Pharmacokinetics and Protective Effects of Tartary Buckwheat Flour Extracts against Ethanol-Induced Liver Injury in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Rutin-Enriched TBFEs
2.3. Analysis of Total Polyphenol, Total Flavonoid, Rutin, and Quercetin Contents in TBFEs
2.4. Animals
2.5. Pharmacokinetic Study
2.6. Animal Treatments
2.7. Liver Homogenization
2.8. Biochemical Analysis
2.9. Statistical Analysis
3. Results
3.1. Characterization of Antioxidant Compounds in Rutin-Enriched TBFEs
3.2. Pharmacokinetics of Rutin-Enriched TBFEs
3.3. Antioxidant Effects of TBFEs on Alcohol-Induced Oxidative Stress in Rat Livers
3.4. Protective Effects of TBFEs against Alcohol-Induced Liver Injury in Rats
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kang, H.W. Antioxidant and anti-inflammation effects of water extract from buckwheat. Culi. Sci. Hos. Res. 2014, 20, 190–199. [Google Scholar]
- Xiao, Y.; Liu, H.; Wei, T.; Shen, J.; Wang, M. Differences in physicochemical properties and in vitro digestibility between tartary buckwheat flour and starch modified by heat-moisture treatment. LWT-Food Sci. Technol. 2017, 86, 285–292. [Google Scholar]
- Zhu, F. Chemical composition and health effects of tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [PubMed]
- Lee, L.-S.; Choi, E.-J.; Kim, C.-H.; Sung, J.-M.; Kim, Y.-B.; Seo, D.-H.; Choi, H.-W.; Choi, Y.-S.; Kum, J.-S.; Park, J.-D. Contribution of flavonoids to the antioxidant properties of common and tartary buckwheat. J. Cereal Sci. 2016, 68, 181–186. [Google Scholar]
- Yu, J.; Hwang, J.-S.; Oh, M.S.; Lee, S.; Choi, S.-J. Antioxidant activity of ethanol extracts from common and tartary buckwheat milling fractions. Korean J. Food Sci. Technol. 2018, 50, 549–554. [Google Scholar]
- Nakamura, K.; Naramoto, K.; Koyama, M. Blood-pressure-lowering effect of fermented buckwheat sprouts in spontaneously hypertensive rats. J. Funct. Foods 2013, 5, 406–415. [Google Scholar]
- Sohn, H.-Y.; Kwon, C.-S.; Son, K.-H.; Kwon, G.-S.; Ryu, H.-Y.; Kum, E.-J. Antithrombin and thrombosis prevention activity of buckwheat seed, Fagopyrum esculentum Moench. J. Korean Soc. Food Sci. Nutr. 2006, 35, 132–138. [Google Scholar]
- Yang, N.; Li, Y.M.; Zhang, K.; Jiao, R.; Ma, K.Y.; Zhang, R.; Ren, G.; Chen, Z.-Y. Hypocholesterolemic activity of buckwheat flour is mediated by increasing sterol excretion and down-regulation of intestinal NPC1L1 and ACAT2. J. Funct. Foods 2014, 6, 311–318. [Google Scholar] [CrossRef]
- Han, Y. Rutin has therapeutic effect on septic arthritis caused by Candida albicans. Int. Immunopharmacol. 2009, 9, 207–211. [Google Scholar]
- Tsai, H.; Deng, H.; Tsai, S.; Hsu, Y. Bioactivity comparison of extracts from various parts of common and tartary buckwheats: Evaluation of the antioxidant-and angiotensin-converting enzyme inhibitory activities. Chem. Cent. J. 2012, 6, 78. [Google Scholar]
- Karki, R.; Park, C.-H.; Kim, D.-W. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). J. Integr. Med. 2013, 11, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. 2006, 98, 508–512. [Google Scholar] [CrossRef]
- Cho, Y.J.; Bae, I.Y.; Inglett, G.E.; Lee, S. Utilization of tartary buckwheat bran as a source of rutin and its effect on the rheological and antioxidant properties of wheat-based products. Ind. Crop. Prod. 2014, 61, 211–216. [Google Scholar] [CrossRef]
