Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Extraction of Olive Leaves
2.3. Cloud Point Extraction Procedure
2.4. Thermal Stability of Polyphenols Entrapped in Surfactant-Rich Phase
2.5. Chromatographic Conditions
Calibration Curves of Oleuropein, Verbascoside, Luteolin-7-O-Glucoside Apigenin-7-O-Glucoside and Hydroxytyrosol
2.6. Determination of Antioxidant Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Salting-Out-Assisted Cloud Point Procedure
3.1.1. Effect of the Addition of Salt
3.1.2. Effect of the pH of the Solution
3.1.3. Effect of Settling Time
3.1.4. Effect of Surfactant Concentration
3.1.5. Effect of Temperature
Analytes | Concentration (ppm) | % Recovery | |
---|---|---|---|
1C0 | 2Cw | ||
Oleuropein | 527.5 ± 2.30 | 1.06 ± 0.32 | 99.8 ± 0.13 |
Hydroxytyrosol | 83.4 ± 0.41 | 5.83 ± 0.41 | 93.0 ± 0.19 |
Verbascoside | 22.9 ± 0.12 | 0.16 ± 0.01 | 99.3 ± 0.31 |
Luteolin-O-7-glucoside | 8.8 ± 0.64 | 1.07 ± 0.06 | 87.6 ± 1.10 |
Apigenin-O-7-glucoside | 8.6 ± 0.22 | ND | 100.0 |
3.1.6. Precision of the Method
Analyte | sr (%) | sWR (%) |
---|---|---|
Oleuropein | 0.44 | 3.36 |
Hydroxytyrosol | 0.51 | 4.05 |
Verbascoside | 0.52 | 3.45 |
Luteolin-O-7-glucoside | 7.27 | 3.00 |
Apigenin-O-7-glucoside | 2.56 | 3.27 |
3.2. Thermal Stability of Polyphenols Entrapped in Surfactant-Rich Phase
3.3. Antioxidant Activity (DPPH) of the Recovered Polyphenolic Compounds
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Kim, T.J.; Kim, J.H.; Jin, Y.R.; Yun, Y.P. The inhibitory effect and mechanism of luteolin 7-glucoside on rat aortic vascular smooth muscle cell proliferation. Arch. Pharm. Res. 2009, 29, 67–72. [Google Scholar]
- Omar, S.H. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm. J. 2010, 18, 111–121. [Google Scholar] [CrossRef]
- Bonoli, M.; Bendini, A.; Cerretani, L.; Lercker, G.; Toschi, T.G. Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oft as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem. 2004, 52, 7026–7032. [Google Scholar] [CrossRef]
- Patil, S.C.; Singh, V.P.; Satyanarayan, P.S.V.; Jain, N.K.A.; Singh, A.; Kulkarni, S.K. Protective effect of flavonoids against aging- and lipopolysaccharide induced cognitive impairment in mice. Pharmacology 2003, 69, 59–67. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.; Robards, K.; Ryan, D. Sample preparation in the determination of phenolic compounds in fruits. Analyst 2000, 125, 989–1009. [Google Scholar] [CrossRef]
- Fki, I.; Bouaziz, M.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg. Med. Chem. 2005, 13, 5362–5370. [Google Scholar] [CrossRef]
- Robards, K. Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J. Chromatogr. A 2003, 1000, 657–691. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Dominguez, J.M.; Sineiro, J.; Dominguez, H.; Nunez, M.J.; Parajo, J.C. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Ferrera, S.Z.; Sanz, P.C.; Santana, M.C.; Santana-Rondriquez, J.J. The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. Trends Anal. Chem. 2004, 23, 469–479. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanaka, H. A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol. Talanta 1978, 25, 585–589. [Google Scholar] [CrossRef]
- Quina, F.H.; Hinze, W.L. Surfactant-mediated cloud point extractions: An environmentally benign alternative separation approach. Ind. Eng. Chem. Res. 1999, 38, 4150–4168. [Google Scholar] [CrossRef]
- Martínez, C.R.; Gonzalo, R.E.; Laespada, F.E.; San Román, S.F. Evaluation of surface- and ground-water pollution due to herbicides in agricultural areas of Zamora and Salamanca (Spain). J. Chromatogr. A 2000, 869, 471–480. [Google Scholar] [CrossRef]
- Katsoyannos, E.; Chatzilazarou, A.; Gortzi, O.; Lalas, S.; Konteles, S.J.; Tataridis, P. Application of cloud point extraction using surfactants in the isolation of physical antioxidants (phenols) from olive mill wastewater. Fresenius Environ. Bull. 2006, 15, 1122–1125. [Google Scholar]
- Gortzi, O.; Lalas, S.; Chatzilazarou, A.; Katsoyannos, E.; Papaconstandinou, S.; Dourtoglou, E. Recovery of Natural Antioxidants from Olive Mill Wastewater Using Genapol-X080. J. Am. Oil Chem. Soc. 2008, 85, 133–140. [Google Scholar] [CrossRef]
