Effects of Reactive Oxygen Species on Tubular Transport along the Nephron
Abstract
:1. Introduction
2. Proximal Tubule
2.1. NO and ONO2−
2.2. O2− and H2O2
3. Loop of Henle
3.1. NO and ONO2−
3.2. O2− and H2O2
4. Macula Densa
4.1. NO
4.2. O2− and H2O2
5. Collecting Ducts
5.1. NO and ONO2−
5.2. O2− and H2O2
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- O’Connor, P.M.; Schreck, C.M.; Evans, R.G. Oxygen, free radicals, and the kidney. In Systems Biology of Free Radicals and Antioxidants; Laher, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 2563–2580. [Google Scholar]
- Gobe, G.C. Oxygen, free radicals, and renal function. In Systems Biology of Free Radicals and Antioxidants; Laher, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 2581–2603. [Google Scholar]
- Roczniak, A.; Burns, K.D. Nitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule. Am. J. Physiol. 1996, 270, F106–F115. [Google Scholar] [PubMed]
- Eitle, E.; Hiranyachattada, S.; Wang, H.; Harris, P.J. Inhibition of proximal tubular fluid absorption by nitric oxide and atrial natriuretic peptide in rat kidney. Am. J. Physiol. 1998, 274, C1075–C1080. [Google Scholar] [PubMed]
- Wu, X.C.; Harris, P.J.; Johns, E.J. Nitric oxide and renal nerve-mediated proximal tubular reabsorption in normotensive and hypertensive rats. Am. J. Physiol. 1999, 277, F560–F566. [Google Scholar] [PubMed]
- Javkhedkar, A.A.; Lokhandwala, M.F.; Banday, A.A. Defective nitric oxide production impairs angiotensin II-induced Na-K-ATPase regulation in spontaneously hypertensive rats. Am. J. Physiol. Renal Physiol. 2012, 302, F47–F51. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.A.; Lokhandwala, M.F. Loss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling. Hypertension 2008, 52, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Traynor, T.; Barajas, L.; Huang, Y.G.; Briggs, J.P.; Schnermann, J. Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice. J. Am. Soc. Nephrol. 2001, 12, 1599–1606. [Google Scholar] [PubMed]
- Guzman, N.J.; Fang, M.Z.; Tang, S.S.; Ingelfinger, J.R.; Garg, L.C. Autocrine inhibition of Na+/K(+)-ATPase by nitric oxide in mouse proximal tubule epithelial cells. J. Clin. Investig. 1995, 95, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Imam, S.Z.; Ali, S.F.; Mayeux, P.R. Peroxynitrite and the regulation of Na(+),K(+)-ATPase activity by angiotensin II in the rat proximal tubule. Nitric Oxide Biol. Chem./Off. J. Nitric Oxide Soc. 2002, 7, 30–35. [Google Scholar]
- Varela, M.; Herrera, M.; Garvin, J.L. Inhibition of Na-K-ATPase in thick ascending limbs by NO depends on O2− and is diminished by a high-salt diet. Am. J. Physiol. Renal Physiol. 2004, 287, F224–F230. [Google Scholar] [CrossRef] [PubMed]
- Wang, T. Nitric oxide regulates HCO3− and Na+ transport by a cGMP-mediated mechanism in the kidney proximal tubule. Am. J. Physiol. 1997, 272, F242–F248. [Google Scholar] [PubMed]
- Bagnall, N.M.; Dent, P.C.; Walkowska, A.; Sadowski, J.; Johns, E.J. Nitric oxide inhibition and the impact on renal nerve-mediated antinatriuresis and antidiuresis in the anaesthetized rat. J. Physiol. 2005, 569, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Wang, T. Role of iNOS and eNOS in modulating proximal tubule transport and acid-base balance. Am. J. Physiol. Renal Physiol. 2002, 283, F658–F662. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Inglis, F.M.; Kalb, R.G. Defective fluid and HCO3− absorption in proximal tubule of neuronal nitric oxide synthase-knockout mice. Am. J. Physiol. Renal Physiol. 2000, 279, F518–F524. [Google Scholar] [PubMed]
- Peterson, O.W.; Gushwa, L.C.; Blantz, R.C. An analysis of glomerular-tubular balance in the rat proximal tubule. Pflug. Archiv : Eur. J. Physiol. 1986, 407, 221–227. [Google Scholar] [CrossRef]
