Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Extraction of Oil and Polyphenols from Oilseeds
2.3. Fractionation of Crude Polyphenolic Extracts into Acidic and Neutral Fractions
2.4. Determination of Total Phenolics
2.5. Antioxidant Activity of the Extract, Fractions and Oil
2.5.1. Radical Scavenging Activity by DPPH Assay
2.5.2. Ferric Reducing Power Assay
2.5.3. Chelating Effect
2.5.4. Statistical Analysis
3. Results and Discussion
Sample oilseed | Total extractable solids mg/g sample | Total phenolics mg GAE/100 g extract | Total flavonoids mg QE/100 g extract | % oil yield |
---|---|---|---|---|
Ajwain | 240.5 ± 29.0 | 8330.5 ± 107.0 | 5343.5 ± 60.3 | 4.0 ± 0.1 |
Mustard | 170.4 ± 31.0 | 4144.6 ± 56.0 | 987.3 ± 32.7 | 21.0 ± 2.2 |
Fenugreek | 130.3 ± 21.0 | 3130.5 ± 29.0 | 580.5 ± 38.0 | 6.9 ± 1.1 |
Poppy | 156.7 ± 15.5 | 1937.7 ± 28.5 | 676.3 ± 29.3 | 16.2 ± 2.1 |
Oilseed | Total phenolics (mg GAE/100 g) | |||
---|---|---|---|---|
Crude extract | Neutral fraction | Acidic fraction | Oil fraction | |
Ajwain | 8330.5 ± 107.0 | 4070.5 ± 74.5 | 2900.2 ± 25.6 | 1923.4 ± 29.0 |
Mustard seeds | 4144.6 ± 56.0 | 2100.6 ± 26.7 | 800.5 ± 17.9 | 360.6 ± 13.0 |
Fenugreek | 3130.5 ± 29.0 | 1320.3 ± 18.9 | 430.3 ± 12.0 | 100.6 ± 9.0 |
Poppy seeds | 1937.7 ± 28.5 | 870.5 ± 23.0 | 190.2 ± 17.0 | 48.5 ± 3.0 |
Sample (µg/100 µL) | % Inhibition of DPPH | |||
---|---|---|---|---|
Crude extract a | Acidic fraction b | Neutral fraction c | Oil fraction d | |
Ajwain | ||||
50 | 66.3 ± 1.5 | 60.4 ± 2.6 | 51.3 ± 2.4 | 60.3 ± 1.4 |
100 | 74.5 ± 1.0 | 69.5 ± 2.9 | 61.6 ± 3.0 | 67.6 ± 2.0 |
150 | 83.6 ± 2.3 | 76.5 ± 1.6 | 68.6 ± 2.1 | 77.5 ± 2.3 |
200 | 90.6 ± 2.8 | 85.4 ± 1.9 | 77.5 ± 2.4 | 83.0 ± 1.8 |
250 | 95.7 ± 3.0 | 91.6 ± 2.9 | 83.4 ± 1.8 | 88.0 ± 2.1 |
Mustard seeds | ||||
50 | 57.0 ± 1.5 | 45.2 ± 1.2 | 37.1 ± 0.6 | 51.0 ± 1.5 |
100 | 59.2 ± 0.8 | 52.6 ± 1.7 | 44.2 ± 1.5 | 56.2 ± 0.9 |
150 | 66.5 ± 2.5 | 61.8 ± 2.1 | 54.4 ± 2.1 | 60.5 ± 2.6 |
200 | 73.5 ± 2.1 | 68.7 ± 1.5 | 59.6 ± 3.0 | 67.5 ± 2.1 |
250 | 79.4 ± 1.5 | 74.5 ± 0.9 | 65.8 ± 2.9 | 73.4 ± 1.6 |
Fenugreek | ||||
50 | 50.4 ± 0.5 | 43.2 ± 2.3 | 35.1 ± 2.3 | 43.6 ± 1.5 |
100 | 55.3 ± 1.6 | 49.5 ± 2.5 | 40.6 ± 2.2 | 49.7 ± 2.6 |
150 | 62.0 ± 2.1 | 56.5 ± 1.8 | 47.7 ± 2.1 | 54.2 ± 1.1 |
200 | 67.0 ± 1.9 | 61.4 ± 1.9 | 55.8 ± 1.9 | 59.5 ± 1.8 |
250 | 73.0 ± 1.8 | 67.2 ± 2.1 | 60.7 ± 1.1 | 65.5 ± 2.8 |
Poppy seeds | ||||
50 | 44.0 ± 1.0 | 38.5 ± 0.9 | 29.0 ± 1.5 | 37.2 ± 1.0 |
100 | 53.0 ± 1.5 | 43.5 ± 1.3 | 35.0 ± 3.0 | 44.7 ± 1.5 |
150 | 59.0 ± 2.3 | 49.5 ± 1.5 | 40.0 ± 2.8 | 49.5 ± 2.3 |
200 | 63.0 ± 1.8 | 55.0 ± 1.9 | 46.0 ± 2.7 | 54.0 ± 1.8 |
250 | 66.5 ± 0.6 | 62.0 ± 3.0 | 55.5 ± 1.6 | 60.5 ± 0.6 |
Sample (µg/100 µL) | % Chelating effect | |||
---|---|---|---|---|
Crude extract | Acidic fraction | Neutral fraction | Oil fraction | |
Ajwain | ||||
50 | 49.3 ± 2.4 | 27.0 ± 2.7 | 36.6 ± 2.1 | 19.0 ± 2.7 |
100 | 55.0 ± 3.0 | 33.5 ± 1.2 | 42.3 ± 3.0 | 23.5 ± 1.2 |
150 | 60.2 ± 3.1 | 40.5 ± 1.7 | 44.2 ± 3.0 | 30.5 ± 1.7 |
200 | 66.7 ± 3.1 | 46.5 ± 1.9 | 49.0 ± 2.0 | 36.5 ± 1.9 |
250 | 77.7 ± 1.7 | 51.0 ± 1.1 | 57.5 ± 1.0 | 41.0 ± 1.1 |
Mustard seeds | ||||
50 | 35.9 ± 2.1 | 22.5 ± 1.2 | 31.8 ± 2.1 | 12.5 ± 1.2 |
100 | 40.6 ± 3.0 | 28.8 ± 2.8 | 37.6 ± 3.0 | 18.8 ± 2.8 |
150 | 46.5 ± 2.8 | 32.5 ± 2.00 | 43.3 ± 2.8 | 22.5 ± 2.0 |
200 | 53.5 ± 1.7 | 39.5 ± 1.1 | 46.3 ± 1.7 | 29.5 ± 1.1 |
250 | 65.4 ± 2.1 | 46.5 ± 1.3 | 50.0 ± 2.1 | 35.5 ± 1.3 |
Fenugreek | ||||
50 | 39.0 ± 2.1 | 18.4 ± 0.5 | 25.5 ± 2.5 | - |
