Rosmarinic Acid, a New Polyphenol from Baccaurea ramiflora Lour. Leaf: A Probable Compound for Its Anti-Inflammatory Activity
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Plant Material Collection and Extraction
2.3. In vitro Assay
Determination of Biochemical Constituents
2.4. In vitro Antioxidant Properties of the Extracts
2.4.1. Free Radical Scavenging Activity (DPPH Method)
2.4.2. Nitric Oxide Scavenging Activity
2.4.3. Determination of Total Antioxidant Capacity by Phosphomolybdenum Assay
2.5. Quantitative Analysis of Antioxidant Compounds Using High-Performance Liquid Chromatography (HPLC)
2.5.1. Preparation of Standard and Sample Solutions for HPLC
2.5.2. Chromatographic Conditions for HPLC
2.6. In vivo Assay
2.6.1. Animals
2.6.2. Acute Toxicity Test
2.6.3. Experimental Groups
2.7. Anti-Inflammatory Activity
2.8. Measurement of IL-1β, TNF-α Level
2.9. Statistical Analysis
3. Results and Discussion
3.1. Yield of the Extract
3.2. Determination of Biochemical Constituents
3.3. In Vitro Antioxidant Properties of the Extracts
3.3.1. Free Radical Scavenging Activity (DPPH Method)
3.3.2. Nitric Oxide Scavenging Activity
3.3.3. Phosphomolybdenum Assay
3.4. HPLC Analysis
3.5. Assessment of Pharmacological Activity (In Vivo)
3.5.1. Toxicity
3.5.2. Anti-Inflammatory Activity
Experimental Animals | Dosages mg/kg | % Increase 1 h | % Increase 2 h | % Increase 4 h |
---|---|---|---|---|
NL | No treatment | 0.24 ± 0.12 | 0.62 ± 0.18 | 0.36 ± 0.24 |
IC | No treatment | 2.1 ± 0.47 a | 6.2 ± 0.54 a | 9.4 ± 1.76 a |
IC + LBME | 100 | 9.3 ± 0.65 NS | 14.2 ± 2.17 a | 29.6 ± 4.62 b |
IC + HBME | 200 | 13.7 ± 1.75 NS | 31.3 ± 4.13 b | 62.71 ± 4.98 b |
IC + Diclofenac | 10 | 52.3 ± 6.89 b | 60.1 ± 8.90 b | 71.57 ± 7.32 b |
3.5.3. Anti-Inflammatory Effect of BME on Cytokines Levels
Experimental Animals | IL-1β (pg/mg Protein) | TNF-α (ng/μg Protein) |
---|---|---|
NL | 3.3 | 0.15 |
IC | 10.4 | 0.58 |
IC + LBME (100 mg/kg) | 6.7 * | 0.39 * |
IC + HBME (200 mg/kg) | 4.4 * | 0.21 *** |
IC+Diclofenac | 4.8 ** | 0.18 *** |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goyal, A.K.; Mishra, T.; Sen, A. Antioxidant profiling of Latkan (Baccaurea ramiflora Lour.) wine. Indian J. Biotechnol. 2013, 12, 137–139. [Google Scholar]
- Howlader, M.A.; Apu, A.S.; Saha, R.K.; Rizwan, F.; Nasrin, N.; Asaduzzaman, M. Cytotoxic activity of n-hexane, chloroform and carbon tetrachloride fractions of the ethanolic extract of leaves and stems of Baccaurea ramiflora (Lour.). Int. J. Pharm. Sci. Res. 2012, 3, 822–825. [Google Scholar]
- Lin, Y.F.; Yi, Z.; Zhao, Y.H. Chinese Dai Medicine Colorful Illustrations; Yunnan Nationality Press: Kunming, China, 2003; pp. 158–160. [Google Scholar]
- Hasan, S.R.; Hossain, M.M.; Akter, R.; Jamila, M.; Mazumder, M.E.H.; Rahman, S. DPPH free radical scavenging activity of some Bangladeshi medicinal plants. J. Med. Plant Res. 2009, 3, 875–879. [Google Scholar]
- Aswal, B.S.; Goel, A.K.; Kulshrestha, D.K.; Mehrotra, B.N.; Patnaik, G.K. Screening of Indian plants for biological activity: Part XV. Indian J. Exp. Biol. 1996, 34, 444–467. [Google Scholar] [PubMed]