- Thomson, S.C.; Blantz, R.C. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J. Am. Soc. Nephrol. 2008, 19, 2272–2275. [Google Scholar] [CrossRef] [PubMed]
- Panico, C.; Luo, Z.; Damiano, S.; Artigiano, F.; Gill, P.; Welch, W.J. Renal proximal tubular reabsorption is reduced in adult spontaneously hypertensive rats: Roles of superoxide and Na+/H+ exchanger 3. Hypertension 2009, 54, 1291–1297. [Google Scholar] [CrossRef]
- Persson, P.; Hansell, P.; Palm, F. Nadph oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R1443–R1449. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Lee, Y.J.; Park, S.H.; Lee, J.H.; Taub, M. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 2005, 288, F988–F996. [Google Scholar] [CrossRef] [PubMed]
- Geiszt, M.; Kopp, J.B.; Varnai, P.; Leto, T.L. Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 2000, 97, 8010–8014. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.S.; Wilcox, C.S. NADPH oxidases in the kidney. Antioxid. Redox Signal. 2006, 8, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, M.; Callera, G.; Montezano, A.; Gutsol, A.; Heitz, F.; Szyndralewiez, C.; Page, P.; Kennedy, C.R.; Burns, K.D.; Touyz, R.M.; et al. Critical role of NOX4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: Implications in type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 2010, 299, F1348–F1358. [Google Scholar] [PubMed]
- Plato, C.F.; Stoos, B.A.; Wang, D.; Garvin, J.L. Endogenous nitric oxide inhibits chloride transport in the thick ascending limb. Am. J. Physiol. 1999, 276, F159–F163. [Google Scholar] [PubMed]
- Ortiz, P.A.; Garvin, J.L. NO inhibits NaCl absorption by rat thick ascending limb through activation of cGMP-stimulated phosphodiesterase. Hypertension 2001, 37, 467–471. [Google Scholar] [CrossRef]
- Ortiz, P.A.; Garvin, J.L. Autocrine effects of nitric oxide on HCO3− transport by rat thick ascending limb. Kidney Int. 2000, 58, 2069–2074. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, P.A.; Garvin, J.L. Interaction of O2− and no in the thick ascending limb. Hypertension 2002, 39, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, P.A.; Hong, N.J.; Garvin, J.L. NO decreases thick ascending limb chloride absorption by reducing Na(+)-K(+)-2Cl(−) cotransporter activity. Am. J. Physiol. Renal Physiol. 2001, 281, F819–F825. [Google Scholar]
- Ares, G.R.; Caceres, P.; Alvarez-Leefmans, F.J.; Ortiz, P.A. cGMP decreases surface NKCC2 levels in the thick ascending limb: Role of phosphodiesterase 2 (PDE2). Am. J. Physiol. Renal Physiol. 2008, 295, F877–F887. [Google Scholar] [PubMed]
- Ares, G.R.; Ortiz, P.A. Constitutive endocytosis and recycling of NKCC2 in rat thick ascending limbs. Am. J. Physiol. Renal Physiol. 2010, 299, F1193–F1202. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.R.; Caceres, P.S.; Ortiz, P.A. Molecular regulation of NKCC2 in the thick ascending limb. Am. J. Physiol. Renal Physiol. 2011, 301, F1143–F1159. [Google Scholar]
- Lu, M.; Wang, X.; Wang, W. Nitric oxide increases the activity of the apical 70-pS K+ channel in TAL of rat kidney. Am. J. Physiol. 1998, 274, F946–F950. [Google Scholar] [PubMed]
- Garvin, J.L.; Hong, N.J. Nitric oxide inhibits sodium/hydrogen exchange activity in the thick ascending limb. Am. J. Physiol. 1999, 277, F377–F382. [Google Scholar] [PubMed]
- Gill, R.K.; Saksena, S.; Syed, I.A.; Tyagi, S.; Alrefai, W.A.; Malakooti, J.; Ramaswamy, K.; Dudeja, P.K. Regulation of NHE3 by nitric oxide in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G747–G756. [Google Scholar] [PubMed]
- Good, D.W.; Watts, B.A., 3rd. Functional roles of apical membrane Na+/H+ exchange in rat medullary thick ascending limb. Am. J. Physiol. 1996, 270, F691–F699. [Google Scholar] [PubMed]
