Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies
Abstract
:1. Introduction
2. Article Selection Criteria
3. Underlying Mechanisms: Aging, Oxidative Stress, and Bone Turnover
4. Polyphenol Intake and Bone Health
First author, year [ref.] | Study Design | Measurements/Treatments | Results |
---|---|---|---|
Hardcastle et al., 2011 [19] | Observational Study, premenopausal women (n = 2929) | Diets via FFQ analyzed for flavonoid intake Measured BMD at femoral neck and lumbar spine | Catechin and procyanidin associated with increased BMD Flavanones showed no effect |
Welch et al., 2013 [42] | Observational Study, women (twins) (n = 3160) | Habitual intakes of flavonoids and subclasses via FFQ; bone density | Anthocyanins associated with highest observed BMD High flavanone intake positively associated with hip BMD |
New et al., 2000 [39] | Cross sectional, healthy women 45–55 years (n = 62) | BMD at lumbar spine and femoral neck; bone resorption, nutrient intakes via FFQ | Femoral neck BMD higher in women who consumed high amounts of fruit in childhood |
Langestmo et al., 2011 [40] | Retrospective Cohort Study, random selection (n = 5188) | Assessed dietary patterns using FFQ to determine low-trauma fracture | Nutrient dense (fruits, vegetables, whole grains) associated with reduced risk of fracture |
McTiernan et al., 2009 [41] | Randomized Controlled Trial, Postmenopausal women (n = 29,294) | Intervention: Women’s Health Initiative Dietary Modification (low fat, increase fruit and vegetable for 8 years; Assessed fracture falls, BMD) | Intervention associated with lower rate of falls No effect on BMD |
Arjmandi et al., 2002 [44] | Randomized Controlled Trial Postmenopausal osteopenic women (n = 48) | Two groups; Intervention: dried plum (100 g/day) vs. comparative dried apples (75 g/day) for 3 months | Dried plum increased IGF-1, ALP, and BAP |
Hooshmand et al., 2011 [43] | Randomized Controlled Trial, postmenopausal osteopenic women (n = 160) | Two groups; Intervention: dried plum (100 g/day) vs. comparative dried apples for 12 months | Dried plum increased BMD, decreased serum BAP and TRAP-5b |
First author, year [ref.] | Study Design | Measurements/Treatments | Results |
---|---|---|---|
Bu et al., 2009 [59] | MC3T3-E1 cells (mouse osteoblast cell line) | Treated with 0, 2.5, 5, 10 and 20 µg/mL doses of dried plum extract and TNF-α | Increased intracellular ALP activity Increased expression of IGF-1 Stimulated mRNA expression of osteoblast marker genes (Runx2, osterix) |
Bu et al., 2008 [60] | RAW 264.7 (murine macrophage) and primary bone marrow cells | Treated with 10, 20, and 30 µg/mL dried plum extracts for 4 days | Decreased osteoclast differentiation Downregulated osteoclast precursor cyclooxygenase expression and nitric oxide TNF-α expression decreased over time |
Deyhim et al., 2005 [45] | SHAM and OVX 3 month old female rats | 6 groups: Sham Control OVX-Control OVX + 17 Beta-estradiol OVX + 5% Dried Plum OVX + 15% Dried Plum OVX + 25% Dried Plum for 60 day duration | OVX + 25% Dried Plum: Increased BMD No effect of serum IGF-1, ALP, TRAP |
Arjmandi et al., 2010 [46] | SHAM and OVX 3 month old female rats | 7 groups: Sham Control OVX-Control OVX +2% FOS OVX +5% FOS + 7.5% Dried Plum OVX + 2% FOS + 5% Dried Plum OVX + 2% FOS + 2% Dried Plum polyphenol OVX + 2% FOS + 7.5% Dried Plum juice | OVX + 5% FOS + 7.5% dried plum showed greatest effect of increased femur BMD |
Franklin et al., 2006 [47] | SHAM and ORX 6 month old rats | 5 groups: Sham-Control ORX-control ORX + 5% Dried Plum ORX + 15% Dried Plum ORX + 25% Dried Plum for 90 days | ORX + 15%/25% Dried Plum group increased BMD All doses increased serum IGF-1 All doses decreased OPG and RANKL mRNA expression in tibia |
