0.02 | 99 | 0.02 ± 0.02 | 185 | 0.02 ± 0.02 | 0.26 | 0.16 | 0.82 |
0.01 (0.02) | 0.01 (0.02) | |||||||||
0.01 (0.01) | ||||||||||
SOD (PLT) [U/mg of protein] | 0.31 | 39 | 44.82 ± 55.41 | 98 | 57.93 ± 85.41 | 186 | 84.88 ± 184.59 | 0.48 | 0.14 | 0.40 |
24.35 (39.32) | 26.83 (43.76) | 27.49 (76.11) | ||||||||
Catalase (PLT) [U/mg of protein] | 0.13 | 39 | 14.81 ± 19.31 | 98 | 21.68 ± 35.18 | 186 | 35.54 ± 93.80 | 0.14 | 0.05 | 0.51 |
6.37 (16.70) | 9.62 (13.72) | 9.95 (31.73) | ||||||||
GPx (PLT) [U/g of protein] | 0.37 | 38 | 1.71 ± 1.77 | 98 | 3.98 ± 14.11 | 185 | 5.27 ± 19.33 | 0.80 | 0.32 | 0.23 |
1.28 (2.00) | 0.94 (2.94) | 1.20 (2.66) | ||||||||
R-GSSG (PLT) [U/g of protein] | 0.12 | 39 | 1478.05 ± 5657.85 | 97 | 1914.16 ± 8866.18 | 185 | 1499.27 ± 3268.86 | 0.15 | 0.04 | 0.52 |
281.19 (750.52) | 472.54 (785.88) | 466.47 (1022.51) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulańczyk, Z.; Grabowicz, A.; Cecerska-Heryć, E.; Śleboda-Taront, D.; Krytkowska, E.; Mozolewska-Piotrowska, K.; Safranow, K.; Kawa, M.P.; Dołęgowska, B.; Machalińska, A. Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity. Antioxidants 2020, 9, 954. https://doi.org/10.3390/antiox9100954
Ulańczyk Z, Grabowicz A, Cecerska-Heryć E, Śleboda-Taront D, Krytkowska E, Mozolewska-Piotrowska K, Safranow K, Kawa MP, Dołęgowska B, Machalińska A. Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity. Antioxidants. 2020; 9(10):954. https://doi.org/10.3390/antiox9100954
Chicago/Turabian StyleUlańczyk, Zofia, Aleksandra Grabowicz, Elżbieta Cecerska-Heryć, Daria Śleboda-Taront, Elżbieta Krytkowska, Katarzyna Mozolewska-Piotrowska, Krzysztof Safranow, Miłosz Piotr Kawa, Barbara Dołęgowska, and Anna Machalińska. 2020. "Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity" Antioxidants 9, no. 10: 954. https://doi.org/10.3390/antiox9100954
APA StyleUlańczyk, Z., Grabowicz, A., Cecerska-Heryć, E., Śleboda-Taront, D., Krytkowska, E., Mozolewska-Piotrowska, K., Safranow, K., Kawa, M. P., Dołęgowska, B., & Machalińska, A. (2020). Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity. Antioxidants, 9(10), 954. https://doi.org/10.3390/antiox9100954