Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Sample Preparation for Analysis
2.3. HPLC Mass Spectrometry Analysis
2.4. Antioxidant Capacity Assays
2.5. Determination of Sugar and Organic Acid Profiles
2.6. Determination of Physico-Chemical Properties
2.7. Statistical Analysis
3. Results
3.1. HPLC/MS Analysis of Phenolic Composition
Maturity | Comparison among clones | |||||
---|---|---|---|---|---|---|
Green | Red | Blue | Over mature | |||
Flavonol | Q3-Rutinoside | 30 ± 41 a A | 10 ± 13 a A | 6 ± 7 a A | 5.4 ± 4.1 a A | (1,2) 3 |
Q3-Galactoside | 107 ± 50 a B | 81 ± 32 a B | 50 ± 17 b B | 37 ± 10 b B | 1 (2,3) | |
Q3-Glucoside | 25 ± 17 a A | 15 ± 7 a C | 10 ± 4 b C | 7 ± 2 b A | (1,2) 3 | |
Q3-Rhamnoside | 6 ± 5 a A | 2 ± 2 a A | 1 ± 1 a A | 3 ± 3 a A | (1,3) 2 | |
Total quantified Flavonols | 168 ± 107 a | 108 ± 45 a | 66 ± 22 b | 52 ± 7 b | 1 (2,3) | |
Phenolic Acids | Chlorogenic | 533 ± 91 a A | 307 ± 32 b A | 200 ± 25 c A | 182 ± 6 c A | (1,2,3) |
Caffeic | 4 ± 3 a B | 2 ± 1 b B | 1 ± 0.3 b B | 0.8 ± 0.1 b B | 1 (2,3) | |
Ferulic | 7 ± 4 a B | 2 ± 1 b B | 1 ± 0.3 b B | 1 ± 0.2 b C | 1 (2,3) | |
Totals quantified Phenolic acids | 543 ± 91 a | 311 ± 33 b | 202 ± 25 c | 184 ± 6 c | (1,2,3) | |
Flavan-3-ols | ECG | 0.8 ± 0.1 a A | 0.5 ± 0.1 b A | 0.4 ± 0.3 a A | 1 ± 0.5 c A | (1,2,3) |
Catechin | 39 ± 13 a B | 9 ± 3 b B | 5 ± 2 b B | 6 ± 4 b B | 1 (2,3) | |
Epicatechin | 80 ± 20 a C | 7 ± 2 b B | 2 ± 1 c C | 5 ± 2 d B | (1,2,3) | |
Total quantified Flavan-3-ol | 119 ± 29 a | 16 ± 5 b | 8 ± 3 c | 12 ± 6 c | (1) (2) (3) | |
Anthocyanins | Cy-3-Glucoside | 2 ± 0.3 a A | 59 ± 20 b A | 76 ± 52 b A | 55 ± 45 b A | (1,2,3) |
Cy-3-Galactoside | 2 ± 1.3 a A | 68 ± 9 b A | 69 ± 29 b A | 53 ± 30 b A | (1,2,3) | |
Del-3-Glucoside | 0.9 ± 0.1 a B | 81 ± 23 b A | 151 ± 90 b B | 122 ± 87 b B | (1,2,3) | |
Del-3-Galactoside | 0.9 ± 0.1 a B | 96 ± 12 b A | 163 ± 56 c B | 135 ± 62 c B | (1,2,3) | |
Pet-3-Glucoside | 0.4 ± 0.1 a C | 116 ± 24 b A | 261 ± 151 c B | 244 ± 159 b B | (1,2,3) | |
Pet-3-Galactoside | 0.3 ± 0.1 a C | 87 ± 22 b A | 179 ± 57 c B | 188 ± 72 d B | (1,2,3) | |
Mal-3-Glucoside | 0.7 ± 0.1 a D | 34 ± 11 b B | 95 ± 48 c A | 110 ± 58 c B | (1,2,3) | |
Mal-3-Galactoside | 0.7 ± 0.1 a D | 24 ± 10 b B | 66 ± 19 c A | 103 ± 30 d B | (1,2,3) | |
Total quantified Anthocyanin | 8 ± 2 a | 565 ± 70 b | 1060 ± 490 c | 1011 ± 534 c | (1) (2) (3) | |
Total | Total phenolics by HPLC/MS | 839 ± 127 a | 999 ± 77 a | 1335 ± 501 a | 1259 ± 542 a | 1 (2,3) |
3.2. Antioxidant Capacity
Antioxidant capacity assay | Maturity | Comparison among clones | |||
---|---|---|---|---|---|
Green | Red | Blue | Over mature | ||
FRAP (mg TE/g DW) | 302 ± 97 a | 151 ± 23 b | 125 ± 62 b | 160 ± 60 b | (1,3) 2 |
ORAC (µmol TE/g DW) | 57 ± 0.4 a | 195 ± 28 b | 165 ± 51 b | 206 ± 45 b | (1,2,3) |