- Yang, X.W.; Wang, J.S.; Ma, Y.L.; Xiao, H.T.; Zuo, Y.Q.; Lin, H.; He, H.P.; Li, L.; Hao, X.J. Bioactive Phenols from the Leaves of Baccaurea ramiflora. Planta Med. 2007, 73, 1415–1417. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W.; He, H.P.; Ma, Y.L.; Wang, F.; Zuo, Y.Q.; Lin, H.; Li, S.L.; Li, L.; Hao, X.J. Three new vanilloid derivatives from the stems of Baccaurea ramiflora. Planta Med. 2010, 76, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Obayed Ullah, M.; Urmi, K.F.; Howlader, A.; Hossain, K.; Ahmed, M.T.; Hamid, K. Hypoglycemic, hypolipidemic and antioxidant effects of leaves methanolic extract of Baccaurea ramiflora. Int. J. Pharm. Pharm. Sci. 2012, 4, 266–269. [Google Scholar]
- Singh, R.; Singh, M.K.; Chandra, L.R.; Bhat, D.; Arora, M.S.; Nailwal, T.; Pande, V. In vitro antioxidant and free radical scavenging activity of Macrotyloma uniflorum (Gahat dal.) from Kumauni region. Int. J. Fund. Appl. Sci. 2012, 1, 7–10. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Goyal, A.K.; Middha, S.K.; Sen, A. Evaluation of the DPPH radical scavenging activity, total phenols and antioxidant activities in Indian wild Bambusa vulgaris “Vittata” methanolic leaf extract. J. Nat. Pharm. 2010, 1, 34–39. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herbal Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Marcocci, L.; Packer, L.; Droy-Lefaix, M.T.; Sekaki, A.; Gardes-Albert, M. Antioxidant action of Ginkgo biloba extract (EGb 761). Meth. Enzymol. 1994, 234, 462–475. [Google Scholar] [PubMed]
- Goyal, A.K.; Mishra, T.; Bhattacharya, M.; Kar, P.; Sen, A. Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India. J. Biosci. 2013, 38, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: Specific application to the determination of vitamin E. Ann. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Middha, S.K.; Usha, T.; Pande, V. HPLC Evaluation of Phenolic Profile, Nutritive Content and Antioxidant Capacity of Extracts Obtained from Punica granatum Fruit Peel. Adv. Pharm. Sci. 2013. [Google Scholar] [CrossRef]
- Middha, S.K.; Bhattacharjee, B.; Saini, D.; Baliga, M.S.; Nagaveni, M.B.; Usha, T. Protective role of Trigonella foenum graceum extract against oxidative stress in hyperglycemic rats. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 427–435. [Google Scholar] [PubMed]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenan induced oedema in hind paw of rat as an assay for anti-inflammatory drugs. P. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Kumaraswamy, M.; Middha, S.K.; Lokesh, P.; Balasubramamanya, S.; Anuradha, M. Analgesic, anti-inflammatory, anti-lipoxygenase activity and characterization of three bioactive compounds in the most active fraction of Leptadenia reticulata (Wight & Arn.)—A valuable plant of medicinal importance. Iran. J. Pharm. Sci. 2014, in press. [Google Scholar]
- Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur. J. Immunol. 2005, 35, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.K.; Basistha, B.C.; Sen, A.; Middha, S.K. Antioxidant profiling of Hippophae salicifolia growing in sacred forests of Sikkim, India. Funct. Plant Biol. 2011, 38, 697–701. [Google Scholar] [CrossRef]
- Goyal, A.K.; Middha, S.K.; Sen, A. In vitro antioxidative profiling of different fractions of Dendrocalamus strictus (Roxb.) Nees leaf extracts. Free Rad. Antiox. 2011, 1, 42–48. [Google Scholar] [CrossRef]
- Usha, T.; Middha, S.K. A new vista an in vitro new vista to identify hypoglycemic activity. Int. J. Fund. Appl. Sci. 2012, 1, 27–29. [Google Scholar]