- Ishiguro, K.; Morishita, T.; Ashizawa, J.; Suzuki, T.; Noda, T. Antioxidative activities in rutin rich noodles and cookies made with a trace rutinosidase variety of tartary buckwheat (Fagopyrum tataricum Gaertn.),‘Manten-Kirari’. Food Sci. Technol. Res. 2016, 22, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.; Oh, I.; Jeong, S.; Lee, S. Optical, rheological, thermal, and microstructural elucidation of rutin enrichment in tartary buckwheat flour by hydrothermal treatments. Food Chem. 2019, 300, 125193. [Google Scholar] [CrossRef]
- Němcová, L.; Zima, J.; Barek, J.; Janovská, D. Determination of resveratrol in grains, hulls and leaves of common and tartary buckwheat by HPLC with electrochemical detection at carbon paste electrode. Food Chem. 2011, 126, 374–378. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Zheng, S.; Lu, K.; Zhao, G.; Ming, J. The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran [Fagopyrum tartaricum (L.) Gaerth]. J. Funct. Foods 2016, 22, 145–155. [Google Scholar]
- Jin, H.-R.; Yu, J.; Choi, S.-J. Hydrothermal treatment enhances antioxidant activity and intestinal absorption of rutin in tartary buckwheat flour extracts. Foods 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.-K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharm. 2001, 41, 492–499. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Hsiu, S.-L.; Wen, K.-C.; Lin, S.-P.; Tsai, S.-Y.; Hou, Y.-C.; Chao, P.-D.L. Bioavailability and metabolic pharmacokinetics of rutin and quercetin in rats. J. Food Drug. Anal. 2005, 13, 244–250. [Google Scholar]
- Mullen, W.; Edwards, C.A.; Crozier, A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr. 2006, 96, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zou, L.; Wang, Z.; Hu, H.; Hu, Y.; Peng, L. Pharmacokinetic profile of total quercetin after single oral dose of tartary buckwheat extracts in rats. J. Agric. Food Chem. 2011, 59, 4435–4441. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, J.-R.; Gao, J.-M.; Parry, J.W.; Wei, Y.-M. Antioxidant activity of tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats. J. Agric. Food Chem. 2009, 57, 5106–5112. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, Q.; Zhang, Y.; Yao, Z.; Song, P.; Wei, L.; Zhao, G.; Yan, Z. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Sci. Nutr. 2020, 8, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Hu, Y.; Yang, X.; Chen, W. Antihypertensive effects of tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats. Food Funct. 2017, 8, 4217–4228. [Google Scholar] [CrossRef]
- Lee, C.-C.; Shen, S.-R.; Lai, Y.-J.; Wu, S.-C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct. 2013, 4, 794–802. [Google Scholar] [CrossRef]
- Liu, Y.; Gan, J.; Liu, W.; Zhang, X.; Xu, J.; Wu, Y.; Yang, Y.; Si, L.; Li, G.; Huang, J. Pharmacokinetics and novel metabolite identification of tartary buckwheat extracts in beagle dogs following co-administration with ethanol. Pharmaceutics 2019, 11, 525. [Google Scholar] [CrossRef] [Green Version]