First author, year [ref.] | Study Design | Measurements/Treatments | Results |
---|---|---|---|
Tanabe et al., 2011 [61] | Human bone marrow cells (pre-osteoclastic) | 10, 25, 50, 100 µg/mL cranberry extract 4 d duration | Decreased rate of bone degradation by inhibition of RANKL dependent osteoclasts |
Villareal et al., 2007 [50] | SHAM and ORX 1 year old male rats | 4 groups: SHAM Control ORX Control ORX + 27% cranberry juice ORX + 45% cranberry juice for 4 months | No effect on bone health |
Bickford et al., 2006 [62] | Human bone marrow cells (CD34+ or CD133) | 500 ng/mL blueberry extract 72 h duration | Increased proliferation of human bone marrow cells Decreased TRAP staining and RANKL-dependent osteoclast numbers |
Devareddy et al., 2008 [56] | SHAM and OVX 6-month old female rats | 3 groups: SHAM Control OVX-Control OVX + 5% blueberry for 100 day duration | OVX + 5% blueberry group increased whole body BMD and serum ALP |
Chen et al., 2010 [63] | Sprague-Dawley male/female rats; 20 days old (n = 20) | 2 groups: Control 10% blueberry for 40 day duration | Blueberry: Increases in bone mass, BMD, BMC, Associated with increases in osteoblast number and decreased osteoclast number |
Zhang et al., 2011 [58] | Sprague-Dawley female rats, 20 days old | 2 groups: Control 10% blueberry diet fed rats only between postnatal day 20 and postnatal day 34 | Early blueberry supplementation prevented osteoblast senescence and adult bone loss Blueberry: increased levels of trabecular bone volume, osteoblast number and bone formation rate. Higher osteocalcin levels |
5. Anti-Oxidative and Anti-Inflammatory Effects of Berries
6. Conclusions
Acknowledgments
Abbreviations
ALP | alkaline phosphatase activity |
AOPP | advanced oxidation protein products |
AP-1 | activator protein-1 |
BMD | bone mineral density |
BMP-2 | bone-morphogenetic protein-2 |
CAM | complementary and alternative medicine |
ERK | extracellular signal-regulated kinase |
FFQ | food frequency questionnaire |
GPx | glutathione peroxidase |
IGF-1 | Insulin-like growth factor |
IL-1 | interluekin-1 |
IL-2 | interleukin-2 |
IL-6 | interleukin-6 |
IL-15 | interleukin-15 |
MAPK | mitogen-activated protein kinase |
M-CSF | macrophage colony stimulating factor |
MDA | malondialdehyde |
MMPs | matrix metalloproteinases |
mRNA | messenger RNA |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
OPG | osteoprotegerin |
ORX | orchidectomized |
OVX | ovariectomized |
RANKL | receptor activator of nuclear factor kappa-B ligand |
RBC | red blood cell |
ROS | reactive oxygen species |
Runx2 | runt related transcription factor-2 |
SERM | selective estrogen receptor modulators |
SOD | superoxide dismutase |
TNF-α | tumor necrosis factor alpha |
TRAP | tartrate resistant acid phosphatase |
Authors Contributions
Conflicts of Interests
References
- Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone 2006, 38, S4–S9. [Google Scholar] [CrossRef]
- Becker, D.J.; Kilgore, M.L.; Morrisey, M.A. The societal burden of osteoporosis. Curr. Rheumatol. Rep. 2010, 12, 186–191. [Google Scholar] [CrossRef]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the united states, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Lewiecki, E.M. In the clinic. Osteoporosis. Ann. Intern. Med. 2011, 155. ITC1-1-15, quiz ITC11-16. [Google Scholar] [CrossRef]
- Costa, A.G.; Wyman, A.; Siris, E.S.; Watts, N.B.; Silverman, S.; Saag, K.G.; Roux, C.; Rossini, M.; Pfeilschifter, J.; Nieves, J.W.; et al. When, where and how osteoporosis-associated fractures occur: An analysis from the global longitudinal study of osteoporosis in women (glow). PLoS One 2013, 8, e83306. [Google Scholar] [CrossRef] [Green Version]