100 | 44.0 ± 2.1 | 25.6 ± 1.7 | 30.5 ± 2.1 | - |
150 | 49.5 ± 1.5 | 27.6 ± 2.1 | 33.0 ± 1.5 | 17.6 ± 2.1 |
200 | 53.5 ± 1.8 | 33.3 ± 1.3 | 39.0 ± 2.0 | 23.3 ± 1.3 |
250 | 61.0 ± 1.5 | 41.0 ± 3.0 | 46.0 ± 1.6 | 30.0 ± 3.0 |
Poppy seeds | ||||
50 | 33.0 ± 1.9 | 17 ± 0.8 | 22.0 ± 1.9 | - |
100 | 39.0 ± 1.9 | 21 ± 1.2 | 25.0 ± 1.9 | - |
150 | 41.0 ± 1.9 | 26 ± 2.1 | 29.0 ± 1.9 | 16 ± 2.1 |
200 | 49.6 ± 1.9 | 31 ± 2.9 | 32.6 ± 1.9 | 20 ± 2.9 |
250 | 56.4 ± 1.7 | 36 ± 3.1 | 39.4 ± 1.7 | 25 ± 3.1 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ozçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Orhan, D.D.; Ozçelik, B.; Ozgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010, 165, 496–504. [Google Scholar] [CrossRef]
- Phapale, R.; Mirsa-Thakur, S. Antioxidant activity and antimutagenic effect of phenolic compounds in Feronia limonia (L.) Swingle Fruit. Int. J. Pharm. Pharm. Sci. 2010, 2, 68–73. [Google Scholar]
- Guest, J.A.; Grant, R.S. Effects of dietary derived antioxidants on the central nervous system. Effects of dietary derived antioxidants on the central nervous system. Int. J. Nutr. Pharmcol. Neurol. Dis. 2012, 2, 185–197. [Google Scholar] [CrossRef]
- Zhou, K.; Raffoul, J.J. Potential anticancer properties of grape antioxidants. J. Oncol. 2012, 2012, 1–8. [Google Scholar]
- Huang, W.-Y.; Zhang, H.-C.; Liu, W.-X.; Li, C.-Y. Survey of the antioxidant capacity and phenolic composition of blueberry, blackberry, strawberry in Nanjing. J. Zhejiang Univ. Sci. 2012, 13, 94–102. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 2011, 16, 251–280. [Google Scholar]
- Moein, M.R.; Moein, S.; Ahmad, I.S. Radical scavenging and reducing power of Salvia mirzayanii subfractions. Molecules 2008, 13, 2804–2813. [Google Scholar] [CrossRef]
- Ceriello, A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 2008, 31, S181–S184. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative Diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Pan, X.D.; Zhu, Y.G.; Lin, N.; Zhang, J.; Ye, Q.Y.; Huang, H.P.; Chen, X.C. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: Implications for Alzheimer’s disease. Mol. Neurodegener. 2011, 30, 45–62. [Google Scholar]
- Floyd, R.A.; Towner, R.A.; He, T.; Hensley, K.; Maples, K.R. Translational research involving oxidative stress and diseases of aging. Free Radic. Biol. Med. 2011, 51, 931–941. [Google Scholar] [CrossRef]
- Li, T.; Hu, W.; Li, J.; Zhang, X.; Zhu, J.; Li, X. Coating effects of tea polyphenols and rosemary extract combined with chitosan on the storage quality of large yellow croaker. Food Control 2012, 25, 101–106. [Google Scholar] [CrossRef]
- Naz, S.; Siddiqi, R.; Sayeed, S.A. Effect of flavonoids on the stability of corn oil. Int. J. Food Sci. Technol. 2008, 43, 1850–1854. [Google Scholar] [CrossRef]
- Baroš, S.; Karšayová, M.; Jomová, K.; Gáspár, A.; Valko, M. Free radical scavenging capacity of Papaver Somniferum L. and determination of pharmacologically active alkaloids using capillary electrophoresis. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 725–732. [Google Scholar]
- Javed, S.; Shahid, A.A.; Haider, M.S.; Umeera, A.; Ahmad, R.; Mushtaq, S. Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). J. Med. Plant Res. 2012, 6, 768–775. [Google Scholar]
- Masood, N.; Chaudhry, A.; Tariq, P. In vitro antibacterial activities of kalonji, cumin and poppy seed. Pak. J. Bot. 2008, 40, 461–467. [Google Scholar]
- Ranjan, B.; Manmohan, S.; Singh, S.R.; Singh, R.B. Medicinal uses of Trachyspermum Ammi: A review. Pharma Res. 2011, 5, 247–258. [Google Scholar]