- Appel, H.M.; Govenor, H.L.; D’Ascenzo, M.; Siska, E.; Schultz, J.C. Limitations of folin assays of foliar phenolics in ecological studies. J. Chem. Ecol. 2001, 27, 761–778. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Manach, C.; Morand, C.; Demigné, C.; Texier, O.; Régérat, F.; Rémésy, C. Bioavailability of rutin and quercetin in rats. FEBS Lett. 1997, 409, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Jo, M.-R.; Bae, S.-H.; Go, M.-R.; Kim, H.-J.; Hwang, Y.-G.; Choi, S.-J. Toxicity and biokinetics of colloidal gold nanoparticles. Nanomaterials 2015, 5, 835–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peskin, A.V.; Winterbourn, C.C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 2000, 293, 157–166. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar]
- Smith, I.K.; Vierheller, T.L.; Thorne, C.A. Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal. Biochem. 1988, 175, 408–413. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- van der Woude, H.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M. Identification of 14 quercetin phase II mono-and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem. Res. Toxicol. 2004, 17, 1520–1530. [Google Scholar] [CrossRef]
- Moon, J.-H.; Tsushida, T.; Nakahara, K.; Terao, J. Identification of quercetin 3-O-β-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic. Bio. Med. 2001, 30, 1274–1285. [Google Scholar] [CrossRef]
- Morand, C.; Crespy, V.; Manach, C.; Besson, C.; Demigné, C.; Rémésy, C. Plasma metabolites of quercetin and their antioxidant properties. Am. J. Physiol. 1998, 275, R212–R219. [Google Scholar] [CrossRef]
- Lan, K.; Jiang, X.; He, J. Quantitative determination of isorhamnetin, quercetin and kaempferol in rat plasma by liquid chromatography with electrospray ionization tandem mass spectrometry and its application to the pharmacokinetic study of isorhamnetin. Rapid Commun. Mass Spectrom. 2007, 21, 112–120. [Google Scholar] [CrossRef]
- Lieber, C.S. Alcohol and the liver: 1994 update. Gastroenterology 1994, 106, 1085–1105. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, C.; Xing, M.; Li, Y.; Zhu, L.; Wang, D.; Yang, X.; Liu, L.; Yao, P. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem. Toxicol. 2012, 50, 1194–1200. [Google Scholar] [CrossRef]
- Dahiru, D.; Obidoa, O. Evaluation of the antioxidant effects of Ziziphus mauritiana lam. leaf extracts against chronic ethanol-induced hepatotoxicity in rat liver. Afr. J. Tradit. Complementary 2008, 5, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Abarikwu, S.O.; Olufemi, P.D.; Lawrence, C.J.; Wekere, F.C.; Ochulor, A.C.; Barikuma, A.M. Rutin, an antioxidant flavonoid, induces glutathione and glutathione peroxidase activities to protect against ethanol effects in cadmium-induced oxidative stress in the testis of adult rats. Andrologia 2017, 49. [Google Scholar] [CrossRef] [PubMed]
- Shenbagam, M.; Nalini, N. Dose response effect of rutin a dietary antioxidant on alcohol-induced prooxidant and antioxidant imbalance—A histopathologic study. Fundam. Clin. Pharm. 2011, 25, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.-H.; Lin, S.-Y.; Wang, Y.-Y.; Chen, W.-Y.; Chuang, Y.-H.; Wu, C.-C.; Chen, C.-J. Protective effects of rutin on liver injury induced by biliary obstruction in rats. Free Radic. Biol. Med. 2014, 73, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Zhang, D.; Kang, J.; Meng, X.; Yang, J.; Yang, L.; Xue, N.; Gao, Q.; Han, S.; Gou, X. Protective effects of rutin on liver injury in type 2 diabetic db/db mice. Biomed. Pharm. 2018, 107, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Sadauskiene, I.; Liekis, A.; Bernotiene, R.; Sulinskiene, J.; Kasauskas, A.; Zekonis, G. The effects of buckwheat leaf and flower extracts on antioxidant status in mouse organs. Oxid. Med. Cell. Longev. 2018, 2018, 6712407. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.-H.; Engeseth, N.J. Buckwheat honey increases serum antioxidant capacity in humans. J. Agric. Food Chem. 2003, 51, 1500–1505. [Google Scholar] [CrossRef]
- Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem. 2005, 16, 577–586. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, C.; Zhang, X.; Liu, Y.; Wang, Z.; Cacciamani, P.; Shi, J.; Cui, Y.; Wang, C.; Sinha, B.; et al. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. Am. J. Transl. Res. 2020, 12, 70–89. [Google Scholar] [PubMed]
- Owumi, S.E.; Odunola, O.A.; Aliyu, M. Co-administration of sodium arsenite and ethanol: Protection by aqueous extract of Aframomum longiscapum seeds. Pharm. Res. 2012, 4, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bak, M.J.; Truong, V.-L.; Ko, S.-Y.; Nguyen, X.N.G.; Ingkasupart, P.; Jun, M.; Shin, J.Y.; Jeong, W.-S. Antioxidant and hepatoprotective effects of procyanidins from wild grape (Vitis amurensis) seeds in ethanol-induced cells and rats. Int. J. Mol. Sci. 2016, 17, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebai, H.; Jabri, M.-A.; Souli, A.; Hosni, K.; Rtibi, K.; Tebourbi, O.; El-Benna, J.; Sakly, M. Chemical composition, antioxidant properties and hepatoprotective effects of chamomile (Matricaria recutita L.) decoction extract against alcohol-induced oxidative stress in rat. Gen. Physiol. Biophys. 2015, 34, 263–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Newary, S.A.; Shaffie, N.M.; Omer, E.A. The protection of Thymus vulgaris leaves alcoholic extract against hepatotoxicity of alcohol in rats. Asian Pac. J. Trop. Med. 2017, 10, 361–371. [Google Scholar] [CrossRef]
- Koch, O.R.; Fusco, S.; Ranieri, S.C.; Maulucci, G.; Palozza, P.; Larocca, L.M.; Cravero, A.A.; Farre, S.M.; De Spirito, M.; Galeotti, T.; et al. Role of the life span determinant P66shcA in ethanol-induced liver damage. Lab. Investig. 2008, 88, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Wieslander, G.; Fabjan, N.; Vogrinčič, M.; Kreft, I.; Janson, C.; Spetz- Nyström, U.; Vombergar, B.; Tagesson, C.; Leanderson, P.; Norbäck, D. Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: A double blind crossover study in day-care centre staffs. Tohoku J. Exp. Med. 2011, 225, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Bourogaa, E.; Nciri, R.; Mezghani-Jarraya, R.; Racaud-Sultan, C.; Damak, M.; El Feki, A. Antioxidant activity and hepatoprotective potential of Hammada scoparia against ethanol-induced liver injury in rats. J. Physiol. Biochem. 2013, 69, 227–237. [Google Scholar] [CrossRef]
- Xiao, Z.-M.; Li, L.-J.; Yu, S.-Z.; Lu, Z.-N.; Li, C.-Y.; Zheng, J.-Q. Effects of extracellular Ca2+ influx and intracellular Ca2+ release on ethanol-induced cytoplasmic Ca2+ overload in cultured superior cervical ganglion neurons. Neurosci. Lett. 2005, 390, 98–103. [Google Scholar] [CrossRef]
- Powell, L.W. The role of alcoholism in hepatic iron storage disease. Ann. N. Y. Acad. Sci. 1975, 252, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Korea Health Industry Development Institute (KHIDI). National Food & Nutrition Statistics. Available online: https://www.khidi.or.kr/kps/dhraStat/result2?menuId=MENU01653&gubun=sex&year=2018 (accessed on 22 September 2020).