- Hazra, A.; Santana, B.; Nripendranath, M. Antioxidant and free radicals scavenging activity of Spondias pinnata. BMC Complement. Altern. Med. 2008, 8, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.; Simmonds, M.S. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Usha, T.; Akshya, L.; Kundu, S.; Nair, R.K.; Hussain, I.; Middha, S.K. An updated version of Phytomellitus Database. Int. J. Fund. Appl. Sci. 2013, 2, 29. [Google Scholar]
- Lin, L.; Cui, C.; Wen, L.; Yang, B.; Luo, W.; Zhao, M. Assessment of in vitro antioxidant capacity of stem and leaf extracts of Rabdosia serra (Maxim.) Hara and identification of the major compound. Food Chem. 2011, 126, 54–59. [Google Scholar] [CrossRef]
- Chen, J.H.; Ho, C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 1997, 45, 2374–2378. [Google Scholar] [CrossRef]
- Lu, Y.R.; Foo, L.Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001, 75, 197–202. [Google Scholar] [CrossRef]
- Rocha, J.P.; Miguel Sepodes, B.; Eduardo-Figueira, M.; Bronze, R.; Duarte, C.; Serra, T.; Silva-Lima, B.; Mota-Filipe, H. Anti-inflammatory effect of Rosmarinic acid on a model of carrageenan-induced paw edema. FASEB J. 2009, 23. Available online: http://www.fasebj.org/cgi/content/meeting_abstract/23/1_MeetingAbstracts/571.2?sid=1506b73f-6d7a-4e94-b2ad-1e5e915f8d67 (accessed on 8 August 2014).
- Vinegar, R.; Schreiber, W.; Hugo, R. Biphasic development of carrageenan edema in rats. J. Pharmacol. Exp. Ther. 1969, 166, 96–103. [Google Scholar] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel methods for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [PubMed]
- Loram, L.C.; Fuller, A.; Fick, L.G.; Cartmell, T.; Poole, S.; Mitchell, D. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J. Pain. 2007, 8, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; Shanmugam, K.; Munch, G.W.; Ming, J.S.; et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med. 2012, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tohda, A.; Nakayama, N.; Hatanaka, F.; Komatsu, K. Comparison of anti-inflammatory activities of six curcuma rhizomes: A possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract. Evid. Based Complement. Altern. Med. 2006, 3, 255–260. [Google Scholar] [CrossRef]
- Mogana, R.; Teng Jinh, K.; Wiart, C. Anti inflammatory activities of leaf methanol extract of Cotyledon orbiculata L. (Crassulaceae). Evid. Based Complement. Altern. Med. 2013. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usha, T.; Middha, S.K.; Bhattacharya, M.; Lokesh, P.; Goyal, A.K. Rosmarinic Acid, a New Polyphenol from Baccaurea ramiflora Lour. Leaf: A Probable Compound for Its Anti-Inflammatory Activity. Antioxidants 2014, 3, 830-842. https://doi.org/10.3390/antiox3040830
Usha T, Middha SK, Bhattacharya M, Lokesh P, Goyal AK. Rosmarinic Acid, a New Polyphenol from Baccaurea ramiflora Lour. Leaf: A Probable Compound for Its Anti-Inflammatory Activity. Antioxidants. 2014; 3(4):830-842. https://doi.org/10.3390/antiox3040830
Chicago/Turabian StyleUsha, Talambedu, Sushil Kumar Middha, Malay Bhattacharya, Prakash Lokesh, and Arvind Kumar Goyal. 2014. "Rosmarinic Acid, a New Polyphenol from Baccaurea ramiflora Lour. Leaf: A Probable Compound for Its Anti-Inflammatory Activity" Antioxidants 3, no. 4: 830-842. https://doi.org/10.3390/antiox3040830
APA StyleUsha, T., Middha, S. K., Bhattacharya, M., Lokesh, P., & Goyal, A. K. (2014). Rosmarinic Acid, a New Polyphenol from Baccaurea ramiflora Lour. Leaf: A Probable Compound for Its Anti-Inflammatory Activity. Antioxidants, 3(4), 830-842. https://doi.org/10.3390/antiox3040830