Maturity Stage | Comparison among clones | |||||
---|---|---|---|---|---|---|
Green | Red | Blue | Over mature | |||
Sugars | Glucose | 4.2 ± 6.8 a | 13.2 ± 2.0 b | 17.8 ± 3.4 b | 16.9 ± 1 b | (1,2,3) |
(mg/100 mg DW) | Fructose | 4.2 ± 6.7 a | 13.3 ± 1.7 b | 18.1 ± 3.3 b | 19.4 ± 1.5 b | (1,2,3) |
Galactose | 0.02 ± 0.02 a | 0.02 ± 0.01 a | 0.05 ± 0.02 a | 0.06 ± 0.04 a | (1,2,3) | |
Sucrose | 0.01 ± 0.03 a | 0.1 ± 0.03 a | 0.07 ± 0.02 a | 0.14 ± 0.03 b | (1,2,3) | |
Total Sugars (%DW) | 8.5 ± 13.4 a | 26.6 ± 3.6 b | 36.0 ± 6.77 b | 36.5 ± 2.5 b | (1,2,3) | |
Acids | Quinic acid | 9.5 ± 2.9 a | 4.9 ± 0.3 a | 2.9 ± 0.5 b | 1.7 ± 0.2 c | (1,2,3) |
(mg/100 mg DW) | Citric acid | 0.8 ± 0.7 a | 1.8 ± 0.7 b | 1.2 ± 0.1 b | 0.6 ± 0.1 a | (1,2) 3 |
Malic acid | 0.5 ± 0.1 a | 0.3 ± 0.1 a | 0.1 ± 0.01 b | 0.4 ± 0.1 a | (1,2,3) | |
Tartaric acid | ND | Trace | Trace | Trace | NA | |
Shikimic acid | 0.1 ± 0.06 a | 0.04 ± 0.01 b | 0.02 ± 0.01 b | 0.01 ± 0.003 b | (1,3) 2 | |
Succinic acid | 0.2 ± 0.1 a | 0.2 ± 0.06 a | 0.1 ± 0.05 a | 0.1 ± 0.06 a | (1,3) 2 | |
Total Acids (%DW) | 11.1 ± 3.1 a | 7.2 ± 0.7 b | 4.4 ± 0.5 c | 2.8 ± 0.32 d | ||
Physico-chemical measures | pH | 3.2 ± 0.03 a | 3.2 ± 0.1 a | 3.3 ± 0.1 b | 3.63 ± 0.1 c | (1,2,3) |
TA (citric acid equivalents, g/L) | 0.2 ± 0.02 a | 0.1 ± 0.02 b | 0.06 ± 0.01 c | 0.04 ± 0.01 d | (1,2,3) | |
SSC (°Brix) | 7 ± 0.4 c | 8 ± 0.3 b | 10 ± 0.8 a | 11 ± 2 a | (1,2,3) | |
Density (mg/mL) | 0.98 ± 0.03 a | 1.00 ± 0.03 b | 1.03 ± 0.02 c | 1.02 ± 0.02 c | (1,2,3) |
3.3. Sugars and Organic Acid Profiles
3.4. Physico-Chemical Parameters
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Lotito, S.; Frei, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radi. Biol. Med. 2006, 41, 1727–1746. [Google Scholar] [CrossRef]
- Thilakarathna, S.H.; Rupasinghe, H.P.V. Anti-atherosclerotic effects of fruit bioactive compounds: A review of current scientific evidence. Can. J. Plant Sci. 2012, 92, 407–419. [Google Scholar] [CrossRef]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities and the impact of their intake on human health, performance and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef]
- Grace, M.H.; Ribnicky, D.M.; Kuhn, P.; Poulev, A.; Logendra, S.; Yousef, G.G.; Raskin, I.; Lila, M.A. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 2009, 16, 406–415. [Google Scholar] [CrossRef]
- Seymour, E.M.; Tanone, I.I.; Urcuyo-Llanes, D.E.; Lewis, S.K.; Kirakosyan, A.; Kondoleon, M.G.; Kaufman, P.B.; Bolling, S.F. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J. Med. Food 2011, 14, 1511–1518. [Google Scholar] [CrossRef] [Green Version]