- Cauley, J.A. Public health impact of osteoporosis. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 1243–1251. [Google Scholar] [CrossRef]
- Clarke, B.L.; Khosla, S. Physiology of bone loss. Radiol. Clin. N. Am. 2010, 48, 483–495. [Google Scholar] [CrossRef]
- Lean, J.M.; Davies, J.T.; Fuller, K.; Jagger, C.J.; Kirstein, B.; Partington, G.A.; Urry, Z.L.; Chambers, T.J. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J. Clin. Investig. 2003, 112, 915–923. [Google Scholar] [CrossRef]
- Chen, F.; Ouyang, Y.; Ye, T.; Ni, B.; Chen, A. Estrogen inhibits rankl-induced osteoclastic differentiation by increasing the expression of trpv5 channel. J. Cell. Biochem. 2014, 115, 651–658. [Google Scholar] [CrossRef]
- Weaver, C.M.; Alekel, D.L.; Ward, W.E.; Ronis, M.J. Flavonoid intake and bone health. J. Nutr. Gerontol. Geriatr. 2012, 31, 239–253. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Zhong, Z.M.; Hou, G.; Jiang, H.; Chen, J.T. Involvement of oxidative stress in age-related bone loss. J. Surg. Res. 2011, 169, e37–e42. [Google Scholar] [CrossRef]
- Management of osteoporosis in postmenopausal women: 2010 position statement of the north american menopause society. Menopause 2010, 17, 25–54. [CrossRef]
- Singer, A.; Grauer, A. Denosumab for the management of postmenopausal osteoporosis. Postgrad. Med. 2010, 122, 176–187. [Google Scholar] [CrossRef]
- Yang, D.; Li, J.; Yuan, Z.; Liu, X. Effect of hormone replacement therapy on cardiovascular outcomes: A meta-analysis of randomized controlled trials. PLoS One 2013, 8, e62329. [Google Scholar] [CrossRef]
- Sanders, S.; Geraci, S.A. Osteoporosis in postmenopausal women: Considerations in prevention and treatment: (Women’s health series). South. Med. J. 2013, 106, 698–706. [Google Scholar] [CrossRef]
- Horcajada, M.N.; Offord, E. Naturally plant-derived compounds: Role in bone anabolism. Curr. Mol. Pharmacol. 2012, 5, 205–218. [Google Scholar] [CrossRef]
- Sacco, S.M.; Horcajada, M.N.; Offord, E. Phytonutrients for bone health during ageing. Br. J. Clin. Pharmacol. 2013, 75, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; von Bergen, V.; Chyu, M.C.; Jenkins, M.R.; Mo, H.; Chen, C.H.; Kwun, I.S. Fruits and dietary phytochemicals in bone protection. Nutr. Res. 2012, 32, 897–910. [Google Scholar] [CrossRef]
- Hardcastle, A.C.; Aucott, L.; Reid, D.M.; Macdonald, H.M. Associations between dietary flavonoid intakes and bone health in a scottish population. J. Bone Miner. Res. 2011, 26, 941–947. [Google Scholar] [CrossRef]
- Paredes-Lopez, O.; Cervantes-Ceja, M.L.; Vigna-Perez, M.; Hernandez-Perez, T. Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef]
- Krenn, L.; Steitz, M.; Schlicht, C.; Kurth, H.; Gaedcke, F. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements—Analysis with problems. Pharmazie 2007, 62, 803–812. [Google Scholar] [PubMed]
- Slatnar, A.; Jakopic, J.; Stampar, F.; Veberic, R.; Jamnik, P. The effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices. PLoS One 2012, 7, e47880. [Google Scholar] [CrossRef] [PubMed]
- Aqil, F.; Gupta, A.; Munagala, R.; Jeyabalan, J.; Kausar, H.; Sharma, R.J.; Singh, I.P.; Gupta, R.C. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (jamun, the indian blackberry). Nutr. Cancer 2012, 64, 428–438. [Google Scholar] [CrossRef]
- Syed, F.A.; Ng, A.C. The pathophysiology of the aging skeleton. Curr. Osteoporos. Rep. 2010, 8, 235–240. [Google Scholar] [CrossRef]
- Almeida, M.; O’Brien, C.A. Basic biology of skeletal aging: Role of stress response pathways. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 1197–1208. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, M.A.; Ruiz-Ramos, M.; Correa-Munoz, E.; Mendoza-Nunez, V.M. Oxidative stress as a risk factor for osteoporosis in elderly mexicans as characterized by antioxidant enzymes. BMC Musculoskelet. Disord. 2007, 8, 124. [Google Scholar] [CrossRef]