- Good, D.W.; George, T.; Wang, D.H. Angiotensin II inhibits absorption via a cytochromeP-450-dependent pathway in MTAL. Am. J. Physiol. 1999, 276, F726–F736. [Google Scholar]
- Morla, L.; Crambert, G.; Mordasini, D.; Favre, G.; Doucet, A.; Imbert-Teboul, M. Proteinase-activated receptor 2 stimulates Na,K-ATPase and sodium reabsorption in native kidney epithelium. J. Biol. Chem. 2008, 283, 28020–28028. [Google Scholar] [CrossRef] [PubMed]
- Garcia, N.H.; Plato, C.F.; Stoos, B.A.; Garvin, J.L. Nitric oxide-induced inhibition of transport by thick ascending limbs from Dahl salt-sensitive rats. Hypertension 1999, 34, 508–513. [Google Scholar] [PubMed]
- Neant, F.; Bailly, C. Luminal and intracellular cGMP inhibit the MTAL reabsorptive capacity through different pathways. Kidney Int. 1993, 44, 741–746. [Google Scholar] [CrossRef]
- Neant, F.; Imbert-Teboul, M.; Bailly, C. Cyclic guanosine monophosphate is the mediator of platelet-activating factor inhibition on transport by the mouse kidney thick ascending limb. J. Clin. Investig. 1994, 94, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Nonoguchi, H.; Tomita, K.; Marumo, F. Effects of atrial natriuretic peptide and vasopressin on chloride transport in long- and short-looped medullary thick ascending limbs. J. Clin. Investig. 1992, 90, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Caceres, P.S.; Ares, G.R.; Ortiz, P.A. cAMP stimulates apical exocytosis of the renal Na(+)-K(+)-2Cl(-) cotransporter NKCC2 in the thick ascending limb: Role of protein kinase A. J. Biol. Chem. 2009, 284, 24965–24971. [Google Scholar] [PubMed]
- Plato, C.F.; Shesely, E.G.; Garvin, J.L. eNOS mediates L-arginine-induced inhibition of thick ascending limb chloride flux. Hypertension 2000, 35, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, P.A.; Hong, N.J.; Wang, D.; Garvin, J.L. Gene transfer of eNOS to the thick ascending limb of eNOS-KO mice restores the effects of L-arginine on NaCl absorption. Hypertension 2003, 42, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Zou, A.P.; Li, N.; Cowley, A.W., Jr. Production and actions of superoxide in the renal medulla. Hypertension 2001, 37, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Vicente, A.; Saikumar, J.H.; Massey, K.J.; Hong, N.J.; Dominici, F.P.; Carretero, O.A.; Garvin, J.L. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs. Physiol. Rep. 2016, 4. [Google Scholar] [CrossRef]
- Juncos, R.; Garvin, J.L. Superoxide enhances Na-K-2Cl cotransporter activity in the thick ascending limb. Am. J. Physiol. Renal Physiol. 2005, 288, F982–F987. [Google Scholar] [PubMed]
- Silva, G.B.; Ortiz, P.A.; Hong, N.J.; Garvin, J.L. Superoxide stimulates NaCl absorption in the thick ascending limb via activation of protein kinase C. Hypertension 2006, 48, 467–472. [Google Scholar] [PubMed]
- Ortiz, P.A.; Garvin, J.L. Superoxide stimulates NaCl absorption by the thick ascending limb. Am. J. Physiol. Renal Physiol. 2002, 283, F957–F962. [Google Scholar]
- Juncos, R.; Hong, N.J.; Garvin, J.L. Differential effects of superoxide on luminal and basolateral Na+/H+ exchange in the thick ascending limb. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R79–R83. [Google Scholar] [PubMed]
- Hong, N.J.; Silva, G.B.; Garvin, J.L. PKC-alpha mediates flow-stimulated superoxide production in thick ascending limbs. Am. J. Physiol. Renal Physiol. 2010, 298, F885–F891. [Google Scholar] [PubMed]
- Wu, P.; Wang, M.; Luan, H.; Li, L.; Wang, L.; Wang, W.H.; Gu, R. Angiotensin II stimulates basolateral 10-pS Cl channels in the thick ascending limb. Hypertension 2013, 61, 1211–1217. [Google Scholar] [PubMed]