- Katsoyannos, E.; Chatzilazarou, A.; Gortzi, O.; Lalas, S.; Athanasiadis, V.; Tsaknis, J. Evaluation of the suitability of low hazard surfactants for the separation of phenols and carotenoids from red-flesh orange juice and olive mill wastewater using cloud point extraction. J. Sep. Sci. 2012, 35, 2665–2670. [Google Scholar] [CrossRef]
- Chatzilazarou, A.; Katsoyannos, E.; Gortzi, O.; Lalas, S.; Paraskevopoulos, Y.; Dourtoglou, E.; Tsaknis, J. Removal of Polyphenols from Wine Sludge using Cloud Point Extraction. J. Air Waste Manag. Assoc. 2010, 60, 454–459. [Google Scholar] [CrossRef]
- Noubigh, A.; Cherif, M.; Provost, E.; Abderrabba, M. Solubility of some phenolic compounds in aqueous alkali metal nitrate solutions from (293.15 to 318.15) K. J. Chem. Thermodyn. 2008, 40, 1612–1616. [Google Scholar] [CrossRef]
- Noubigh, A.; Cherif, M.; Provost, E.; Abderrabba, M. Solubility of Gallic Acid, Vanillin, Syringic Acid, and Protocatechuic Acid in Aqueous Sulfate Solutions from (293.15 to 318.15) K. J. Chem. Eng. Data 2008, 53, 1675–1678. [Google Scholar] [CrossRef]
- Noubigh, A.; Abderrabba, M.; Provost, E. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water. J. Chem. Thermodyn. 2007, 39, 297–303. [Google Scholar] [CrossRef]
- Sato, N.; Mori, M.; Itabashi, H. Cloud point extraction of Cu(II) using a mixture of triton X-100 and dithizone with a salting-out effect and its application to visual determination. Talanta 2013, 117, 376–381. [Google Scholar] [CrossRef]
- Stamatopoulos, K.; Katsoyannos, E.; Chatzilazarou, A.; Konteles, S.J. Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology. Food Chem. 2012, 133, 344–351. [Google Scholar] [CrossRef]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant Principles from Bauhinia tarapotensis. J. Natur. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Hofmeister, F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmacol. 1888, 24, 247–260. [Google Scholar] [CrossRef]
- Nishi, I.; Imai, I.; Kasai, M.; Binran, K.K. Handbook of Surface Active Agents; Tosho, S., Ed.; Sangyo Tosho Publishing: Tokyo, Japan, 1960. [Google Scholar]
- Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent developments on polyphenol–protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 2012, 3, 592–605. [Google Scholar] [CrossRef]
- Attya, M.; Benabdelkamel, H.; Perri, E.; Russo, A.; Sindona, G. Effects of Conventional Heating on the Stability of Major Olive Oil Phenolic Compounds by Tandem Mass Spectrometry and Isotope Dilution Assay. Molecules 2010, 15, 8734–8746. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližot, V.; Šubaric, D.; Babic, D.J. Prevention of thermal degradation of red currant juice anthocyanins by phenolic compounds addition. J. Food Sci. Technol. 2009, 1, 24–30. [Google Scholar]
- Briante, R.; La Cara, F.; Febbraio, F.; Barone, R.; Piccialli, G.; Carolla, R.; Pietro Mainolfi, P.; De Napoli, L.; Patumi, M.; Fontanazza, G.; et al. Hydrolysis of oleuropein by recombinant beta-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus immobilised on chitosan matrix. J. Biotechnol. 2000, 77, 275–286. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Sirimanne, S.R.; Patterson, D.G.; Ma, L.; Justice, J.B. Application of cloud-point extraction-reversed-phase high-performance liquid chromatography. A preliminary study of the extraction and quantification of vitamins A and E in human serum and whole blood. J. Chromatogr. B 1998, 716, 129–137. [Google Scholar] [CrossRef]
- TCasero, I.; Sicilia, D.; Rubio, S.; Pérez-Bendito, D. An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds. Anal. Chem. 1999, 71, 4519–4526. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stamatopoulos, K.; Katsoyannos, E.; Chatzilazarou, A. Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction. Antioxidants 2014, 3, 229-244. https://doi.org/10.3390/antiox3020229
Stamatopoulos K, Katsoyannos E, Chatzilazarou A. Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction. Antioxidants. 2014; 3(2):229-244. https://doi.org/10.3390/antiox3020229
Chicago/Turabian StyleStamatopoulos, Konstantinos, Evangelos Katsoyannos, and Arhontoula Chatzilazarou. 2014. "Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction" Antioxidants 3, no. 2: 229-244. https://doi.org/10.3390/antiox3020229
APA StyleStamatopoulos, K., Katsoyannos, E., & Chatzilazarou, A. (2014). Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction. Antioxidants, 3(2), 229-244. https://doi.org/10.3390/antiox3020229