- Almeida, M. Aging mechanisms in bone. BoneKEy Rep. 2012. [Google Scholar] [CrossRef]
- Filaire, E.; Toumi, H. Reactive oxygen species and exercise on bone metabolism: Friend or enemy? Jt. Bone Spine Rev. Rhum. 2012, 79, 341–346. [Google Scholar] [CrossRef]
- Garrett, I.R.; Boyce, B.F.; Oreffo, R.O.; Bonewald, L.; Poser, J.; Mundy, G.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Investig. 1990, 85, 632–639. [Google Scholar] [CrossRef]
- Mody, N.; Parhami, F.; Sarafian, T.A.; Demer, L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 2001, 31, 509–519. [Google Scholar] [CrossRef]
- Bai, X.C.; Lu, D.; Bai, J.; Zheng, H.; Ke, Z.Y.; Li, X.M.; Luo, S.Q. Oxidative stress inhibits osteoblastic differentiation of bone cells by erk and nf-kappab. Biochem. Biophys. Res. Commun. 2004, 314, 197–207. [Google Scholar] [CrossRef]
- Maggio, D.; Barabani, M.; Pierandrei, M.; Polidori, M.C.; Catani, M.; Mecocci, P.; Senin, U.; Pacifici, R.; Cherubini, A. Marked decrease in plasma antioxidants in aged osteoporotic women: Results of a cross-sectional study. J. Clin. Endocrinol. Metab. 2003, 88, 1523–1527. [Google Scholar] [CrossRef]
- Muthusami, S.; Ramachandran, I.; Muthusamy, B.; Vasudevan, G.; Prabhu, V.; Subramaniam, V.; Jagadeesan, A.; Narasimhan, S. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta 2005, 360, 81–86. [Google Scholar] [CrossRef]
- Sontakke, A.N.; Tare, R.S. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin. Chim. Acta 2002, 318, 145–148. [Google Scholar] [CrossRef]
- Nojiri, H.; Saita, Y.; Morikawa, D.; Kobayashi, K.; Tsuda, C.; Miyazaki, T.; Saito, M.; Marumo, K.; Yonezawa, I.; Kaneko, K.; et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J. Bone Miner. Res. 2011, 26, 2682–2694. [Google Scholar] [CrossRef]
- Suntar, I.; Akkol, E.K. Beneficial effects of plant sources on the treatment of osteoporosis. Curr. Drug Targets 2013, 14, 1611–1618. [Google Scholar] [CrossRef]
- Levis, S.; Lagari, V.S. The role of diet in osteoporosis prevention and management. Curr. Osteoporos. Rep. 2012, 10, 296–302. [Google Scholar] [CrossRef]
- Hamidi, M.; Boucher, B.A.; Cheung, A.M.; Beyene, J.; Shah, P.S. Fruit and vegetable intake and bone health in women aged 45 years and over: A systematic review. Osteoporos. Int. 2011, 22, 1681–1693. [Google Scholar] [CrossRef]
- New, S.A.; Robins, S.P.; Campbell, M.K.; Martin, J.C.; Garton, M.J.; Bolton-Smith, C.; Grubb, D.A.; Lee, S.J.; Reid, D.M. Dietary influences on bone mass and bone metabolism: Further evidence of a positive link between fruit and vegetable consumption and bone health? Am. J. Clin. Nutr. 2000, 71, 142–151. [Google Scholar] [PubMed]
- Langsetmo, L.; Hanley, D.A.; Prior, J.C.; Barr, S.I.; Anastassiades, T.; Towheed, T.; Goltzman, D.; Morin, S.; Poliquin, S.; Kreiger, N. Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥50 y: A population-based cohort study. Am. J. Clin. Nutr. 2011, 93, 192–199. [Google Scholar] [CrossRef]
- McTiernan, A.; Wactawski-Wende, J.; Wu, L.; Rodabough, R.J.; Watts, N.B.; Tylavsky, F.; Freeman, R.; Hendrix, S.; Jackson, R. Low-fat, increased fruit, vegetable, and grain dietary pattern, fractures, and bone mineral density: The women’s health initiative dietary modification trial. Am. J. Clin. Nutr. 2009, 89, 1864–1876. [Google Scholar] [CrossRef]
- Welch, A.; MacGregor, A.; Jennings, A.; Fairweather-Tait, S.; Spector, T.; Cassidy, A. Habitual flavonoid intakes are positively associated with bone mineral density in women. J. Bone Miner. Res. 2012, 27, 1872–1878. [Google Scholar] [CrossRef]