- Del Bo, C.; Martini, D.; Vendrame, S.; Riso, P.; Ciappellano, S.; Klimis-Zacas, D.; Porrini, M. Improvement of lymphocyte resistance against H2O2-induced DNA damage in Sprague-Dawley rats after eight weeks of a wild blueberry (Vaccinium angustifolium)-enriched diet. Mutat. Res. 2010, 703, 158–162. [Google Scholar] [CrossRef]
- Riso, P.; Klimis-Zacas, D.; Del Bo’, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; de Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2012. [Google Scholar] [CrossRef] [Green Version]
- Wild Blueberry Producers Association of Nova Scotia 2007. The Wild Blueberry. Available online: http://www.nswildblueberries.com (accessed on 9 June 2011).
- Siriwoharn, T.; Wrolstad, R.E.; Finn, C.E.; Pereira, C.B. Influence of cultivar, maturity and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics and antioxidant properties. J. Agric. Food Chem. 2004, 52, 8021–8030. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Wang, L.; Huber, G.M.; Pitts, N.L. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem. 2008, 107, 1217–1224. [Google Scholar]
- Huber, G.M.; Rupasinghe, H.P.V. Phenolic profiles and antioxidant properties of apple skin extracts. J. Food Sci. 2009, 74, C693–C700. [Google Scholar] [CrossRef]
- Forney, C.F.; Song, J.; Hilderbrand, P.D.; Fan, L.; McRae, K.B. Interactive effects of ozone and 1-methylcyclopropene on decay resistance and quality of stored carrots. Postharvest Biol. Technol. 2007, 45, 341–348. [Google Scholar] [CrossRef]
- Castrejón, A.D.R.; Eichholz, I.; Rohn, S.; Kroh, L.W.; Huyskens-Keil, S. Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 2008, 109, 564–572. [Google Scholar] [CrossRef]
- Vvedenskaya, I.O.; Vorsa, N. Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci. 2004, 167, 1043–1054. [Google Scholar] [CrossRef]
- Jaakola, L.; Maatta, K.; Pirttila, A.M.; Torronene, R.; Karenlampi, S.; Hohtola, A. Expression of genes involved in anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 2002, 130, 729–739. [Google Scholar] [CrossRef]
- Kalt, W.; Lawand, C.; Ryan, D.A.J.; McDonald, J.E.; Donner, H.; Forney, C.F. Oxygen Radical Absorbing Capacity, Anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. J. Am. Soc. Hortic. Sci. 2003, 130, 917–923. [Google Scholar]
- Gao, L.; Mazza, G. Quantitation and distribution of simple and acylated anthocyanins and other phenolics in blueberries. J. Food Sci. 1994, 59, 1057–1059. [Google Scholar] [CrossRef]
- Taruscio, T.; Barney, D.L.; Exon, J. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. J. Agric. Food Chem. 2004, 52, 3169–3176. [Google Scholar] [CrossRef]
- Maatta-Riihinen, K.R.; Kahkonen, M.P.; Torronen, A.R.; Heinonen, M.I. Catechins and procyanidins in berries of Vaccinium species and their antioxidant activity. J. Agric. Food Chem. 2005, 53, 8485–8491. [Google Scholar] [CrossRef] [PubMed]
- Mazza, G.; Brouillard, R. The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 1990, 29, 1097–1102. [Google Scholar] [CrossRef]