Contents | Native | Autoclaved | Boiled | Steamed |
---|---|---|---|---|
Rutin (%) 1 | 0.57 ± 0.00 a | 3.03 ± 0.03 c | 2.97 ± 0.04 c | 2.50 ± 0.34 b |
Quercetin (%) 1 | 0.22 ± 0.00 a | 0.07 ± 0.00 b | 0.03 ± 0.00 d | 0.03 ± 0.00 c |
Total polyphenol (TAE g/100 mL extracts) | 0.07 ± 0.00 a | 0.20 ± 0.00 c | 0.19 ± 0.00 c | 0.13 ± 0.00 b |
Total flavonoid (CE g/100 mL extracts) | 0.03 ± 0.00 a | 0.17 ± 0.00 c | 0.17 ± 0.00 c | 0.09 ± 0.00 b |
Pharmacokinetic Parameters | Native | Autoclaved | Boiled | Steamed | Standard Rutin |
---|---|---|---|---|---|
Tmax (h) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Cmax (ng/mL) | 26.4 ± 1.4 a | 52.7 ± 9.5 b | 51.7 ± 3.5 b | 40.5 ± 6.3 ab | 46.8 ± 2.3 b |
AUC (h × ng/mL) | 46.6 ± 3.4 a | 110.4 ± 6.0 c | 107.8 ± 4.0 c | 75.5 ± 3.4 b | 103.4 ± 8.0 c |
T1/2 (h) | 0.6 ± 0.1 a | 1.3 ± 0.1 b | 1.2 ± 0.0 b | 0.8 ± 0.1 a | 1.1 ± 0.2 b |
MRT (h) | 1.2 ± 0.0 a | 2.1 ± 0.1 c | 2.0 ± 0.1 c | 1.6 ± 0.1 b | 1.8 ± 0.1 b |
Absorption (%) | 0.02 ± 0.00 a | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.04 ± 0.00 b | 0.04 ± 0.00 b |
Groups | + Ethanol | ||||||
---|---|---|---|---|---|---|---|
Control | Control | Native | Autoclaved | Boiled | Steamed | Standard Rutin | |
Initial body weight (g) | 175.9 ± 8.1 a | 175.1 ± 6.1 a | 174.5 ± 6.8 a | 175.7 ± 7.9 a | 177.2 ± 6.3 a | 173.9 ± 8.0 a | 175.6 ± 8.8 a |
Final body weight (g) | 240.4 ± 4.8 a | 205.8 ± 6.6 b | 231.9 ± 6.1 a | 233.7 ± 11.7 a | 231.2 ± 2.1 a | 233.4 ± 5.7 a | 231.9 ± 9.9 a |
Body weight gain (g) | 71.8 ± 10.1 a | 26.5 ± 9.6 b | 59.4 ± 6.1 a | 54.8 ± 8.3 a | 50.1 ± 1.0 a | 51.6 ± 3.5 a | 54.0 ± 11.6 a |
Liver weight (g) | 7.8 ± 1.0 a | 8.7 ± 0.8 a | 8.5 ± 0.6 a | 8.7 ± 0.8 a | 8.5 ± 0.5 a | 8.2 ± 0.7 a | 8.5 ± 0.3 a |
Relative liver weight 1 | 3.5 ± 0.4 a | 4.2 ± 0.3 b | 3.8 ± 0.2 ab | 3.9 ± 0.4 ab | 3.8 ± 0.2 ab | 3.9 ± 0.3 ab | 3.9 ± 0.3 ab |
Food intake (g/day) | 15.1 ± 1.3 a | 10.5 ± 1.0 b | 12.8 ± 1.4 ab | 12.3 ± 1.5 ab | 12.0 ± 1.7 ab | 12.1 ± 1.5 ab | 13.7 ± 1.3 a |
Water consumption (mL/day) | 25.4 ± 2.7 | 30.4 ± 3.7 a | 30.6 ± 5.2 a | 33.2 ± 5.6 a | 27.1 ± 4.2 a | 28.8 ± 5.2 a | 29.7 ± 3.8 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.-R.; Lee, S.; Choi, S.-J. Pharmacokinetics and Protective Effects of Tartary Buckwheat Flour Extracts against Ethanol-Induced Liver Injury in Rats. Antioxidants 2020, 9, 913. https://doi.org/10.3390/antiox9100913
Jin H-R, Lee S, Choi S-J. Pharmacokinetics and Protective Effects of Tartary Buckwheat Flour Extracts against Ethanol-Induced Liver Injury in Rats. Antioxidants. 2020; 9(10):913. https://doi.org/10.3390/antiox9100913
Chicago/Turabian StyleJin, Hye-Rin, Suyong Lee, and Soo-Jin Choi. 2020. "Pharmacokinetics and Protective Effects of Tartary Buckwheat Flour Extracts against Ethanol-Induced Liver Injury in Rats" Antioxidants 9, no. 10: 913. https://doi.org/10.3390/antiox9100913
APA StyleJin, H.-R., Lee, S., & Choi, S.-J. (2020). Pharmacokinetics and Protective Effects of Tartary Buckwheat Flour Extracts against Ethanol-Induced Liver Injury in Rats. Antioxidants, 9(10), 913. https://doi.org/10.3390/antiox9100913