- Hooshmand, S.; Chai, S.C.; Saadat, R.L.; Payton, M.E.; Brummel-Smith, K.; Arjmandi, B.H. Comparative effects of dried plum and dried apple on bone in postmenopausal women. Br. J. Nutr. 2011, 106, 923–930. [Google Scholar] [CrossRef]
- Arjmandi, B.H.; Khalil, D.A.; Lucas, E.A.; Georgis, A.; Stoecker, B.J.; Hardin, C.; Payton, M.E.; Wild, R.A. Dried plums improve indices of bone formation in postmenopausal women. J. Women’s Health Gend. Based Med. 2002, 11, 61–68. [Google Scholar] [CrossRef]
- Deyhim, F.; Stoecker, B.J.; Brusewitz, G.H.; Devareddy, L.; Arjmandi, B.H. Dried plum reverses bone loss in an osteopenic rat model of osteoporosis. Menopause 2005, 12, 755–762. [Google Scholar] [CrossRef]
- Arjmandi, B.H.; Johnson, C.D.; Campbell, S.C.; Hooshmand, S.; Chai, S.C.; Akhter, M.P. Combining fructooligosaccharide and dried plum has the greatest effect on restoring bone mineral density among select functional foods and bioactive compounds. J. Med. Food 2010, 13, 312–319. [Google Scholar] [CrossRef]
- Franklin, M.; Bu, S.Y.; Lerner, M.R.; Lancaster, E.A.; Bellmer, D.; Marlow, D.; Lightfoot, S.A.; Arjmandi, B.H.; Brackett, D.J.; Lucas, E.A.; et al. Dried plum prevents bone loss in a male osteoporosis model via igf-i and the rank pathway. Bone 2006, 39, 1331–1342. [Google Scholar] [CrossRef]
- Halloran, B.P.; Wronski, T.J.; VonHerzen, D.C.; Chu, V.; Xia, X.; Pingel, J.E.; Williams, A.A.; Smith, B.J. Dietary dried plum increases bone mass in adult and aged male mice. J. Nutr. 2010, 140, 1781–1787. [Google Scholar] [CrossRef]
- Huang, W.Y.; Zhang, H.C.; Liu, W.X.; Li, C.Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [Google Scholar] [CrossRef]
- Villarreal, A.; Stoecker, B.J.; Garcia, C.; Garcia, K.; Rios, R.; Gonzales, C.; Mandadi, K.; Faraji, B.; Patil, B.S.; Deyhim, F. Cranberry juice improved antioxidant status without affecting bone quality in orchidectomized male rats. Phytomedicine 2007, 14, 815–820. [Google Scholar] [CrossRef]
- Jakesevic, M.; Aaby, K.; Borge, G.I.; Jeppsson, B.; Ahrne, S.; Molin, G. Antioxidative protection of dietary bilberry, chokeberry and lactobacillus plantarum heal19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion. BMC Complement. Altern. Med. 2011, 11, 8. [Google Scholar] [CrossRef]
- Karlsen, A.; Paur, I.; Bohn, S.K.; Sakhi, A.K.; Borge, G.I.; Serafini, M.; Erlund, I.; Laake, P.; Tonstad, S.; Blomhoff, R. Bilberry juice modulates plasma concentration of NF-kappab related inflammatory markers in subjects at increased risk of CVD. Eur. J. Nutr. 2010, 49, 345–355. [Google Scholar] [CrossRef]
- Karlsen, A.; Retterstol, L.; Laake, P.; Paur, I.; Bohn, S.K.; Sandvik, L.; Blomhoff, R. Anthocyanins inhibit nuclear factor-kappab activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J. Nutr. 2007, 137, 1951–1954. [Google Scholar] [PubMed]
- Kim, B.; Ku, C.S.; Pham, T.X.; Park, Y.; Martin, D.A.; Xie, L.; Taheri, R.; Lee, J.; Bolling, B.W. Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein e knockout mice. Nutr. Res. 2013, 33, 406–413. [Google Scholar] [CrossRef]
- Mane, C.; Loonis, M.; Juhel, C.; Dufour, C.; Malien-Aubert, C. Food grade lingonberry extract: Polyphenolic composition and in vivo protective effect against oxidative stress. J. Agric. Food Chem. 2011, 59, 3330–3339. [Google Scholar] [CrossRef]
- Devareddy, L.; Hooshmand, S.; Collins, J.K.; Lucas, E.A.; Chai, S.C.; Arjmandi, B.H. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J. Nutr. Biochem. 2008, 19, 694–699. [Google Scholar] [CrossRef]
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [CrossRef]
- Zhang, J.; Lazarenko, O.P.; Blackburn, M.L.; Shankar, K.; Badger, T.M.; Ronis, M.J.; Chen, J.R. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats. PLoS One 2011, 6, e24486. [Google Scholar] [CrossRef] [PubMed]