- Herrera, M.; Silva, G.B.; Garvin, J.L. Angiotensin II stimulates thick ascending limb superoxide production via protein kinase C(alpha)-dependent NADPH oxidase activation. J. Biol. Chem. 2010, 285, 21323–21328. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.B.; Garvin, J.L. Angiotensin II-dependent hypertension increases Na transport-related oxygen consumption by the thick ascending limb. Hypertension 2008, 52, 1091–1098. [Google Scholar]
- Schreck, C.; O’Connor, P.M. NAD(P)H oxidase and renal epithelial ion transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1023–R1029. [Google Scholar] [PubMed]
- Feng, D.; Yang, C.; Geurts, A.M.; Kurth, T.; Liang, M.; Lazar, J.; Mattson, D.L.; O’Connor, P.M.; Cowley, A.W., Jr. Increased expression of NAD(P)H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab. 2012, 15, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.J.; Garvin, J.L. NADPH oxidase 4 mediates flow-induced superoxide production in thick ascending limbs. Am. J. Physiol. Renal Physiol. 2012, 303, F1151–F1156. [Google Scholar]
- Massey, K.J.; Hong, N.J.; Garvin, J.L. Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4. Am. J. Physiol. Cell Physiol. 2012, 303, C781–C789. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Carretero, O.A.; Ren, Y.; Garvin, J.L. Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int. 2005, 67, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, C.; Liu, H.; Wang, S.; Chen, X.; Roman, R.J.; Juncos, L.A.; Lu, Y.; Wei, J.; Zhang, J.; et al. Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R757–R766. [Google Scholar]
- Ren, Y.L.; Garvin, J.L.; Carretero, O.A. Role of macula densa nitric oxide and cgmp in the regulation of tubuloglomerular feedback. Kidney Int. 2000, 58, 2053–2060. [Google Scholar] [PubMed]
- He, H.; Podymow, T.; Zimpelmann, J.; Burns, K.D. NO inhibits Na+-K+-2Cl- cotransport via a cytochrome P-450-dependent pathway in renal epithelial cells (MMDD1). Am. J. Physiol. Renal. Physiol. 2003, 284, F1235–F1244. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ren, Y.; Garvin, J.L.; Carretero, O.A. Superoxide enhances tubuloglomerular feedback by constricting the afferent arteriole. Kidney Int. 2004, 66, 268–274. [Google Scholar] [PubMed]
- Zhang, R.; Harding, P.; Garvin, J.L.; Juncos, R.; Peterson, E.; Juncos, L.A.; Liu, R. Isoforms and functions of NAD(P)H oxidase at the macula densa. Hypertension 2009, 53, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Garvin, J.L.; Ren, Y.; Pagano, P.J.; Carretero, O.A. Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase. Am. J. Physiol. Renal. Physiol. 2007, 292, F1867–F1872. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Carretero, O.A.; Ren, Y.; Wang, H.; Garvin, J.L. Intracellular ph regulates superoxide production by the macula densa. Am. J. Physiol. Renal. Physiol. 2008, 295, F851–F856. [Google Scholar] [PubMed]
- Fenton, R.A.; Pedersen, C.N.; Moeller, H.B. New insights into regulated aquaporin-2 function. Curr. Opin. Nephrol. Hypertens. 2013, 22, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Sands, J.M.; Nonoguchi, H.; Knepper, M.A. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 1987, 253, F823–F832. [Google Scholar]
- Stoos, B.A.; Carretero, O.A.; Farhy, R.D.; Scicli, G.; Garvin, J.L. Endothelium-derived relaxing factor inhibits transport and increases cgmp content in cultured mouse cortical collecting duct cells. J. Clin. Investig. 1992, 89, 761–765. [Google Scholar] [PubMed]
- Stoos, B.A.; Carretero, O.A.; Garvin, J.L. Endothelial-derived nitric oxide inhibits sodium transport by affecting apical membrane channels in cultured collecting duct cells. J. Am. Soc. Nephrol. 1994, 4, 1855–1860. [Google Scholar] [PubMed]