- Bukhari, S.B.; Bhanger, M.I.; Memon, S. Antioxidative activity of extracts from fenugreek seeds (Trigonella Foenum-Graecum). Pak. J. Anal. Environ. Chem. 2008, 9, 78–83. [Google Scholar]
- Chan, K.W.; Iqbal, S.; Khong, N.M.H.; Babji, A.S. Preparation of deodorized antioxidant rich extracts from 15 selected spices through optimized aqueous extraction. J. Med. Plants Res. 2011, 5, 6067–6075. [Google Scholar]
- Jeet, K.; Devi, N.; Narender, T.; Sunil, T.; Shalta, L.; Raneev, T. Trachyspermum Ammi (Ajwain): A comprehensive review. Int. Res. J. Pharm. 2012, 3, 133–138. [Google Scholar]
- Singh, G.; Maurya, S.; Catalan, C.; de Lampasona, M.P. Chemical constituents, antifungal and antioxidative effects of Ajwain essential oil and its acetone extract. J. Agric. Food Chem. 2004, 52, 3292–3296. [Google Scholar] [CrossRef]
- Mariod, A.A.; Ibrahim, R.M.; Ismail, M.; Ismail, N. Antioxidant activity and phenolic content of phenolic rich fractions obtainedfrom black cumin (Nigella sativa) seedcake. Food Chem. 2009, 116, 306–312. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Oszmianski, J.; Lee, C.Y. Isolation and HPLC determination of phenolic compounds in red grapes. Am. J. Enol. Vitic. 1990, 41, 204–206. [Google Scholar]
- Jayaparkasha, G.K.; Tamil, S.A.; Sakariah, K.K. Antimicrobial and antioxidant activities of grape (Vitis vininfera) seed extract. Food Res. Int. 2003, 36, 117–122. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Kroh, L.W.; Mörsel, J.-T. Radical scavenging activity of black cumin (Nigella sativa L.) coriander (Coriandrum sativum L.), Niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J. Agric. Food Chem. 2003, 51, 6961–6969. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengeheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K. Antioxidant and antibacterial activities of Punica granatum peel extract. J. Food Sci. 2003, 68, 1473–1477. [Google Scholar] [CrossRef]
- Lee, J.-C.; Kim, H.-R.; Kim, J.; Jang, Y.-S. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. Saboten. J. Agric. Food Chem. 2002, 50, 6490–6496. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinefera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Meda, A.; Lamiena, C.E.; Romitob, M.; Millogoc, J.; Nacoulmaa, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczk, M. Phenolic Compounds of Major Oilseeds and Plant Oils. In Phenolics in Food and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2004; pp. 84–131. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Končić, M.Z.; Barbarić, M.; Perković, I.; Zore, B. Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas. Molecules 2011, 16, 6232–6242. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ishtiaque, S.; Khan, N.; Siddiqui, M.A.; Siddiqi, R.; Naz, S. Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds. Antioxidants 2013, 2, 246-256. https://doi.org/10.3390/antiox2040246
Ishtiaque S, Khan N, Siddiqui MA, Siddiqi R, Naz S. Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds. Antioxidants. 2013; 2(4):246-256. https://doi.org/10.3390/antiox2040246
Chicago/Turabian StyleIshtiaque, Shagufta, Nasir Khan, Muhammad A. Siddiqui, Rahmanullah Siddiqi, and Shahina Naz. 2013. "Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds" Antioxidants 2, no. 4: 246-256. https://doi.org/10.3390/antiox2040246
APA StyleIshtiaque, S., Khan, N., Siddiqui, M. A., Siddiqi, R., & Naz, S. (2013). Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds. Antioxidants, 2(4), 246-256. https://doi.org/10.3390/antiox2040246