- Grace, S.C.; Logan, B.A. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos. Trans. R. Soc. B 2011, 355, 1499–1510. [Google Scholar]
- Forney, C.F.; Kalt, W. Blueberry and Cranberry. In Health-Promoting Properties of Fruit and Vegetables; Terry, L.A., Ed.; CAB International: Wallingford, UK, 2011; pp. 51–73. [Google Scholar]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.-S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; McDonald, J.E. Chemical composition of lowbush blueberry cultivars. J. Am. Soc. Hortic. Sci. 1996, 121, 142–146. [Google Scholar]
- Passam, H.C.; Karaanos, I.C.; Alexopoulos, A.A. The Biological Basis of Fruit Quality. In Breeding for Fruit Quality; Jenks, M.A., Bebeli, P.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wu, B.H.; Quilot, B.; Genard, M.; Kervella, J.; Li, S.H. Changes in sugar and organic acid concentration during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Sci. Hortic. 2005, 103, 429–439. [Google Scholar] [CrossRef]
- Albertini, M.-V.; Carcouet, E.; Pailly, O.; Ganbotti, C.; Luro, F.; Berti, L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agric. Food Chem. 2006, 54, 8335–8339. [Google Scholar] [CrossRef] [PubMed]
- Famiani, F.; Cultrera, N.G.M.; Battistelli, A.; Casulli, V.; Proietti, P.; Standardi, A.; Chen, Z.-H.; Leegood, R.C.; Walker, R.P. Phosphoenolpyruvate carboxykinase and its potential role in the catabolism or organic acids in the flesh of soft fruit during ripening. J. Exp. Bot. 2005, 56, 2959–2969. [Google Scholar] [CrossRef] [PubMed]
- Burgher-MacLellan, K.; MacKenzie, K. An overview of RAPD analysis to estimate genetic relationships in lowbush blueberry. Small Fruits Rev. 2004, 3, 295–305. [Google Scholar] [CrossRef]
- Kalt, W.; McRae, B.; Hamilton, L.C. Relationship between surface colour and other maturity indices in wild lowbush blueberries. Can. J. Plant Sci. 1995, 75, 485–490. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gibson, L.; Rupasinghe, H.P.V.; Forney, C.F.; Eaton, L. Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening. Antioxidants 2013, 2, 216-229. https://doi.org/10.3390/antiox2040216
Gibson L, Rupasinghe HPV, Forney CF, Eaton L. Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening. Antioxidants. 2013; 2(4):216-229. https://doi.org/10.3390/antiox2040216
Chicago/Turabian StyleGibson, Lara, H. P. Vasantha Rupasinghe, Charles F. Forney, and Leonard Eaton. 2013. "Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening" Antioxidants 2, no. 4: 216-229. https://doi.org/10.3390/antiox2040216
APA StyleGibson, L., Rupasinghe, H. P. V., Forney, C. F., & Eaton, L. (2013). Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening. Antioxidants, 2(4), 216-229. https://doi.org/10.3390/antiox2040216