- Bu, S.Y.; Hunt, T.S.; Smith, B.J. Dried plum polyphenols attenuate the detrimental effects of TNF-alpha on osteoblast function coincident with up-regulation of runx2, osterix and IGF-i. J. Nutr Biochem. 2009, 20, 35–44. [Google Scholar] [CrossRef]
- Bu, S.Y.; Lerner, M.; Stoecker, B.J.; Boldrin, E.; Brackett, D.J.; Lucas, E.A.; Smith, B.J. Dried plum polyphenols inhibit osteoclastogenesis by downregulating nfatc1 and inflammatory mediators. Calcif. Tissue Int. 2008, 82, 475–488. [Google Scholar] [CrossRef]
- Tanabe, S.; Santos, J.; La, V.D.; Howell, A.B.; Grenier, D. A-type cranberry proanthocyanidins inhibit the rankl-dependent differentiation and function of human osteoclasts. Molecules 2011, 16, 2365–2374. [Google Scholar] [CrossRef]
- Bickford, P.C.; Tan, J.; Shytle, R.D.; Sanberg, C.D.; El-Badri, N.; Sanberg, P.R. Nutraceuticals synergistically promote proliferation of human stem cells. Stem Cells Dev. 2006, 15, 118–123. [Google Scholar] [CrossRef]
- Chen, J.R.; Lazarenko, O.P.; Wu, X.; Kang, J.; Blackburn, M.L.; Shankar, K.; Badger, T.M.; Ronis, M.J. Dietary-induced serum phenolic acids promote bone growth via p38 mapk/beta-catenin canonical WNT signaling. J. Bone Miner. Res. 2010, 25, 2399–2411. [Google Scholar] [CrossRef]
- Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. Br. J. Nutr. 2010, 104 (Suppl. 3), 67–90. [Google Scholar] [CrossRef]
- Nieves, J.W. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos. Int. 2013, 24, 771–786. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Trzeciakiewicz, A.; Habauzit, V.; Horcajada, M.N. When nutrition interacts with osteoblast function: Molecular mechanisms of polyphenols. Nutr. Res. Rev. 2009, 22, 68–81. [Google Scholar] [CrossRef]
- Mbalaviele, G.; Sheikh, S.; Stains, J.P.; Salazar, V.S.; Cheng, S.L.; Chen, D.; Civitelli, R. Beta-cateninand bmp-2 synergize to promote osteoblast differentiation and new bone formation. J. Cell. Biochem. 2005, 94, 403–418. [Google Scholar] [CrossRef]
- Almeida, M.; Han, L.; Martin-Millan, M.; O’Brien, C.A.; Manolagas, S.C. Oxidative stress antagonizes wnt signaling in osteoblast precursors by diverting beta-catenin from t cell factor- to forkhead box o-mediated transcription. J. Biol. Chem. 2007, 282, 27298–27305. [Google Scholar] [CrossRef] [PubMed]
- Boyle, D.L.; Hammaker, D.; Edgar, M.; Zaiss, M.M.; Teufel, S.; David, J.P.; Schett, G.; Firestein, G.S. Differential roles of mapk kinases mkk3 and mkk6 in osteoclastogenesis and bone loss. PLoS One 2014, 9, e84818. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.J.; Kim, B.K.; Park, K.Y.; Yokozawa, T.; Song, Y.O.; Cho, E.J. Anti-aging effects of cyanidin under a stress-induced premature senescence cellular system. Biol. Pharm. Bull. 2010, 33, 421–426. [Google Scholar] [CrossRef]
- Tsuda, T.; Horio, F.; Osawa, T. The role of anthocyanins as an antioxidant under oxidative stress in rats. BioFactors 2000, 13, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hubert, P.A.; Lee, S.G.; Lee, S.-K.; Chun, O.K. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies. Antioxidants 2014, 3, 144-158. https://doi.org/10.3390/antiox3010144
Hubert PA, Lee SG, Lee S-K, Chun OK. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies. Antioxidants. 2014; 3(1):144-158. https://doi.org/10.3390/antiox3010144
Chicago/Turabian StyleHubert, Patrice A., Sang Gil Lee, Sun-Kyeong Lee, and Ock K. Chun. 2014. "Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies" Antioxidants 3, no. 1: 144-158. https://doi.org/10.3390/antiox3010144
APA StyleHubert, P. A., Lee, S. G., Lee, S.-K., & Chun, O. K. (2014). Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies. Antioxidants, 3(1), 144-158. https://doi.org/10.3390/antiox3010144