- Stoos, B.A.; Garcia, N.H.; Garvin, J.L. Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J. Am. Soc. Nephrol. 1995, 6, 89–94. [Google Scholar]
- Helms, M.N.; Yu, L.; Malik, B.; Kleinhenz, D.J.; Hart, C.M.; Eaton, D.C. Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia. Am. J. Physiol. Cell Physiol. 2005, 289, C717–C726. [Google Scholar] [PubMed]
- Lu, M.; Wang, W.H. Reaction of nitric oxide with superoxide inhibits basolateral K+ channels in the rat CCD. Am. J. Physiol. 1998, 275, C309–C316. [Google Scholar] [PubMed]
- Lu, M.; Wang, W.H. Nitric oxide regulates the low-conductance K+ channel in basolateral membrane of cortical collecting duct. Am. J. Physiol. 1996, 270, C1336–C1342. [Google Scholar] [PubMed]
- Wei, Y.; Lu, M.; Wang, W.H. Ca2+ mediates the effect of inhibition of Na+-K+-ATPase on the basolateral K+ channels in the rat CCD. Am. J. Physiol. Cell Physiol. 2001, 280, C920–C928. [Google Scholar] [PubMed]
- Hirsch, J.R.; Cermak, R.; Forssmann, W.G.; Kleta, R.; Kruhoffer, M.; Kuhn, M.; Schafer, J.A.; Sun, D.; Schlatter, E. Effects of sodium nitroprusside in the rat cortical collecting duct are independent of the NO pathway. Kidney Int. 1997, 51, 473–476. [Google Scholar] [PubMed]
- Garcia, N.H.; Pomposiello, S.I.; Garvin, J.L. Nitric oxide inhibits ADH-stimulated osmotic water permeability in cortical collecting ducts. Am. J. Physiol. 1996, 270, F206–F210. [Google Scholar] [PubMed]
- Garcia, N.H.; Stoos, B.A.; Carretero, O.A.; Garvin, J.L. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. Hypertension 1996, 27, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Stricklett, P.K.; Hughes, A.K.; Kohan, D.E. Endothelin-1 stimulates NO production and inhibits cAMP accumulation in rat inner medullary collecting duct through independent pathways. Am. J. Physiol. Renal Physiol. 2006, 290, F1315–F1319. [Google Scholar] [CrossRef] [PubMed]
- Bouley, R.; Breton, S.; Sun, T.; McLaughlin, M.; Nsumu, N.N.; Lin, H.Y.; Ausiello, D.A.; Brown, D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J. Clin. Investig. 2000, 106, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Tojo, A.; Guzman, N.J.; Garg, L.C.; Tisher, C.C.; Madsen, K.M. Nitric oxide inhibits bafilomycin-sensitive H(+)-ATPase activity in rat cortical collecting duct. Am. J. Physiol. 1994, 267, F509–F515. [Google Scholar] [PubMed]
- Verlander, J.W.; Hong, S.; Pech, V.; Bailey, J.L.; Agazatian, D.; Matthews, S.W.; Coffman, T.M.; Le, T.; Inagami, T.; Whitehill, F.M.; et al. Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin. Am. J. Physiol. Renal Physiol. 2011, 301, F1314–F1325. [Google Scholar] [CrossRef] [PubMed]
- Thumova, M.; Pech, V.; Froehlich, O.; Agazatian, D.; Wang, X.; Verlander, J.W.; Kim, Y.H.; Wall, S.M. Pendrin protein abundance in the kidney is regulated by nitric oxide and cAMP. Am. J. Physiol. Renal Physiol. 2012, 303, F812–F820. [Google Scholar] [PubMed]
- Yu, L.; Bao, H.F.; Self, J.L.; Eaton, D.C.; Helms, M.N. Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells. Am. J. Physiol. Renal Physiol. 2007, 293, F1666–F1677. [Google Scholar] [CrossRef] [PubMed]
- Markadieu, N.; Crutzen, R.; Boom, A.; Erneux, C.; Beauwens, R. Inhibition of insulin-stimulated hydrogen peroxide production prevents stimulation of sodium transport in A6 cell monolayers. Am. J. Physiol. Renal Physiol. 2009, 296, F1428–F1438. [Google Scholar] [PubMed]
- Markadieu, N.; Crutzen, R.; Blero, D.; Erneux, C.; Beauwens, R. Hydrogen peroxide and epidermal growth factor activate phosphatidylinositol 3-kinase and increase sodium transport in A6 cell monolayers. Am. J. Physiol. Renal Physiol. 2005, 288, F1201–F1212. [Google Scholar] [PubMed]
- Peti-Peterdi, J.; Warnock, D.G.; Bell, P.D. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J. Am. Soc. Nephrol. 2002, 13, 1131–1135. [Google Scholar] [PubMed]
- Sun, P.; Yue, P.; Wang, W.H. Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney. Am. J. Physiol. Renal Physiol. 2012, 302, F679–F687. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.; Wilcox, C.S. Oxidative stress in hypertension: Role of the kidney. Antioxid. Redox Signal. 2014, 20, 74–101. [Google Scholar] [CrossRef] [PubMed]
- Babilonia, E.; Wei, Y.; Sterling, H.; Kaminski, P.; Wolin, M.; Wang, W.H. Superoxide anions are involved in mediating the effect of low K intake on c-Src expression and renal K secretion in the cortical collecting duct. J. Biol. Chem. 2005, 280, 10790–10796. [Google Scholar] [CrossRef] [PubMed]
- Babilonia, E.; Lin, D.; Zhang, Y.; Wei, Y.; Yue, P.; Wang, W.H. Role of gp91phox-containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion. J. Am. Soc. Nephrol. 2007, 18, 2037–2045. [Google Scholar] [PubMed]
- Wei, Y.; Zavilowitz, B.; Satlin, L.M.; Wang, W.H. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction. J. Biol. Chem. 2007, 282, 6455–6462. [Google Scholar] [PubMed]
- Jin, Y.; Wang, Y.; Wang, Z.J.; Lin, D.H.; Wang, W.H. Inhibition of angiotensin type 1 receptor impairs renal ability of K conservation in response to K restriction. Am. J. Physiol. Renal Physiol. 2009, 296, F1179–F1184. [Google Scholar] [CrossRef] [PubMed]
- Babilonia, E.; Li, D.; Wang, Z.; Sun, P.; Lin, D.H.; Jin, Y.; Wang, W.H. Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct. J. Am. Soc. Nephrol. 2006, 17, 2687–2696. [Google Scholar] [PubMed]
- Zhang, Y.; Lin, D.H.; Wang, Z.J.; Jin, Y.; Yang, B.; Wang, W.H. K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD. Am. J. Physiol. Cell Physiol. 2008, 294, C765–C773. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, Z.; Babilonia, E.; Sterling, H.; Sun, P.; Wang, W. Effect of hydrogen peroxide on ROMK channels in the cortical collecting duct. Am. J. Physiol. Renal Physiol. 2007, 292, F1151–F1156. [Google Scholar]
- Soodvilai, S.; Jia, Z.; Yang, T. Hydrogen peroxide stimulates chloride secretion in primary inner medullary collecting duct cells via mPGES-1-derived PGE2. Am. J. Physiol. Renal Physiol. 2007, 293, F1571–F1576. [Google Scholar]
- Zimpelmann, J.; Li, N.; Burns, K.D. Nitric oxide inhibits superoxide-stimulated urea permeability in the rat inner medullary collecting duct. Am. J. Physiol. Renal Physiol. 2003, 285, F1160–F1167. [Google Scholar] [CrossRef]
- Feraille, E.; Dizin, E.; Roth, I.; Derouette, J.P.; Szanto, I.; Martin, P.Y.; de Seigneux, S.; Hasler, U. NADPH oxidase 4 deficiency reduces aquaporin-2 mRNA expression in cultured renal collecting duct principal cells via increased PDE3 and PDE4 activity. PLoS ONE 2014, 9, e87239. [Google Scholar]
- Tamma, G.; Ranieri, M.; Di Mise, A.; Centrone, M.; Svelto, M.; Valenti, G. Glutathionylation of the aquaporin-2 water channel: A novel post-translational modification modulated by the oxidative stress. J. Biol. Chem. 2014, 289, 27807–27813. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Vicente, A.; Garvin, J.L. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron. Antioxidants 2017, 6, 23. https://doi.org/10.3390/antiox6020023
Gonzalez-Vicente A, Garvin JL. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron. Antioxidants. 2017; 6(2):23. https://doi.org/10.3390/antiox6020023
Chicago/Turabian StyleGonzalez-Vicente, Agustin, and Jeffrey L. Garvin. 2017. "Effects of Reactive Oxygen Species on Tubular Transport along the Nephron" Antioxidants 6, no. 2: 23. https://doi.org/10.3390/antiox6020023
APA StyleGonzalez-Vicente, A., & Garvin, J. L. (2017). Effects of Reactive Oxygen Species on Tubular Transport along the Nephron. Antioxidants, 6(2), 23. https://doi.org/10.3390/antiox6020023